
1

A Single Pass and One Round Message
Authentication-Encryption for Limited IoT

Devices
Hassan N. Noura1, Ola Salman2, Raphaël Couturier1, and Ali Chehab2

1Univ. Bourgogne Franche-Comté (UBFC), FEMTO-ST Institute, CNRS, Belfort, France
2American University of Beirut, Electrical and Computer Engineering Department, Lebanon

Abstract—In this work, we propose three efficient vari-
ants of a Message Authentication Encryption (MAE) al-
gorithm, which is based on the dynamic key-dependent
concept and dynamic operation mode to reach a high level
of security. These variants consist of a single pass and a
single round, in addition to using common operations for
the encryption and authentication processes to reduce the
required execution time and resources. Accordingly, the
proposed scheme outperforms the existing solutions that
are based on the static approach with multiple rounds.
Furthermore, to reduce the overhead associated with the
regeneration of the dynamic key and the corresponding
cryptographic primitives, we propose a simple, yet effective
update process. In such a scheme, even when the same
plaintext is processed, it will be encrypted and authenti-
cated using different cryptographic primitives (substitution
and permutation tables in addition to round keys), which
guards against the existing cryptanalysis techniques. The
experimental results show that the proposed MAE variants
are more efficient than the Counter with Cipher block
Chaining Message authentication code (CCM), Galois Mes-
sage Authentication Code (GMAC), Offset Codebook Mode
(OCB), and the Chacha20-poly1305. The best performance
is achieved with the third MAE variant that presents a
high throughput with an enhancement of at least 373%
compared to CCM, 90% compared to GCM, 23% com-
pared to OCB, and 22% compared to Chacha20-poly1305.

Index Terms—Lightweight message authentication en-
cryption algorithm; Security analysis; Performance analy-
sis

I. INTRODUCTION

Emerging digital systems 1) incorporate a large
number of connected devices, some of which are
constrained in terms of energy and computational
power, 2) generate tremendous amounts of data, and
3) some of them impose a real-time response. Such
systems give rise to new security threats, which can
cause drastic damage to the corresponding resources
and data. Hence, the adoption of security services in

such systems is becoming critical for their availability
and the protection of their data.

Typically, the main security services such as data
confidentiality, data integrity, and source authentication
rely on a strong symmetric cipher algorithm. Data
confidentiality is achieved through a symmetric
encryption algorithm, either a block cipher or a stream
cipher [1], [2]. Data integrity employs an unkeyed hash
function, also called a Modification Detection Code
(MDC) [3]. Source authentication is verified through the
use of a Message Authentication Code (MAC) [4] that
is based on a keyed hash function, or a block cipher in
Cipher Block Chaining (CBC) mode, such as the case
of CBC-MAC and Cipher-based MAC (CMAC) [5],
[6]. In general, these three services are implemented
separately, however, many applications that involve
the transmission of sensitive data require that data
confidentiality, data integrity, and source authentication
be achieved simultaneously. To that end, a Message
Authentication-Encryption (MAE) algorithm can be
used, which typically achieves data confidentiality, data
integrity, and source authentication by combining two
separate processes, a conventional encryption algorithm,
and a MAC based on the CBC operation mode [7].

An MAE algorithm (aka authenticated cipher) is
typically used to encrypt and authenticate messages
using a shared secret Session Key (SK) and a public
Initial Vector (IV). Several message authentication
schemes have been presented [8], and they can be
classified into two categories. The first category
uses a block cipher and a secure hash algorithm
such as the Advanced Encryption Standard (AES)
with CBC mode (CMAC), or the Hashed Message
Authentication Code (HMAC) [9]. The other category is
the Galois Message Authentication Code (GMAC) that

exhibits a better performance compared to CMAC and
HMAC, but unfortunately, it suffers from security issues.

On the other hand, many advanced authentication
encryption techniques are based only on a block cipher
for both message encryption and authentication, to sim-
plify the hardware implementation. The existing MAE
schemes include Counter with CBC Message authen-
tication code (CCM), Galois Message Authentication
Code (GCM) [10], Offset Codebook Mode (OCB) [11],
and Chacha20-poly1305 [12]. They can be employed
currently in limited devices such as Internet of Things
(IoT) [13], and they have been adopted in many stan-
dards such as Secure Shell (SSH), Secure Sockets Layer
(SSL)/Transport Layer Security (TLS), and IP Security
(IPsec) [14].

