
Synchronous parallel multisplitting method with
convergence acceleration using a local Krylov-based

minimization for solving linear systems
Médane A. Tchakorom Raphaël Couturier

FEMTO-ST Institute, CNRS
Univ. Bourgogne Franche-Comte (UBFC)

Belfort, France
{medane.tchakorom, raphael.couturier, jean-claude.charr}@univ-fcomte.fr

Jean-Claude Charr

Abstract—Computer simulations of physical phenomena, such
as heat transfer, often require the solution of linear equations.
These linear equations occur in the form Ax = b, where A is a
matrix, b is a vector, and x is the vector of unknowns. Iterative
methods are the most adapted to solve large linear systems
because they can be easily parallelized.

This paper presents a variant of the multisplitting iterative
method with convergence acceleration using the Krylov-based
minimization method. This paper particularly focuses on improv-
ing the convergence speed of the method with an implementation
based on the PETSc (Portable Extensible Toolkit for Scientific
Computation) library. This was achieved by reducing the need
for synchronization - data exchange - during the minimization
process and adding a preconditioner before the multisplitting
method. All experiments were performed either over one or
two sites of the Grid5000 platform and up to 128 cores were
used. The results for solving a 2D Laplacian problem of size
10242 components, show a speed up of up to 23X and 86X when
respectively compared to the algorithm in [8] and to the general
multisplitting implementation.

Index Terms—Iterative methods, Krylov methods, Multisplit-
ting, Linear Solvers, PETSc, MPI

I. INTRODUCTION

To simulate physical phenomena, scientists often need to
solve systems of equations of the form Ax = b, where A is
a large, sparse n× n matrix and both x and b are vectors of
size n. Several methods have been developed over the years
to solve this type of problem. The means to solve the problem
are twofold: direct methods and iterative methods.

Direct methods are mostly inspired from the Gaussian
elimination method and compute an exact solution of the linear
system. However, they are compute and memory intensive
and thus not adapted for solving large linear systems. On
the other hand, iterative methods provide an approximation
to the solution after a finite number of steps. They are easier
to parallelize than the direct methods and can take advantage
of the computer power of distributed computing architectures,
such as clusters and grids, to solve large sparse linear systems.

In this computational context, there are two types of chal-
lenges for iterative parallel algorithms depending on whether
they are synchronous or asynchronous: The heterogeneity

of the computing nodes and the inherent latency of the
network [2]. The heterogeneity of the processors can limit
the parallel synchronous iterative method to the speed of the
slowest processor. The synchronous exchange of data between
processors forces each processor to wait until the other pro-
cessors have finished their work before processing the next
iteration. The network latency increases the communication
time between computing nodes and might have a great impact
on the execution time of fine grained parallel algorithms
that require many data exchanges. The asynchronous iterative
methods and multisplitting methods are the most adapted
to this environment because they reduce the need for data
synchronization between the computing nodes.

In a previous work [8], the iterative multisplitting method
and Krylov subspace minimization, both presented in Sec-
tion III, were combined into one method. The conducted
numerical experiments showed that with this new approach
the convergence of the multisplitting method can be accel-
erated by using the Krylov subspace minimization method
and can outperform classical iterative methods such as the
GMRES [16] and the Block-Jacobi multisplitting method [2].
In this paper, this previous work is extended in order to
furthermore improve the convergence speed of the method
through two means: the first step consists into taking advantage
of HYPRE boomerAMG preconditioner, as the role of a
preconditioner is to condition a given problem to a more
suitable form for a numerical solving method. The second step
consists in improving the minimization by eliminating the need
for synchronization. This last improvement not only reduces
the number of outer and inner iterations required to converge,
it also reduces the execution time of the inner iterations..
The experiments conducted over the Grid5000 platform while
solving a 2D Laplace problem, showed that as expected the
new method converges faster than the general multisplitting
algorithm and the algorithm presented in [8].

