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Abstract. Generating music-related notations offers assistance for mu-
sicians in the path of replicating the music using a specific instrument.
In this paper, we evaluate the state-of-the-art guitar tablature transcrip-
tion network named TabCNN against state-of-the-art computer vision
networks. The evaluation is performed using the same dataset as well
as the same evaluation metrics of TabCNN. Furthermore, we propose
a new CNN-based network named Tablnception to transcribe guitar-
related notations, also called guitar tablatures. The network relies on a
custom inception block converged by dense layers. The TabInception net-
work outperforms the TabCNN in terms of multi-pitch precision (MP),
tablature precision (TP), and tablature F-measure (TF). Moreover, the
Swin Transformer achieves the best score in terms of multi-pitch recall
(MR) and tablature recall (TR), while the Vision Transformer achieves
the best score in terms of multi-pitch F-measure (MF). Motivated by
the previous insights, we train the networks with more epochs and pro-
pose another network named Inception Transformer (InT) to surpass all
the estimation metrics of TabCNN using a single network. The InT net-
work relies on an inception block converged by a Transformer Encoder.
The TabInception and the InT network outperformed all estimation met-
rics of TabCNN except the tablature disambiguation rate (TDR) when
trained using a bigger epoch size.

Keywords: Guitar Tablature Transcription - Computer Vision - Auto-
matic Music Transcription.

1 Introduction

Over the last decade, researchers have been exploring the benefits of their innova-
tions in music-related fields while producing tools that can facilitate musicians’
daily tasks. One of the latter fields is automatic music transcription (AMT).
The AMT is the task of generating a symbolic notation, and instructing a mu-
sician how to play a song using a specific instrument. Several studies have been
conducted in the AMT field, but only a few of them dealt with the guitar in-
strument [3, 8,2]. As for automatic guitar transcription, the guitarist generally
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relies on both the music score and the tablature notation to play the song in
question. The music score represents the distribution of pitches in time, and the
tablature notation defines the guitar strings and the position of the fingers along
the fretboard to produce those pitches.

This paper explores several computer vision techniques for automatic guitar
transcription. Inspired by the TabCNN model published in [23], Constant-Q
spectrograms are generated from each audio track and computed through Com-
puter Vision approaches as visual representations of the audio data. Further-
more, we propose a new CNN-based network named TablInception that relies
on Inception and Dense Blocks for automatic guitar transcription. Moreover, we
propose another network named Inception Transformer (InT) to attempt to im-
prove the results of TabInception and other featured networks. The Int network
relies on an Inception Block converged by the Transformer Encoder Block pro-
posed in [21]. Thus, the leading purpose of this study is to evaluate the TabCNN
network against state-of-the-art computer vision networks while proposing new
networks that might be capable of outperforming the latter network in the field
of guitar tablature transcription. All the aforementioned networks, in addition
to the Tablnception and the InT network, are evaluated using the GuitarSet
dataset published in [25], by the fact that TabCNN was assessed earlier against
this dataset [23]. At a broader level, the aim is to explore which of the shallow
networks like TabCNN or the deeper networks, such as the proposed ones, can
perform better on music transcription use cases. The remainder of this paper is
organized as follows: In Section 2, recent automatic guitar transcription studies
are discussed. Section 3 presents the selected dataset in addition to the adopted
preprocessing procedure. Section 4 interprets the proposed networks for auto-
matic guitar transcription, while Section 5 compares the proposed networks with
state-of-the-art CNNs and Transformer-based networks in terms of multi-pitch
and tablature estimation metrics. Section 6 concludes the work and gives some
directions for future work.

2 Related Work

The technological advances and innovations in the field of human-computer in-
teraction were reflected in various practices. A novel method for gesture recogni-
tion was proposed in [26], emphasising the need for improved data generalisation.
Another initiative extended innovation by discussing multimodal learning and
its relevance in computer vision [4]. Advances in technology such as EMG sig-
nal analysis helped in the development of highly accurate recognition methods
[13] after demonstrating the continuous progress in this area. Another area of
recognition is automatic tablature transcription, which we are developing in this
study.