A. Problem

It is becoming essential to design a lightweight
and robust MAE algorithm that accounts for the
limitations of tiny devices and real-time applications.
One possible solution is to adopt a single pass
encryption-authentication algorithm using minimal
resources and thus, exhibiting minimal delay. The
existing lightweight approaches are not efficient enough
since they process an input message at least twice, once
for encryption, and a second time for authentication.
Also, some of these approaches are not secure enough
due to inappropriate combination of the encryption
and authentication mechanisms [15]. Concerning the
traditional symmetric cryptographic algorithms, they
require multiple iterations of a round function, which
includes several operations of substitution and diffusion.

The existing MAE algorithms are not appropriate
for delay-sensitive applications nor for limited
devices commonly available in IoT systems [16];
they cannot make use of the optimized AES
instructions. Some lightweight techniques are based
on chaotic cryptographic algorithms, however, these
are not practical due to the need for floating-point
computations, conversion operations, and complex
hardware implementation.

To address these issues, recent research has focused
on the development of a new class of lightweight cryp-
tographic algorithms [16], [17], such as the techniques
presented in [18]-[23]; These are mainly based on the
concept of dynamic keys, and they require one or two
rounds. As such, they exhibit a low latency and require
few resources, while maintaining a high level of security.

B. Motivation

In this work, we present a new lightweight MAE so-
lution that consists of a single pass and a single iteration
of a round function. The scheme is designed to use
common operations for encryption and authentication.
Such efficiency is achieved due to 1) the use of variable
cryptographic primitives, which eliminates the need for
a large number of rounds, and 2) the elimination of a
second pass for authentication. This makes the algorithm
appropriate for limited devices and the required Quality
of Service (QoS) of real-time applications [24], [25],
[26].

C. Contributions

The proposed solution offers simultaneously the
essential security services, data confidentiality, data
integrity, and source authentication, while maintaining
a low overhead in terms of computational complexity
and latency. We present three variations of a new
lightweight and secure MAE algorithm, based on the
dynamic key-dependent cryptographic concept. The
cryptographic structure of the schemes consists of a
single pass and a single round with few operations. As
compared to our previous works [21], [27], [28], the
proposed structure makes use of common steps between
encryption and authentication, to reduce the required
number of operations for higher efficiency. Another
enhancement is the use of a simple update process for
the cryptographic primitives instead of regenerating
them; the process is simply based on a permutation
operation. Also, the update process is no longer required
for each new message, instead, it can be configured to
a specific set of messages. In the following, we present
the advantages of the proposed solution in terms of
system performance and security level.

System Performance:
• Efficiency: The proposed schemes exhibit low com-

putational complexity by encrypting and authenti-
cating one block at a time, for the first variant, and
two blocks for the second variant. The operations
involved are simple since they do not include any
diffusion operation, in contrast to existing cryp-
tographic algorithms such as AES. Moreover, the
proposed encryption scheme does not require any
chaining mode of operation, and hence, encryption
and decryption can be realized in parallel.

• Flexibility: The different variants are flexible since
the size of the input block (N bytes) is configurable,
and it is set according to the requirements of the
devices and the application.

2

• Simple software & hardware implementations:
The proposed structure lends itself to simple hard-
ware and software implementations since it makes
use of simple operations, such as the ”exclusive or
(xor)” logical operation, look-up for substitution,
and a simple permutation.

• Error tolerance: The proposed variants are de-
signed to resist channel errors; a bit-error in an
encrypted byte affects only the corresponding byte.
The errors do not affect the entire block since
the avalanche effect is achieved differently than
traditional schemes. As such, the proposed structure
is very practical for error detection and correction
techniques.

Security and Robustness:
• Dynamic key-dependent approach: The session

key SK is used to generate one or a set of dynamic
vectors for sub-session configuration; the vectors
are then used to generate a set of cryptographic
primitives, and their corresponding update prim-
itives that are used to modify the cryptographic
primitives (round keys, substitution, and permu-
tation tables), for each new input message, in a
pseudo-random manner. This makes analytic attacks
and implementation attacks very challenging [18],
[29], [30], [31]. To further enhance the security of
the proposed MAE variants, two distinct substitu-
tion tables are used instead of one.

• Dynamic mode of operation: The existing block
ciphers adopt the static approach with fixed cryp-
tographic primitives, and the blocks are encrypted
and authenticated sequentially. The proposed MAE
variants rely on a dynamic permutation table, which
performs pseudo-random selection of a block. Thus,
the relationship between the plain blocks becomes
more complex and random, and the encryption-
authentication sequence changes for each input
message. This also enhances the resistance against
analytic and implementation attacks.