The remainder of the paper is organised as follows: Sec-
tion II discusses existing work on this topic and introduces
the reader to the PETSc library. Section III is devoted to the
introduction of the multisplitting algorithm and then to the

hybrid algorithm based on the multisplitting method and the
Krylov subspace. The context and results of the experiments,
as well as their interpretation, are covered in Section IV.
Section V recapitulates the main contributions of this paper
and present some future work.

II. RELATED WORK

Multisplitting is a parallel iterative method, first introduced
in [14] by O’Leary and White, in which they presented several
basic convergence results. It is based on several splittings of
the coefficient matrix A from the linear system of equation
Ax = b, and can be seen as a generalization of the classical
Block Jacobi parallel iterative algorithm [2]. Since its first
introduction, the scientific literature has dealt with different
variants of multisplitting, e.g., asynchronous versions [6],
different convergence conditions [1], [3], and other two-stage
algorithms [6], [9].

In [12], the authors proposed a practical serial implementa-
tion and numerical examples for the Krylov subspace method
in the case where the preconditioning matrix results from
multisplitting. They showed that they could implement the
methods efficiently by creating subsets of processors tasked
with generating the search direction and another subset of
processors responsible for the minimization over the result
subspace. The fact that the minimization task does not need
to send frequent updates to the direction generating task
minimizes synchronization. They also studied the convergence
properties of various forms of the algorithm.

The authors of [7] worked on GREMLINS (GRid Efficient
Method for LINear Systems), a parallel iterative solver adapted
to the grid computing environment and known to penalize
traditional large sparse linear solvers. The solver is in fact
based on the multisplitting algorithm, where the inner solver
is either the serial direct method LU or the serial iterative
method GMRES. Moreover, the GREMLINS algorithm can be
executed synchronously or asynchronously without any further
modifications.

Extending their earlier work, the authors of [7] applied
the Jocabi algorithm and other block-level multisplitting algo-
rithms using asynchronous and sychronous communications.
They then used a Krylov subspace method-based approach
within each block and investigated the performance and scal-
ability of these approaches on up to 32768 cores on a Cray
XE6.

A. Introduction to PETSc

Since developing parallel applications can cause some dif-
ficulties for scientists and engineers, they can rely on high-
level software libraries to ease some processes. Such libraries
help developers by providing abstractions for mathematical
operations, data representation, and managing parallel layouts
of data, while internally using communication libraries such as
MPI (Message Passing Interface) implementations and PVM
(Parallel Virtual Machine) [4] PETSc (Portable Extensible
Toolkit for Scientific Computation) is a collection of data
structures and procedures developed by Argonne National

Library for scalable (parallel) solution of scientific applications
modeled by partial differential equations. It is based on the
message-passing model, as presented in Figure 1, and com-
bines the robustness and efficiency of MPI with a carefully
designed and implemented parallel numerical library. MPI
is recognized as the standard message exchange library for
developing distributed numerical applications in C. PETSc
provides a wide range of iterative methods to solve PDEs
and related problems, Figure 1. PETSc can be configured
through parameters passed on the command line which makes
it very easy to test various solvers and preconditioners on
the go. In addition, PETSc is available in C and FOR-
TRAN programming languages and can be extended through
well-known packages like Hypre preconditioner or external
packages like BLAS/LAPACK. Finally, PETSc offers a good
compromise between usability and efficiency, promoting code
reuse and flexibility while separating parallelism concerns
from algorithm selection [5].

Fig. 1. Numerical libraries of PETSc [5]

III. ALGORITHM KRYLOV MULTISPLITTING

The hybrid algorithm discussed in this paper is based on two
well-known iterative methods: The multisplitting approach,
which is the basis of the classical Jacobi method, and the error
minimization approach, which inspired the classical GMRES
method. This section first explains the multisplitting method
in details, then it presents the multisplitting method combined
with the minimization process. The last part of this section is
devoted to the implementation of the algorithm with PETSc.