Many studies are proposed for automatic tablature transcription, but only a
few seek to detect the real fretting of the guitarist. One of the first approaches
leverages the fundamentals and partials for candidate pitches to determine the
most used string per pitch [3]. This approach is limited to detecting no more
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than four pitches sounding simultaneous. Two years later, a system for applying
the Blind Harmonic Adaptive Decomposition Algorithm was developed to clas-
sify several performance parameters, including the detection of the note’s guitar
string [8]. This system is not evaluated for framewise tablature estimation. Nev-
ertheless, it is considered an insightful approach for multi-pitch estimation and
guitar tablature estimation. Additionally, several studies focused on the guitar
in their pursuit of automatic transcription. For instance, A. M. Barbancho et al.
[2] transcribed guitar chords and fingering using a hidden Markov Model, while
Humphrey and Bello [11] took the benefit of a convolutional neural network
(CNN) model to achieve chord recognition.

The results of the latter approach encouraged the researchers to take advantage
of CNN for similar music-related tasks. A combination of a CNN for framewise
acoustic modelling and a recurrent neural network (RNN) model is proposed for
piano transcription in [17].

The use of neural networks for music-related tasks helped in providing solutions
for tablature arrangement problems [20]). It tackled various music information
retrieval tasks such as instrument classification [9,10], music genre classifica-
tion [7], and singing voice detection [16]. It also helped in achieving the first
guitar tablature estimation model using CNNs. The model was trained using
solo acoustic guitar performances of the GuitarSet dataset presented in Xi et
al. (2019) [25], while outperforming state-of-the-art multi-pitch estimation al-
gorithms. This paper also introduced a set of metrics found to be specific for
evaluating guitar tablature estimation models, as described in Wiggins and Kim
(2019) [23]. Several attempts took place to improve the TabCNN’s results pre-
sented in [23]. One of those attempts was the thesis report in Maaiveld et al.
(2021) [15]. It yielded insights into the CNNs’ functioning for automatic music
transcription. The proposition relied on several adaptations such as data aug-
mentation, Oracle method adaptation, and increasing the amount of training
data. The latter study was not able to outperform the results of the TabCNN
[23]) but presented intuitive conclusions, such as the fact that Dense layers play
a major role in tablature estimation CNNs and that the size of the dataset is a
key factor in the model’s performance.

The fast growth of neural networks encouraged researchers to test the latest
approaches in the music industry. An unsupervised pitch estimation model was
reported by Wiggins and Kim (2020) [24] to analyse audio clips by estimating
their pitches and amplitudes. The model was not tested through experiments
but gave thoughtful ideas for further unsupervised acoustic guitar transcription
attempts. Also, a method for generating note-level transcription for guitar tran-
scription is proposed to demonstrate successful transcription using notes rather
than frames [12]. This work outperformed the conventional frame-level CNN
methods. Nevertheless, it did not outperform all TabCNN’s estimation metrics
results [23].

Last but not least, a unified model and methodology for estimating pitch
contours took place to transcribe guitar tablatures [5]. It produced pitch esti-
mates with a higher resolution than modern models. However, and to the best
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Fig. 1. Audio to Image transformation through Constant-Q Transform computation

of our knowledge, neither the approaches listed in this section nor any other
associated work can outperform all TabCNN’s [23] estimation metrics for guitar
tablature transcription.

3 Data Selection And Preparation

The TabCNN model proposed in [23] holds the state-of-the-art record for guitar
tablature transcription using CNNs. In this study, the same dataset chosen in
TabCNN is used, in addition to the preprocessing procedure for computing audio
features to images.

Similar to the TabCNN approach [23], the audio recordings were downsampled
from 44100 to 22050 Hz to reduce the input signals’ dimension. The input sig-
nals were normalized to obtain an identical range of amplitudes among all the
recordings. This normalization is essential to achieve the next step: computing
the convenient audio signal feature out of each recording. Inspired by previous
experiences in guitar tablature transcription, the Constant-Q Transform (CQT)
is adopted as the feature to compute. For this reason, and to directly compare all
studied networks with TabCNN, similar CQT parameters are adopted. As shown
in Fig. 1, and using the Librosa Python library, the CQT is computed over the
audio recording in the first place. A value of 192 is selected for the bins and 512
for the hopsize parameter. The bins parameter consists of the intervals between
samples in the frequency domain. It is estimated by dividing the sampling rate
by the Fast Fourier Transform (FFT) size. On the other hand, the hopsize is
the number of samples between each successive FFT window. It is processed by
dividing the FFT size by an integer defining the overlap factor of FFT windows.
As for this parameter selection validation, we plotted the chroma_cqt features
using the selected bins and hopsize parameters. The chroma features captures
harmonic and melodic characteristics of music while being robust to changes in
timbre and instrumentation. In this case, the chroma_cqt analyses these musical
features following the CQT parameter already computed. While visualizing the