Finally, the dynamic key approach exhibits typically
a disadvantage related to the initialization phase, during
which the dynamic key is generated and the cryp-
tographic primitives are constructed. To reduce this
overhead, we propose a simple update process for the
generation of the cryptographic primitives.

D. Organization

The rest of this paper is structured as follows. Existing
message authentication and/or encryption mechanisms
such as CBC, CMAC, and CCM, are presented in Sec-
tion II, in addition to a description of Internet of Things

networks. The proposed key derivation function and the
construction techniques for the cryptographic primitives
and their updates, are presented in Section IV. The pro-
posed MAE variants and the dynamic mode of operation
are described in Section V. Section VI analyzes the
cryptographic properties such as randomness, uniformity
and sensitivity. Then, in Section VII, the robustness of
the proposed variants against confidentiality and authen-
tication attacks are discussed. The performance of the
proposed MAE variants is analyzed in Section VIII to
assess their effectiveness. Finally, the paper is concluded
in section IX.

II. BACKGROUND

This section provides an overview of the various
message authentication and encryption techniques, as
well as the IoT networking paradigm.

A. Message Authentication-Encryption

Symmetric MAC approaches are based on the Merkle-
Dangard structure [32], [33]. The block cipher message
authentication approach requires less computational
complexity, which makes it preferable for limited
devices or real-time applications. The existing message
encryption algorithms rely on a block cipher with the
counter mode, to achieve a good performance and a
high level of robustness. Note that a block cipher with
the counter mode is actually a stream cipher.

From a mathematical perspective, a symmetric
encryption algorithm [34] is an invertible non-linear
function E(): {0, 1}Tb → {0, 1}Tb, where Tb represents
the size of an input block in bits, an integer with a value
of 128 or 256. On the other hand, a cryptographic hash
function [3] is a non-invertible non-linear compression
function h: {0, 1}∗ → {0, 1}Tb. Typically, an MAE
algorithm divides the input data, M , of size |M |, into
nb blocks, each of Tb bits.

In general, a symmetric MAE algorithm takes as
input a plaintext message, a secret key (K), and a
public initial value IV (e.g. counter, identity, etc.)
for the encryption process, and another one for the
authentication process. The output is a ciphertext that
has the same length of the plaintext and Tb-bit MAC
that is appended to the message. The receiver computes
the MAC of the received message (CMAC) and
compares it to the received message authentication code
(RMAC) for message authentication. If they are equal,
the message is authenticated.

3

There are several existing MAE schemes in the
literature; CCM and GCM were approved by the
National Institute of Standards and Technology
(NIST) [10], [6], [13]. CCM uses a robust block
cipher such as AES with 1) the CounTeR (CTR) mode
for encryption, and 2) the CBC mode for message
authentication. The authentication process can be done
in parallel with the encryption process, and the obtained
MAC is encrypted. The main issue with CCM is that
it needs to apply AES twice for each input block, and
each AES iteration requires r rounds of substitution and
diffusion operations. On the other hand, GCM reduces
the computational overhead of message authentication
by using a Galois multiplication operation instead of
a block cipher. This makes GCM more efficient than
CCM, however, it suffers from several security issues.

Another scheme, the Offset Codebook Mode
(OCB) [11] requires only one pass instead of two,
compared to CCM and GCM, which makes it more
efficient. The encryption process, in OCB mode,
is similar to the ECB mode, and it overcomes the
limitations of the latter (same plaintext block leads
to same ciphertext block). A recent MAE solution,
ChaCha20-Poly1305 [35], has been proposed to address
the scenario when AES hardware acceleration is not
feasible. It combines the ChaCha20 stream cipher and
the Poly1305 authentication. The authors showed that
the algorithm exhibits a similar performance to the
OCB mode in terms of latency.

When compared to the above solutions, the proposed
MAE structure is designed to be lightweight since 1)
it consists of a single pass and just one iteration of a
round function, and 2) it uses common steps for the
two processes of encryption and authentication. Also,
it exhibits a high level of security due to the use of
the dynamic key approach and the varying cryptographic
primitives.

B. Internet of Things Network

The IoT architecture is divided into fours layers,
devices, gateway, network, and application. The IoT
devices can be grouped into sub-networks, with a gate-
way connected to each sub-network. These gateways are
linked together via the core network, whose function is
to coordinate the inter-networking and communication
among the IoT sub-networks. Finally, the application
layer is responsible for managing the data generated by
the various IoT applications. It is important to note that
each layer has its own security management role. Due

to the limitations of some IoT devices, the need arises
for lightweight security solutions.

III. PROBLEM STATEMENT

The system and threat models are described in detail in
this section to highlight the significance of the proposed
MAE variants.