A. Multisplitting

Let us consider A ∈ Rn×n

, a large sparse square and non-
singular matrix, b the right-hand-side vector and x the vector
solution of the following linear system:

Ax = b, (1)

The idea behind the multisplitting method is that matrix A,
can have several decompositions [14]. If A can be partitioned
in L different ways:

A =Ml −Nl, l = 1, . . . , L, (2)

where Ml and Nl are n×n matrices, and Ml are non-singular.
Then a multisplitting of A is defined by:

B =

L∑
l=1

DlM
−1
l Nl, (3)

where Dl are non-negative and diagonal weighted matrices
that add up to the identity matrix,

∑L
l=1Dl = I .

Equation 3 leads to the equation:

xk+1 =

L∑
l=1

DlM
−1
l (Nlx

k + b), k = 1, 2, . . . (4)

where xk is the solution of the equation at iteration k. The
initial guess x0 is set before the iteration process begins.
Another equivalent form can be written:

xk+1 = Bxk +Gb, (5)

where

G =

p∑
i=1

DiM
−1
i , (6)

The convergence of such a multisplitting method has been
studied and it was demonstrated that to converge the spectral
radius of matrix B (as defined below) should be lower than 1:

ρ(

p∑
i=1

DiM
−1
i Ni) < 1, (7)

Part of the motivation for using the multisplitting method is
that it decomposes the linear system into smaller sub-systems
which can be easily solved in parallel using a distributed
computing architecture. Communication is only required to
aggregate the results using the diagonal weighting factors.
Thus each subset of computing units is assigned a linear sub-
system of the following form:

xkl =M−1l Nlx
k−1
l +M−1l b, l ∈ {1, . . . , L} (8)

where xkl is the solution of the l sub-system at iteration k.
The solution of the linear system Ax = b, at iteration k, can
then be written as follows:

xk =

L∑
l=1

Dlx
k
l , k = 1, 2, . . . (9)

The multisplitting algorithm which performs well [13], [15]
can be accelerated by employing strategies based on Krylov
subspace methods [10]. The Krylov subspaces, which are at
the heart of several well-known iterative methods, such as
GMRES, have already been investigated and proven to be
reliable. To speed up the convergence of the problem at hand,

our approach uses both the multisplitting technique and the
Krylov method.

B. Multisplitting with minimization of residual algorithm

The linear systems produced in Equation 8 can be solved
either using a direct or an iterative method. When an iterative
method is used, the resulting resolution method is called a
two-stage iterative algorithm. In the rest of the paper, the inner
and outer iteration corresponds to the multisplitting method
and the Krylov minimization method, respectively.

In order to solve Equation 1, a splitting is first applied to
the linear system. This splitting leads to the decomposition of
A into L non-intersecting blocks or sub-matrices as shown
in Figure 2. Each Al is a rectangular sub-matrix of size
nl × n, and Xl, Bl are sub-vectors of size nl each, such that∑L

l=1 nl = n.

=

A1L...A12A11Rectangular
block matrix A1

Rectangular
block matrix A2

Rectangular
block matrix AL

Rectangular
block matrix A3

Matrix A ∈ ℝnxn

Vector x ∈ ℝn

Vector b ∈ ℝn

B3

...

B2

B1X1

X2

X3

XL BL

...

...

...

A2L

A3L

ALLAL2AL1

A2LA1L

A22A21

Fig. 2. The multisplitting method splits the matrix A, the vector solution
x ∈ Rn and the vector of the right-hand side b ∈ Rn into L different blocks,
each is processed by a group of processors.

The multisplitting form of the linear system is defined as
follows:

∀ l ∈ {1, ..., L}, AllXl +

L∑
m=1
m 6=l

AlmXm = Bl, (10)

where Alm is a sub-block of size nl × nm of the rectangular
matrix Al, Xm 6= Xl is a sub vector of size nm of the solution
vector x and

∑
m6=l nm + nl = n, for all m ∈ {1, . . . , L}.