Leveraging Computer Vision Networks for Guitar Tablature Transcription 5

plots, it was found that the produced chroma features were slightly noisy and un-
clear. Thus, the number of bins per octave parameter was scaled from its default
value (12) to 24 to clarify the computed CQT by increasing its resolution. The
CQT is then computed using the new parameter values: hopsize = 512, number
of bins = 192, and number of bins per octave = 24. At this stage, the computed
CQT can be obtained as a visual representation of size 970x192, while adding
zero padding on both sides of the CQT to achieve the sampling step (the initial
size is 946x192 since the audio used in this example has a 22 seconds length
and the hopsize used corresponds to 43 frames per seconds approximately). In
addition, the sampling step (second in Fig. 1) is where the sliding context win-
dow of 9 frames takes place to generate multiple images of size 9x192 out of the
initial computed CQT. The entire process results in multiple CQT images out
of the same audio recording. Each image concerns nine successive frames of the
initially computed CQT. It was essential to resize the sampled CQT images into
square-shaped images to compare the proposed and the existing approaches with
state-of-the-art computer vision networks. The majority of the latter networks
are trained and evaluated using squared images. Thus, the need to resize the
images to the smallest recurrent size, 224x224. Consequently, using the function
of the numpy Python library, we repeated the same pixels of the sampled im-
age in width to achieve a size of 192x192. Then, the images were resized from
192x192 to 224x224. It is important to note that this is the most convenient
resizing technique, since resizing from 9x192 directly to 224x224 may distort
the image content. Also, both versions were kept, the 9x192 sampled images
and the 224x224 resized images for further network comparisons. Concerning
the annotations, the same approach in [23] is adapted to sample the stringwise
pitch features stored in the JAMS files. These features are transformed into bi-
nary matrices. Each matrix represents a frame belonging to a computed audio
recording.

[[1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.]
[1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.]
[1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.]
[1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.]
[0.0.0.0.0.0.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.]
[1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.] ]

Fig. 2. Label associated to the 512th frame of the 02_Rock_-1_130.wav recording

Fig. 2 represents a matrix associated with one of the frames in a guitar
recording. The matrix is of shape 6x21, equal to the six strings of the guitar
having 21 different fret classes. Since the GuitarSet is recorded using an acoustic
guitar of 19 frets, the remaining two frets correspond to two descriptive states of
a guitar string. The first fret associated with the first column (from left to right)
of the matrix indicates if the string is in an open state (no frets are pressed),
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while the second fret (second column) indicates if the latter is in a closed state.
The remaining 19 frets correspond to the remaining 19 columns of the matrix
to define the pressed fret at a given frame.

4 Proposed Networks

4.1 The TabInception Network

Inspired by the insightful conclusion in [15], especially the point mentioning
the essential role of Dense layers in guitar tablature transcription, a custom
CNN-based network named TabInception is proposed. As shown in Fig. 3, the
TablInception starts with an input layer taking images of shape (192, 9, 1).
Thus, it involves swapping the axes of the computed images in the preprocessing
steps to provide a proper data fitting. Consequently, we propose adding a two-
dimensional convolutional layer of 32 filters adjacent to a Batch Normalization,
a Relu activation, and a Max Pooling layer with a pool size equal to (4,1). The
output of the latter bundle is fed into an Inception block that can be described
as follows:

The proposed Inception block uses a similar architecture to the Inception v4
architecture implemented in [18], while adding Batch Normalization and Relu
activation layers among adjacent Conv2D layers.