A. System Model

The network model is made up of n IoT nodes,
each with a specific amount of energy and computing
power. The IoT network is connected to these nodes
through a gateway. One of the proposed MAE variants
can be applied at the devices’ level and at the application
server level (or cloud). Note that at the legal destination
(device or application server), the data integrity and
authentication are performed first, followed by the data
decryption process.

We assume that a Pre-Shared master Key (PSK) is
shared between the communicating entities and a trusted
server, which is used to generate and exchange a sym-
metric key (SK) between the communicating entities.
Then, the following two steps are performed at the
source entities (IoT devices).

1) For each new session, a new SK is generated
and shared between each pair of IoT devices and
application server(s). This key is used to produce a
dynamic vector DV that should be unique for each
new session. Different key expansion techniques
could be used for this purpose such as the one used
in AES.

2) DV is used to construct the cryptographic primi-
tives needed for the MAE algorithm to encrypt and
authenticate the communicated packets. The packets
will end up containing a ciphertext and a MAC
appended at the end of the ciphertext payload.

At the destination (application server-side or IoT de-
vices), the application server acquires the corresponding
dynamic vector, DV , and produces the cryptographic
primitives to decrypt and check the source authentication
and data integrity.

B. Threats/Attacks Model

IoT networks are facing many security challenges
and are subject to various attacks [36], [37] that could
compromise their data, users and systems. Different
types of security attacks are considered in this work,
with a description of the mechanisms used by attackers:
• Eavesdropping Attacks: The attacker intercepts a

communicated message between IoT devices and

4

application server(s)/cloud. Since the messages are
encrypted, and with different dynamic keys, this
prevents eavesdroppers from extracting any useful
information.

• Analytic Cryptanalysis: A more serious attack oc-
curs when an attacker attempts to deduce the secret
key using any of existing cryptanalysis techniques
(linear, differential, key-related, or brute force at-
tacks). The proposed MAE variants are based on the
dynamic key approach and thus, they are immune
against such cryptanalysis techniques, which were
designed to target static keys and cryptographic
primitives. On the other hand, the size of the session
and dynamic keys is sufficiently large to prevent
brute force attacks.

• Man-in-the Middle Attacks: An adversary is able
to communicate with IoT devices impersonating an
application server, and with the application server
impersonating an IoT device. Such an attacker
has the ability to intercept all communicated mes-
sages, decrypt them, modify them, and finally, re-
authenticate them. Also, the attacker could delete
messages or generate new ones. This attack is
mainly due to a weakness in the authentication pro-
tocol, and not to the underlying cryptographic algo-
rithm. Therefore, to prevent such attacks, there is a
need to either adopt strong multi-factor authentica-
tion protocols [38], [39], [40], or to rely on physical
layer characteristics of IoT devices such as Radio-
Frequency Fingerprinting (RFF), with One-Time
Password (OTP), for device authentication [41],
[42]. Moreover, IoT device authentication schemes
could be based on machine learning solutions such
as SVM [43] for higher accuracy and precision.

• Message Tampering-Alteration Attacks: The at-
tacker aims to manipulate the exchanged messages
and thus, compromise the data integrity. This can
be done by collecting ciphertext via a compromised
gateway or an intermediate node. However, any
modification in even a bit of the ciphertext will lead
to a different MAC. A secure communication, based
on any of the proposed MAE solutions, enables
the application server(s) to detect such type of data
manipulation.

• Malicious Data Injection Attacks: This kind of
attacks is based on compromising an IoT device.
The attacker manipulates the device, generate fake
messages, and transmits them to the application
server(s). The weakness is not related to the cryp-
tographic algorithm, and it can be mitigated using a
lightweight intrusion detection system with device
system integrity.

• Masquerading Attacks: This occurs when either
an IoT device, gateway or application server (or
faked one) is exploited by an attacker for mali-
cious purposes. The attacker is able to send false
messages or modify received ones. Again, this type
of attacks cannot be prevented via cryptographic
algorithms, but instead through a set of security
mechanisms such as an intrusion detection system
and multi-factor authentication [44], [45].

• Replay Attacks: An attacker transmits again a
previously communicated message (encrypted data
with correct MAC). This could be used to perform
a DDoS attack against application server(s) or IoT
device(s) and to hinder the availability of commu-
nication with the destination device. Such an attack
is easily detectable in the proposed solution since
the cryptographic primitives are updated for each
new input message.

• Implementation Attacks: An attacker, with phys-
ical access to IoT devices, performs side channel
attacks or fault attacks. The importance of the
proposed solution is that it ensures random physical
properties such as energy consumption due to the
use of dynamic cryptographic primitives, which
gives immunity at the algorithmic level. This could
also be complemented with countermeasures at the
hardware or compiler level.