Each sub-system, (eq. 11) can then be solved independently
by the inner iteration solver:{

AllXl = Yl, such that
Yl = Bl −

∑L
m=1
m6=l

AlmXm,
(11)

The outer iteration is dedicated to minimizing an error func-
tion over a Krylov subspace to speed up convergence of the
inner iteration above. The minimization process needs a basis
vector which is the Krylov subspace. This subspace consists
of successive solutions generated from the solutions of the L
splittings:

S = {x1, x2, ..., xs}, s ≤ n, (12)

where for j ∈ {1, ..., s}, and

xj = [Xj
1 , ..., X

j
L], (13)

is a solution of the global linear system. Until the stop criteria
is reached, the iteration process of the algorithm is resumed
with a fresh starting estimate x̃ = Sα. α is defined as follows:

α = [α1, ..., αL], (14)

and each αl, l ∈ {1, . . . , L} is defined as follows:

Rlαl = bl, (15)

where Rl = AlS is a dense rectangular matrix of size nl × s
and s << nl (s much lower than nl). This leads to solve a
system of normal equations

RT
l Rlα = RT

l b, (16)

which is associated with the least squares problem

minimize ‖bl −Rlαl‖2 (17)

where RT
l denotes the transpose of matrix Rl. The main steps

of the algorithm are summarized in Algorithm 1.

Note: In the previous version of this algorithm [8], the value
of α in equation 15 was computed after merging the Rl, l ∈
{1, . . . , L} matrices from each block. The equation was as
follows:

Rα = b, (18)

where R = {R1, . . . , Rl}. This leads to solve Equation 18
in each block. This equation has more unknowns than Equa-
tion 15 and yields to more execution time during the steps of
converting the system into a square symmetric system (Equa-
tion 16) and then solving the equation with a solver. The new
approach is therefore intuitively less costly in computing time
and reduces the load of work on each subset of processors.
Moreover, there is less communication in this part. In fact,
inter-blocks synchronization to exchange sub-vectors αl of
size nl × 1 is less costly in time than the synchronization
of sub-matrices Rl of size nl × s.
The PETSc library provides a broad selection of data struc-
tures, solvers and preconditioners to implement fast and ef-
ficient parallel numerical codes. However, implementing a
parallel method in PETSc is not a trivial task. The developer
have to identify the most appropriate objects to use. For
Algorithm 1, choosing the right data structure for storing the
sparse matrix A was of great importance for implementing this
algorithm in PETSc. Moreover, Allocating the memory for the
matrix before trying to insert data, saved a lot of time during
the experimentation. Many solvers were evaluated in order to
find out which one was the most suitable for our method.

IV. NUMERICAL EXPERIMENTS

This section contains a detailed description of the experi-
ments conducted over Grid50000 to evaluate the performance
and the scalability of our approach. In the next subsections,
the context of the experiments, the tuning of the parameters,
the obtained results, and their interpretation are presented.

Algorithm 1 A two-stage linear solver
Input: Al (sparse sub-matrix), b (right-hand side vector), L
(number of blocks)
Output: x (solution vector)

1: k = current iteration number
2: ε = Tolerance
3: Xj

l = Block level multisplitting solution vector
4: xjl = [Xj

1 , ..., X
j
L]

5: Xl = Block level solution vector after minimization
6: x = [X1, ..., XL]
7: S = Minimization Krylov basis vector
8: Load Al, b
9: Set x to the an initial guess x0

10: do
11: for j = 1,. . . ,s do
12: Compute the right hand side Yl (Equation 11)
13: Solve the block level linear system AllX

j
l = Yl

with GMRES parallel method
14: Update the multisplitting global solution xjl by

assembling the block level solutions Xj
l (Equa-

tion 13)
15: Update Krylov basis S: Add xjl to the jth column

of S (Equation 12)

16: end for
17: Compute Rl = Al × S
18: Solve the linear equation RT

l Rlα = RT
l b with the

CGLS parallel solver
19: Compute the block level solution Xl = S × α
20: Update the global solution x by assembling the local

solutions Xl

21: while ‖b−Ax‖2 > ε

A. Context of the experiments

The chosen partial differential equation to be solved is the
2D Laplace equation. The finite difference method is used to
discretize it and a five-point stencil is used. The right hand
side of the linear equation, vector b, represents the boundary
conditions of Laplace’s equation on a rectangular domain D.
Each block portion of the matrix A was multiplied by a vector
whose elements was set to 1. The result which is a symmetric
positive definite linear system, was assigned to each block
portion of vector b.