Fig. 3 shows a high-level visualization of the Inception block, where several base
convolutional blocks (base_conv_block) are interconnected together and are con-
catenated at the end with a MaxPooling2D layer. Each base_conv_block consists
of a Batch Normalization, a Relu activation, and a Conv2D layer with 32 filters.
This technique ensures that the adopted inception approach will be less likely to
over-fit. Also, the Batch Normalization improves memory optimization to back-
propagation while reducing the intensive computations caused by convolutional
layers. After concatenating the Inception block’s calculations, the output is fed
to the Transition Block. As presented in Fig. 3, the Transition block is the same
as a base_conv_block with the addition of an AveragePooling2D layer after the
Conv2D one. This approach is essential to downsample the huge spatial dimen-
sions caused by the Inception block, and to converge the network into its decisive
and final layers. Since TablInception concerns guitar tablature transcription, the
network should be able to compute multidimensional calculations. Hence, the use
of the Flatten layer to convert the sixth channelled output to a single channelled
one for Dense layer calculations. Each of the sixth channels consists of a guitar
string having 21 frets. The Dense calculations are dropped out with a value of
0.5 while re-iterating the Dense computations using a number of units equal to
the multiplication of the number of strings and frets (6 x 21 = 126 units). The
output of the concluding layer is reshaped back to (6, 21) to compute the acti-
vation of each guitar string separately. Finally, the softmax_by_string activation
function proposed in [23] is used to concatenate the separately computed six
softmax calculations and to unify the output.
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Fig. 3. Architecture of the Tablnception network

4.2 The Inception Transformer Network

Inspired by the precision of the Tablnception network and the recall and the
F-measure of the Transformer-based models, the InT proposes a fusion between
the Inception block of the TabInception network and the Transformer Encoder
proposed in [21] and adopted in the Vision Transformer (ViT) model [6].

Similar to TabInception, The InT network relies on similar Input layers ex-
cept using a number of filters equal to 64 instead of 32, as well as adding 4
strides to the initial Conv2D layer. The increased number of filters is adapted
into the Inception Block of the InT network. The latter Block is identical to
the one used in Tablnception except for the number of filters. Furthermore,
the computed calculations are concatenated and reshaped to (96, 64) to match
the input shape needed for the Transformer Encoder. The Transformer Encoder
adopted in [6] expects a sequence of embeddings vector that serves as input.
These vectors consist of positional embeddings in addition to those of previously
generated patches. As for the Transformer Encoder of the InT network, it expects
a sequence of positional embedding along with the reshaped tensors produced
out of the previously mentioned Inception block. Thus, the idea of generating
patches and feeding them to the encoder is replaced by loading the encoder with
convolutional-based tensors. The Transformer Encoder is responsible for alter-
nating mutlihead self-attention blocks with MLP blocks. A LayerNormalization
layer is applied before every block in addition to a residual connection after every
block inside the encoder [22,1]. The Transformer Encoder used in the proposed
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Fig. 4. Architecture of the Inception Transformer (InT) network

InT network relies on six transformer layers, an MLP dimension of 128, and a
patch size equal to 4. The output of the latter encoder is fed to a ReduceMean
layer to reduce the dimension of the tensor for the succeeding Dense layer. The
Dense layer of shape 126 is then fed to the same concluding layers as Tabln-
ception to compute the activation of each guitar string separately. The same
activation function and optimizer are adopted for both, the TabInception and
the Inception Transformer networks.

5 Experiments

In this section, the TabCNN network is compared to the Tablnception and InT
networks, in addition to state-of-the-art computer vision (CV) networks such as
[14,19,6]. The CV networks were modified slightly by reshaping their decisive
layers to provide a unified output across all networks (shape of (6, 21) as a matrix
of 6 strings with 21 frets each). The implementation took place using the official
version of the CV networks or its equivalent in Keras. The same parameters and
hyperparameters are used across all the networks for better comparison with
TabCNN. A batch size of 128 and a 6-fold cross-validation training method were
selected while relying on the preprocessed CQT as input images to the network.
The images were divided using an 85% training and 15% testing ratio for all
networks.
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|Image Size