• A message may also be altered as a result of a
channel error (interference, fading). The storage
and decryption of incorrectly received messages are
avoided in the proposed solution.

IV. PROPOSED CRYPTOGRAPHIC PRIMITIVES
CONSTRUCTION

The construction of the dynamic cryptographic
primitives is illustrated in Figure 1, and all used
notations are listed in Table I. Each new session starts
with a new shared secret SK between an authorized
IoT device and an application server or cloud. The
focus of this work is not on key management between
legal entities. Readers can refer to [34] for further
information on possible key management schemes.

The dynamic vector DV , with a size of 64 bytes,
could be produced by hashing the SK, or by using
any secure key derivation function. Then, DV is split
into two main parts; the first one is used to construct
the cryptographic primitives, and the second one to
construct the corresponding update primitives. DV
could be produced synchronously by IoT devices and
the application server(s).

5

Table I: Summary of notations

Notation Definition

SK A shared secret session key
DV A dynamic vector that uses to construct the required cryptographic primitives
M The original message input (plaintext)
mi The ith plaintext block
C The encrypted message (ciphertext)
ci The ith ciphertext block
|M | Input message length in bits
N Number of bytes in one block message
Tb Number of bits in a data block and it is equal to 8×N
nb The number of blocks in a single input message is equal to d |M|

Tb
e

n Number of IoT nodes
KSi ith Substitution sub-key
Si The ith dynamic substitution table produced by using kSi sub-key
Si(x) The bytes of x block is substituted by using the ith substitution table
S−1
i (x) The bytes of x block is substituted by using the ith inverse substitution table S−1

i
x⊕ y ”Exclusive or” two blocks x and y
KUS The update substitution sub-Key
US The update substitution table produced by using the KUS sub-key. It is used to update the substitution table π
Kπ Permutation sub-Key
π Permutation table produced by using Kπ sub-key. It is used as selection table to decide the processing order of input

block from M or C during message encryption/decryption authentication process
KUP The update permutation sub-Key
Uπ The update permutation table produced by using the KUP sub-key. It is used to update the permutation table π
KRK Round key generation sub-key and it is used to produce two set of round keys RK1 and RK2
RK1 m dynamic round keys and represents the first set of round keys
RK2 The second set of round keys and it consists also of m dynamic round keys
m Number of round keys
KSRK The round selection sub-key
SRK A selection round table and is used to determine which round keys of RK1 and RK2 are utilized for each input

block during encryption/decryption-authentication processes.
KUSRK The update selection sub-Key

USRK The update selection table produced by using the KUSRK sub-key. It is used to update the selection table SRK
Y [j] It represents the jth element of the table Y

The cryptographic primitives are updated for each
input message using the update primitives and a packet
counter, and thus, each input message is processed
using different cryptographic primitives. The dynamic
vector DV is divided into two parts: cryptographic
keys ({KS1, KSS2, KP , KRK , KSRK}) and update
primitives {KSUS , KSUP , KSUSRK}. Each of the 8
sub-keys has a length of 64 bits (8 bytes), starting from
the most significant bytes assigned to KS1, and so on.
Each dynamic sub-key is utilized for a specific purpose,
as explained below:
• Substitution Sub-key KS1: It is used to build the

first substitution table S1 using the technique pre-
sented in [21], which uses the Key Setup Algorithm
(KSA) of Rivest Cipher 4 (RC4). The substitution
process is performed at the byte level, and the
elements in the substitution table S have values
ranging from 0 to 255.

• Substitution Sub-key kS2: In a similar manner to

KS1, it is used to build the second substitution table
S2.

• Permutation Sub-key kP : It is employed to build
a flexible permutation table π, having nb elements,
using the modified KSA of RC4, which was pro-
posed in [21]. The elements of the permutation table
π have values varying from 1 to nb.

• Round Key Generation Sub-key kRK : It is used
as a seed for an efficient stream cipher, which
will be iterated to produce (2 × m × N) bytes,
where m represents the number of rounds keys,
and N the number of bytes for each round key.
Then, the produced key-stream RK is divided into
two equal parts (RK1 and RK2), where each
one represents a set of round keys with a size of
(m×N), resulting into two different sets of m round
keys RK1 = RK11, RK12, . . . , RK1m and
RK2 = RK21, RK22, . . . , RK2m. Each RK1w
or RK2w for w = 1, 2, . . . , m has N bytes. Any

6

stream cipher or key expansion algorithm could be
used to generate these round keys. Moreover, m is
a configurable value that is set based on memory
limitations.