{
∇2u = ∂2u

∂x2 + ∂2u
∂y2 = 0, (x, y) ∈ D

Boundary conditions: u prescribed on ∂D
(19)

Three implementations were used for the experiments:

• Multisplitting with global minimization: This method
corresponds to the algorithm described in [7]. The R
value, appearing in equation 18, is synchronized between
the blocks after the multisplitting iterations and before
the minimization process.

• Multisplitting with local minimization: This is an up-
dated version of the previous algorithm where the re-
quired synchronization between the blocks has been re-
duced as explained in Section III-B.

• General multisplitting: This corresponds to the multi-
splitting algorithm without minimization that was imple-
mented using the PETSc library.

In the rest of this paper, each method will be referred to by
the name it was given in the above description.

All experiments were conducted over the Grid5000 platform
which is a large-scale and flexible testbed for experimental
research in all areas of computer science with a focus on
parallel and distributed computing, including cloud, HPC, Big
Data, and AI. Grid5000 consists of 31 clusters, 828 nodes and
12,328 cores geographically distributed across 8 sites, 7 in
France and 1 in Luxembourg, as illustrated in Figure 3. A 10
Gbps backbone network is dedicated to the connection of all
sites.

The clusters paravance in Rennes and grisou in Nancy were
selected to run the experiments because their computing nodes
have the same specifications in terms of computing power and
memory. They are all equipped with two Intel Xeon E5-2630
v3 processors with 8 cores per CPU and 128 GiB of memory.
The bandwidth of the paravance’s network is 2x10 Gbit/s and
4x10 Gbit/s for grisou.

Fig. 3. Grid5000 clusters distribution on Jan.17

B. Parameters tuning

The number of blocks was set to 2 to enable rapid con-
vergence [8]. So the splitting, which is basically a Block
Jacobi splitting [2], consists in dividing matrix A into two
rectangular matrices. For the inner iterations solver (i.e mul-
tisplitting), GMRES, with a restart parameter equal to 30,
was used because the Gradient Conjugate solver does not
provide the possibility to restart it after a given number of
iterations. The maximum number of iterations was set to
the default value 10000, and the relative tolerance fixed to

10−12. HYPRE boomerAMG was used as a preconditioner
for the inner iteration. Figure 5 shows the impact of using a
HYPRE boomerAMG preconditioner on the execution time of
the algorithm.

For the minimization step, the Conjugate Gradient method
for Least-Squares problems (CGLS) [11] was used as solver
. No preconditioner was set because CGLS does not support
any preconditioner. The maximum number of iterations was
set to the default value of 500, and the relative tolerance was
fixed to 10−30, after testing multiple values. For the tolerance
of the outer solver, ε was set to the value of 10−3. Different
values for the size of the Krylov subspace (s) was tested in the
minimization process. The results of these tests are presented
in Figure 4 and they demonstrate that 4 is the most appropriate
value for s.

0 10 20 30 40 50 60
Number of cores

101

102

L
og

of
ex

ec
ut

io
n

tim
e

in
se

co
nd

s

s = 2
s = 3
s = 4
s = 10

Fig. 4. Variation of execution time of the Multisplitting with local minimiza-
tion implementation, with different values of minimization Krylov subspace
size (s) and number of blocks equals 2 on the clusters paravance and grisou
(Rennes site and Nancy). Laplace 2D equation with problem size 14482.

C. Results and discussions

With more computing resources, parallel programs should
be able to minimize the overall execution time. To assess
the performance and the scalability of the proposed algorithm
while varying the size of the linear system and/or the number
of processes, two cases, the strong and weak scaling, are
studied in this section. This evaluation also gives a good
estimate of the required computing resources for different sizes
of the problem.