Epochs Network | MP MR MF TP TR TF TDR |

0.9 0.764  0.826 0.809 0.696 0.748 0.899
192x9 8 TabCNN +0.016 +£0.043 £0.025 £0.029 +0.061 +0.047 =+0.033
y 0.927 0.7805 0.8474 0.8101 0.711 0.757 0.873
R TP o008 40003 £0.0176 £0.0115 £0.0268 £0.0151 £0.006 |
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x P +0.008 +0.031 £0.0176 £0.0115 +0.0268 £0.0151 +0.006
192x9 16 TabIncention 0.9688 0.7454 0.8425 0.8519 0.6911 0.7631 0.8793
_________________ PO 20,0192 £0.0518 £0.0317 £0.0199 £0.0605 £0.0443 +0.0244)
0.9533 0.7834 0.86 0.8639 0.739 0.7965 0.906
|1y P00 Wi B TRbIRCePton |1o.0147 £0.0339 £0.0187 £0.0158 £0.0356 £0.0221 £0.0101]
192x9 8 ViT 0.908 0.8209 0.8622 0.7291 0.7144 0.7216  0.802
+0.0165 £0.0373 +0.0204 +£0.0329 £0.0444 +0.0349 +0.0313
. 0.882 0.8 0.839 0.7043 0.6901 0.6971 0.798
R T |H0.0066 £0.0155 £0.0056 £0.0074 £0.0183 £0.0099_£0.0093
. 0.937 0.8524 0.8927 0.7586 0.7441 0.7512 0.8096
[ BOWIRES VT 200115 £0.0264 £0.013 £0.0201 £0.0313 £0.0224 £0.0203]
192x9 8 InT 0.8785 0.8213 0.8489 0.7202 0.7206 0.7203 0.8198
x +0.0083 £0.0092 £0.0056 +0.0128 +0.0132 £0.0117 +0.0089
1929 16 InT 0.891 0.82 0.854 0.7134 0.7019 0.7076 0.8
e ] " [E0.0031 £0.0062 £0.0081 £0.0356 £0.0738 £0.0473 £0.0034
. 0 9481 0.914 0.9307 0.8551 0.8041 0.828 0.901
Ly SOOWIRES MU 00057 00077 £0.0043 20.0242 £0.0435 £0.0295 £0.00615
. 0.8875 0.8034 0.843 0.709  0.693 0.7 0.798
224x224 8 SWINTE () 0146 40,0374 +£0.0146 +£0.0226 £0.0212 +£0.041 0.031
. 0.9035 0.8421 0.8717 0.7331 0.726 0.729 0.8114
e 0 BT |0.0075 £0.0084 £0.0024 £0.0019 £0.0069 0002 =0.007
; 0.9259 0.8531 0.888 0.7307 0.7191 0.7248  0.789
bzt SOOI ES ST 20,011 400201 £0.0085 £0.0122 £0.014 £0.0215 20019 |
PO . 0.839 0.7691 0.8025 0.6739 0.6406 0.656 0.803
224224 8 BfficientNetB0| L) 0176 £0.0071 +£0.016 +0.026 +0.048 =0.034 =0.031
. 0.861 0.691 0.766  0.733  0.615  0.668 0.851
bt N0 PCentRetBOl L0006 £0.067 £0.0356 £0.0359 £0.0695 £0.0475 £0.0401
1 224x224 300 with ES EfficientNetBOi 0.8947 = 0.7747 0.83 0.748 ~0.6723 = 0.708 0.836

£0.0118 +0.037 +0.0273 £0.0309 £0.0587 +0.0407 +0.0355 | I

Table 1. Comparative table for guitar tablature transcription using computer vision
networks. The best score per metric is highlighted in black, the second best in green,
and the third best in red.
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The Swin Transformer (SwinTF) [14] and the EfficientNetBO [19] ! networks
perform their best when trained using squared images since they rely on patch-
based architectural structures. Therefore, it was favourable to experiment with
both networks using a squared image format instead of performing architecture
changes for fitting non-squared images. Hence, the resized 224x224 CQT images
are used for these approaches. In contrast, the 192x9 CQT images are adopted
to train the TabCNN, the TablInception, The InT, and the Vision Transformer
(VIT) networks [6]) by the fact that they are not image size dependent. Thus,
the proposed networks can be directly compared with the TabCNN network
[23], while presenting other approaches where an image resizing may impact the
training results.