• Dynamic Round Key Selection kSRK : This is
the Selection Round Key (SRK) table, with nb
elements, each having a value between 1 and m.
This vector can also be generated using a stream
cipher.

• Update Substitution Sub-key KSUS : It is used
to build a substitution table SUS for updating the
substitution table.

• Update Permutation Sub-key KSUP : It is used
to build a permutation table πUP , which is used to
update the selection block table.

• Update Selection Round-key Sub-key KSUSRK :
It is used to build a permutation table USRK,
which is used to update the round key selection
table πSRK .

It is important to note that any bit change in the
secret key generates a different DV vector, and different
cryptographic and update primitives. This confirms the
high key sensitivity of the proposed MAE approach.

At the legal destination, the inverse substitution tables
(S−11 and S−12) are needed, and can be obtained by
applying the following equation:

S−1j [Sj [w]] = w for w = 0, 1, . . . , 255 and j = 1 or 2
(1)

V. PROPOSED MESSAGE
AUTHENTICATION-ENCRYPTION ALGORITHM

Any type of data communication such as multimedia
or text files, may be handled by the proposed MAE
algorithm. Also, the proposed encryption/decryption
algorithm is performed in parallel, while the message
authentication is performed with a chaining process.
The cipher scheme can be viewed as a dynamic CTR
mode (D-CTR). The MAE technique selects the blocks
to be encrypted and authenticated based on a dynamic
pseudo-random sequence rather than the traditional
approach that uses a sequential order. A dynamic
permutation table is used to select the order of input
blocks, and it is updated for each input message.
Two blocks are mixed pseudo-randomly, in the second
version, to further complicate the cryptanalysis process.

A dynamic vector is used for each session, and the
following cryptographic primitives are generated:

1) RK1 and RK2, each consisting of m round keys;
2) A selection table SRK;

Figure 1: The proposed dynamic key derivation approach
in addition to the proposed approach to build the required
cryptographic and update cryptographic primitives.

3) S1 and S2, the first and second substitution tables;
4) π, the permutation table used for the selection of

input blocks.

In addition, three update primitives are also produced,
US, Uπ , and USRK. US is used to substitute and
update the first and the second substitution tables
(S1 and S2). Uπ is used to permute and update the
permutation table π. while USRK is used also to
permute and update SRK. The cryptographic and
update primitives are required at the source and
destination. However, at the destination, the substitution
tables are replaced by their inverses (S−11 and S−12).

The message is divided into nb blocks, and padding
is used whenever necessary. For the second variant, nb
should be even since two blocks are processed at a time.
The input blocks, M = m1, m2, . . . , mnb, each has N
bytes, where N is a configurable parameter that changes
depending on the application or device limitations. In
real-time applications, a smaller N value is preferred.
We shall fix N to 32 in the rest of the paper, and each
block will have a size of 256 bits.

7

A. Encryption/Decryption Algorithms
There are two sub-functions in the proposed MAE

algorithm: BlocksSelection, and RoundFunction(RF), as
described next.

1) Blocks Selection: In each iteration, the proposed
MAE algorithm encrypts and authenticates one block
(m[π(i)]) in the first variant for i = {1 , 2, . . . , nb},
and two input blocks (m[π(i)] and m[π(i+ nb

2)]) in
the second variant, for i = {1 , 2, . . . , nb2 }. The input
blocks are selected using the dynamic permutation table
π, and m[π(i)] refers to the π(i)th input block.

2) First Variant of MAE Round Function RF : The
round function employs substitution tables S1 and S2

in addition to the permutation table π for input block
selection, and the selection round key table SRK, as
well as a pair of m round keys (RK1 and RK2). The
round keys RK1[SRK(i)] and RK2[SRK(i+ nb

2)]
are utilized for the ith input block, respectively.

The first variant of the message authentication-
encryption algorithm, with one input block per iteration,
is described in Algorithm 1.

Algorithm 1 The proposed MAE algorithm’s first vari-
ant, which only processes one input block per thread.