In the strong scaling case, the number of processors is
increased while the problem size remains constant. Figure 6
shows how the three methods, discussed in this paper, perform
while solving a 2D Laplacian problem of size 14482 com-
ponents. The two multisplitting with minimization methods
perform well in terms of computing time when compared to
the multisplitting method without minimization, comforting
the intuition that the minimization process contributed in ac-
celerating the convergence of the inner iterative process (i.e the
multisplitting process). Furthermore, the local minimization
multisplitting is the fastest version since the synchronization

Pb. size Nb. cores Multisplitting with global minimization Multisplitting with local mimization RatioTime (s) Residual Time (s) Residual
1024² 4 (2 x 2) 331.06 9.573901e-04 14.20 4.635208e-04 23.31
1448² 8 (2 x 4) 555.86 9.843735e-04 16.25 4.716789e-05 34.21
2048² 16 (2 x 8) 898.20 9.884657e-04 27.76 4.726606e-04 32.36
2896² 32 (2 x 16) 1812.25 9.951199e-04 27.56 3.397707e-04 65.75
4096² 64 (2 x 32) 2864.78 8.731609e-04 35.00 2.913539e-04 81.85
5792² 128 (2 x 64) 4915.09 9.977175e-04 55.21 3.035485e-04 89.03

TABLE I
WEAK SCALING RESULTS ON TWO SITES (RENNES AND NANCY)

20 40 60 80 100 120
Number of cores

101

102

L
og

of
ex

ec
ut

io
n

tim
e

in
se

co
nd

s

Multisplitting with local minimization on one site with HYPRE
Multisplitting with local minimization on one site without HYPRE

Fig. 5. Using the multisplitting method with local minimization and with
or without the HYPRE boomerAMG preconditioner to solve 2D Laplace
equation of size 10242 components.

steps between blocks are reduced and the sub-system to solve
by the minimizer is smaller. The results of the experiments,
conducted over a single cluster and two geographically distant
clusters, showed that the different methods approximately
scale in the same way on both architectures. This suggests
that the network latency does not significantly penalize any of
the three methods.

The second case is the weak scaling, for which both the
problem size and the number of processors are increased
at the same rate. Table I shows how the two multisplitting
with minimization algorithms performed when the size of the
problem and the number of cores was doubled at the same
time. The number of components by core is approximately
equal to 262, 144. The multisplitting with local minimization
outperformed the multisplitting version with global minimiza-
tion for all the tested problem sizes. The results presented in
Table I showed a speed up ranging between 23x and 89x when
the execution time of both implementations is compared.

V. CONCLUSION AND PERSPECTIVES

This paper presents an improved version of the Krylov
multisplitting algorithm based on the residual minimization.
The number of communications between the computing nodes
was reduced when compared to the previous version which

5 10 15 20 25 30
Number of cores

101

102

103

L
og

of
ex

ec
ut

io
n

tim
e

in
se

co
nd

s

Multisplitting with global minimization on one site
Multisplitting with global minimization on two sites
Multisplitting with local minimization on one site
Multisplitting with local minimization on two sites
Multisplitting on one site
Multisplitting on two sites

Fig. 6. Strong scaling with up to 32 cores and 2 blocks to solve a 2D Laplace
equation of size 14482 components

also decreases its computation time. Moreover, the use of the
local minimization process seems (based on our experiments)
to increase the convergence speed. The number of iterations
in the inner solver was significantly reduced. The algorithm
was implemented with the well known PETSc library and
it was evaluated in a grid environment. The experiments
were conducted over two geographically distant clusters from
Grid5000 and showed that the local minimization is up to 89X
faster than the global minimization version when solving the
2D Laplace problem.

In a future work, it is our intent to further extend this
work by investigating other linear equation systems and solv-
ing larger problems using different solvers available in the
PETSc library. We also plan on mathematically proving the
convergence of the method with local minimization. Finally,
we think that the asynchronous version of the multisplitting
method could considerably benefit from the local minimiza-
tion. Therefore, the application of this improvement to the
asynchronous method will be studied.