It is important to mention that the VIT network relies on a patch-based struc-
ture. Nevertheless, it can be fed with non-squared images by its ability to trans-
form each image into patches of equal width and height size. Thus, the input
images are transformed into patches before being fed to the VIT encoder. In this
experiment, and for the VIT network exclusively, we adopt a patch size of 4 and a
hidden size of 64 after performing several empirical tests where both parameters
were varied to maximize the evaluation results. Consequently, each of the 192x9
input images is transformed into 64 patches, having a size of 64x64 for each
patch. The latter is conducted using the patch generation function proposed in
the original code of the VIT [6] for rescaling and transforming the input images
into patches. Table 1 presents all the networks that we compare with TabCNN.
The first training of TabCNN is written in ¢talic to indicate that its results
are shown as they appear in the official contribution. Contrarily, the remaining
training is performed in our test environment. The table header presents seven
different multi-pitch and tablature estimation metrics. Each metric manifests an
essential role already proposed in [23]. The metrics referenced in Table 1 are
the following: Multi-pitch Precision (MP), Multi-pitch Recall (MR), Multi-pitch
F-measure (MF), Tablature Precision (TP), Tablature Recall (TR), Tablature
F-measure (TF), and Tablature Disambiguation Rate (TDR). As shown in Table
1, the networks were trained using two different epoch sizes. An epoch size of 8
is used to compare the results with the official TabCNN results. Furthermore,
an epoch size of 16 is adopted to identify the behaviour of each network us-
ing longer iterations. At an epoch size of 8, the TabInception outperformed the
TabCNN by 4.1 percentage points (pp in terms of multi-pitch precision (MP).
On the other hand, the InT network and the transformer-based networks (ViT
and SwinTF') can either outperform or obtain the same results as the TabCNN
in terms of multi-pitch recall (MR) and F-measure (MF). The VIT exceeded
the TabCNN by 3.62 pp in terms of MF and 5.69 pp in terms of MR. Also, the
SwinTF exceeded TabCNN’s MF by 1.7 pp, and TabCNN’s MR by 3.94 pp. As
for the InT network, it exceeded TabCNN’s MF by 2.29 pp and TabCNN’s MR,
by 5.73 pp. These results show that the Tablnception network is a good solu-

! The B0 base model of EfficientNet is the only selected model for this experiment
since it is the only compatible model for computing 224x224-sized images. As for the
SwinTF, we use the base architecture for this experiment, also known as swin_b.
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tion for better pitch detection, while both, the proposed InT network and the
transformer-based networks are better options when the comparison concerns
the MR and MF metrics. The TabInception network outperformed the TabCNN
network in terms of MP, TP, and TF metrics when increasing the epoch size to
16. It achieved the greatest results concerning the multi-pitch precision metric.
It outperformed TabCNN’s MP by 4.18 pp, the TP by 4.17 pp, and the TF by
0.61 pp. As for the proposed InT network, it surpassed the TabCNN network in
terms of MR and MF. Moreover, among the remaining networks, the SwinTF
improved its results using an increased epoch size. Contrarily, the EfficientNetB0
could not exceed TabCNN’s results in either epochs variations.

Motivated by the increase in metrics when raising the epochs size, we configured
an epochs size of 300 while establishing the early stopping mechanism with a
patience value equal to 5. Thus, the models will keep training until they reach
a safe point to stop without overfitting. All the tests produced using the lat-
ter configuration are highlighted in a dashed outline in Table 1 to discriminate
the latter from the legacy configuration (8-16 epochs without an early stopping
mechanism). green Also, we highlight the best score per metric with a black
bold color, the second best with a green bold color, and the third best with a
red bold color. The results show that the TabInception network achieved the
best result in terms of TP, and the InT network achieved the best results for MR,
MF, TR, and TF. Both proposed networks were able to surpass all of TabCNN’s
results except the TDR metric. The TabCNN preserved the best result in terms
of TDR in that case. The significant TDR value of TabCNN is due to the closer
MP and TP values compared to the remaining networks. As for the SwinTF, the
ViT, and the EfficientNetB0, some of their metrics’ results increased but could
not considerably surpass TabCNN’s values at all times.

6 Conclusion and Future Work

In this paper, two networks were proposed for guitar tablature transcription.
The first network, TabInception, relies on a custom inception block converged
by dense layers. The second network, Inception Transformer (InT), relies on a
similar inception block of TabInception converged by a Transformer Encoder.
Both networks were compared against the state-of-the-art guitar tablature tran-
scription network named TabCNN and other recent computer vision networks.
The experiment results showed that the proposed networks can outperform the
TabCNN in terms of multi-pitch precision (MP), multi-pitch recall (MR), multi-
pitch F-measure (MF), tablature precision (TP), tablature recall (TR), and tab-
lature F-measure (TF). Our future work should focus on exploring the perfor-
mance and the usability of both proposed networks for transcribing tablatures
of other string instruments such as the violin, cello, and harp. Furthermore, it
would be essential to test the proposed networks on computer vision use cases
beyond the tablature transcription or even the music field to better evaluate
and explore the importance of such contribution. The source code for imple-
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menting the discussed networks is publicly available on the following repository:
https://github.com/elachkarcharbel/Guitar-Tablature-Transcription
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