1: procedure MAE 1VARIANT(M, S1, S2, π,
RK1, RK2, SRK, IV, nb)

2: for i = 1 to nb do
3: temp = S1(RK1[SRK[i]]⊕M [π[i]])
4: C[i] = S2(RK2[SRK[i]]⊕ temp)
5: IV = S2(temp⊕ IV)
6: end for
7: MAC = S1(IV))
8: end procedure

Algorithm 2 The corresponding Message
Authentication-Decryption (MAD) algorithm of
the proposed first variant

1: procedure MAD 1VARIANT(C, S1, S2, S
−1
1 , S−12 ,

π, RK1, RK2, SRK, IV, nb)
2: for i = 1 to nb do
3: temp = S−12 (C[i])⊕RK2[SRK[i]]
4: IV = S2(IV ⊕ temp)
5: M [π[i]] = S−11 (temp)⊕RK1[SRK[i]])
6: end for
7: MAC = S1(IV))
8: end procedure

In each iteration of the first variant, an input block
(m[π(i)]) is selected and encrypted-authenticated to pro-

duce the encrypted block c[(i)] and to update IV as
illustrated in Algorithm 1.
m[π(i)] represents the π(i)th input block and it is

encrypted and stored at the ith encrypted block index
by doing the following operations:

1) The SRK(i)th round key of RK1,
(RK1[SRK(i)]) is mixed (”xor”) with the
π(i)th plain block (m[π(i)]).

2) Then, the first substitution table S1 is used to
substitute the corresponding output of the previous
step to produce temp.

3) Next, the substituted output temp is mixed with the
SRK(i)th round key of RK2, (RK2[SRK(i)]).

4) Finally, the output is subjected to another substitu-
tion operation by using the second substitution table
S2.

In addition, IV is updated for each iteration by
mixing the current IV with temp, and the output of this
operation is substituted by using the second substitution
table S2. After iterating all input blocks, the final IV
is substituted by using the first substitution table to
produce the MAC.

The decryption algorithm follows the same steps,
but 1) it uses the inverse round function RF−1, which
operates in a reverse order compared to the round
function RF , and 2) instead of S1 and S2, RF−1

employs the inverse substitution tables S−11 and S−12 .

Algorithm 2 describes the inverse function RF−1,
which deals with one input block at a time. Another
possible mode of operation for the first variant is to
process two input blocks m[π(i+ nb

2)] and m[π(i)]) in
parallel, instead of one block. This variant is flexible
since it can encrypt and authenticate α blocks at each
iteration, but this requires nb to be divisible by α.
Also, α IV s will be produced and substituted, and
then, mixed to produce the final MAC. For α = 2, the
final MAC value is obtained by performing ”xor” of
the substituted values of IV 1 and IV 2. Note that the
blocks use the same cryptographic primitives.

3) Second Variant of Round Function RF : In the
second variant, two input blocks (mπ(i+nb

2) and mπ(i))
are chosen and mixed in each iteration. As shown in
Algorithm 3, two encrypted blocks (C(i) and Cπ(i+nb

2))
are produced in addition to updating IV 1 and IV 2.
The message authentication-encryption algorithm of the
second variant with two input blocks is presented in
Algorithm 3.

The first encrypted block C(i) is obtained by doing
the following operations:

8

1) The SRK(i)th round key of RK1, which is
RK1[SRK(i)] is mixed (”xor”) with the π(i)th

input plain block (m[π(i)]) and the π(i + nb
2)th

message plain block m[π(i+ nb
2)].

2) Then, the first substitution table S1 is used to
substitute the corresponding output of the previous
step to produce temp1.

3) Next, the substituted output temp1 is mixed with
the SRK(i)th round key of RK2, which is
RK2[SRK(i)].

4) Finally, the output is subjected to another substitu-
tion operation by using the second substitution table
S2.

The second encrypted block C[(i + nb
2)] is obtained

by applying the following operations:
1) The SRK(i + nb

2)th round key of RK2, which is
RK2[SRK(i+ nb

2)] is mixed (“xor”) with the π(i+
nb
2)th input plain block m[π(i+ nb

2)].
2) Then, the second substitution table S2 is used to

substitute the corresponding output of the previous
step to produce temp2.

3) Next, the substituted output temp2 is mixed with
the SRK(i + nb

2)th round key of RK1, which is
RK1[SRK(i+ nb

2)].
4) Finally, the output is subjected to another substitu-

tion operation by using the first substitution table
S1.

Similarly to the first variant, with the two input blocks
version, IV 1 and IV 2 are updated using the same
operations. The final MAC is obtained by xor-ing the
substituted values of IV 1 and IV 2.