VI. ACKNOWLEDGEMENT

This work was supported by the ANR ADOM (contract
ANR-18-CE46) and it was partially supported by the EIPHI
Graduate School (contract ”ANR-17-EURE-0002”). We would
also like to thank the Mésocentre de Calcul de Franche-Comté
and Grid’5000.

REFERENCES

[1] Jacques M. Bahi. Asynchronous Iterative Algorithms for Nonexpan-
sive Linear Systems. Journal of Parallel and Distributed Computing,
60(1):92–112, 2000.

[2] Jacques Mohcine Bahi, Sylvain Contassot-Vivier, and Raphaël Couturier.
Parallel iterative algorithms: from sequential to grid computing. CRC
Press, 2007.

[3] Zhong-Zhi Bai, Violeta Migallón, José Penadés, and Daniel B. Szyld.
Block and asynchronous two-stage methods for mildly nonlinear sys-
tems. Numerische Mathematik, 82(1):1–20, March 1999.

[4] Pavan Balaji, Darius Buntinas, Satish Balay, Barry Smith, Rajeev
Thakur, and William Gropp. Nonuniformly communicating noncontigu-
ous data: A case study with petsc and mpi. In 2007 IEEE International
Parallel and Distributed Processing Symposium, pages 1–10. IEEE,
2007.

[5] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed
Brown, Peter Brune, Kris Buschelman, Emil Constantinescu, Lisan-
dro Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp, Václav
Hapla, Tobin Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik,
Matthew G. Knepley, Fande Kong, Scott Kruger, Dave A. May,
Lois Curfman McInnes, Richard Tran Mills, Lawrence Mitchell, Todd
Munson, Jose E. Roman, Karl Rupp, Patrick Sanan, Jason Sarich,
Barry F. Smith, Stefano Zampini, Hong Zhang, Hong Zhang, and
Junchao Zhang. PETSc/TAO Users Manual. Technical Report ANL-
21/39 - Revision 3.16, Argonne National Laboratory, 2021.

[6] Rafael Bru, Violeta Migallón, Jos Penad, Es Daniel, and Daniel Szyld.
Parallel, Synchronous And Asynchronous Two-Stage Multisplitting
Methods. Electronic Transactions on Numerical Analysis, 3, August
1998.

[7] Raphaël Couturier, Christophe Denis, and Fabienne Jézéquel. GREM-
LINS: a large sparse linear solver for grid environment. Parallel
Computing, 34(6-8):380–391, 2008. Publisher: Elsevier.

[8] Raphaël Couturier and Lilia Ziane Khodja. A scalable multisplitting
algorithm to solve large sparse linear systems. The Journal of Super-
computing, 71:1–12, December 2014.

[9] Andreas Frommer and Daniel B. Szyld. H-Splittings and two-stage
iterative methods. Numerische Mathematik, 63(1):345–356, December
1992.

[10] Gene H Golub and Charles F Van Loan. Matrix Computations. edition,
1996.

[11] Magnus R Hestenes and Eduard Stiefel. Methods of conjugate gradients
for solving. Journal of research of the National Bureau of Standards,
49(6):409, 1952.

[12] Chiou-Ming Huang and Dianne P. O’Leary. A Krylov multisplitting
algorithm for solving linear systems of equations. Linear Algebra and
its Applications, 194:9–29, 1993.

[13] Michael Neumann and Robert J Plemmons. Convergence of parallel
multisplitting iterative methods for M-matrices. Linear algebra and its
applications, 88:559–573, 1987. Publisher: Elsevier.

[14] Dianne P. O’leary and R. E. White. Multi-splittings of matrices and
parallel solution of linear systems. SIAM J. Alg. Disc. Meth, pages
630–640, 1986.

[15] Theodore S Papatheodorou and Yiannis G Saridakis. Parallel algorithms
and architectures for multisplitting iterative methods. Parallel comput-
ing, 12(2):171–182, 1989. Publisher: Elsevier.

[16] Youcef Saad and Martin H Schultz. GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems. SIAM
Journal on scientific and statistical computing, 7(3):856–869, 1986.
Publisher: SIAM.