Algorithm 3 The proposed second variant of the one
round one single message authentication encryption al-
gorithm with two input blocks

1: procedure MAE 2VARIANT 2BLOCKS(M, S1, S2,
π, RK1, RK2, SRK, IV 1, IV 2, nb)

2: for i = 1 to nb
2 do

3: temp1 = S1(M [π[i]] ⊕ RK1[SRK[i]]) ⊕
M [π[(i+ nb

2)]]
4: C[i] = S2(temp1⊕RK2[SRK[i]])
5: IV 1 = S2(IV 2⊕ temp1)
6: temp2 = S2(M [π[(i + nb

2)]] ⊕
RK2[SRK[(i+ nb

2)]])
7: C[(i+ nb

2)] = S1(temp2⊕RK1[SRK[(i+
nb
2)]])

8: IV 2 = S1(IV 1⊕ temp2)
9: end for

10: MAC = S2(IV 1)⊕ S1(IV 2))
11: end procedure

Algorithm 4 The corresponding authentication-
decryption algorithm of the second variant that requires
at least two input blocks

1: procedure MAD 2VARIANT 2BLOCKS(C, S1, S2, S
−1
1 , S−12 ,

π, RK1, RK2, SRK, IV 1, IV 2, nb)
2: for i = 1 to nb

2 do
3: temp2 = S−11 (C[(i + nb

2)]) ⊕
RK1[SRK[(i+ nb

2)]]
4: M [π[(i + nb

2)]] = S−12 (temp2) ⊕
RK2[SRK[(i+ nb

2)]]
5: temp1 = S−12 (C[i])⊕RK2[SRK[i]]
6: M [π[i]] = S−11 (temp1⊕M [π[(i+ nb

2)]])⊕
RK1[SRK[i]]

7: IV 1 = S2(IV 2⊕ temp1)
8: IV 2 = S1(IV 1⊕ temp2)
9: end for

10: MAC = S2(IV 1)⊕ S1(IV 2))
11: end procedure

As previously stated, the order of encrypted blocks,
in addition to the mixing of the authenticated blocks,
is determined by the permutation table π, which is
different for each input message.

Note that when a block is to be substituted with an
odd index, this is done via the first substitution table
S1, after mixing with RK1, and then substituted with
S2, after mixing with RK2. While for an even index,
this is done via the second substitution table S2, after
mixing with RK2, and then substituted via S1, after
mixing with RK1.

The decryption algorithm differs only by using the
inverse round function RF−1 with a reverse order of
the round function. Moreover, RF−1 uses the inverse
substitution tables S−11 and S−12 . In Algorithm 4, RF−1

is described. The encryption and decryption processes
can run in parallel, while the message authentication
procedure is done in a chaining mode of operation.

For the authentication and encryption processes, the
proposed MAE variants involve the dynamic CBC and
the dynamic CTR modes, respectively. The dynamic
permutation table is used to select the order of encryption
blocks and the order of mixed authenticated blocks. Sim-
ilarly, a selection table guides the choice of rounds keys.
This proposed approach randomizes the link between the
encrypted-authenticated blocks, leading to a higher level
of randomness, uniformity, and independence, thus, a
higher resistance to existing attacks.

9

4) Third Variant of Round Function RF : The
second variant requires more execution time compared
to the first one since it involves more operations to
encrypt two input blocks. We present a third variant as
the most lightweight MAE variant for two input blocks.
It is designed to optimize performance and security
level compared to the previous ones.

Algorithm 5 describes the third MAE variant at the
source side, and Algorithm 6 shows the corresponding
authentication-decryption algorithm at the destination
side. The same two input blocks and the same cryp-
tographic primitives described in the second variant are
used. Note that only one set of round keys is used in this
variant, which is RK1 instead of two as in the second
variant. Also, only one IV is computed instead of two,
and it is based on temp1 and temp2.

Algorithm 5 The proposed third MAE variant with two
input blocks

1: procedure MAE 3VARIANT 2BLOCKS(M, S1, S2,
π, RK1, RK2, SRK, IV, nb)

2: for i = 1 to nb
2 do

3: temp1 = S1(M [π[i]]⊕RK1[SRK[i]])
4: C[i] = S2(temp1)
5: temp2 = S2(M [π[(i+ nb

2)]]⊕ temp1)
6: C[(i+ nb

2)] = temp2
7: IV = S1(IV ⊕ temp2)⊕ temp1
8: end for
9: MAC = S2(IV)

10: end procedure

Algorithm 6 The corresponding authentication-
decryption algorithm of the proposed third MAE variant
that requires at least two input blocks

1: procedure MAD 3VARIANT 2BLOCKS(C, S1, S2,
S−11 , S−12 , π, RK1, SRK, IV, nb)

2: for i = 1 to nb
2 do

3: temp1 = S−12 (C[i])
4: temp2 = C[(i+ nb

2)]
5: M [π[(i+ nb

2)]] = S−12 (temp2)⊕ temp1
6: M [π[i]] = S−11 (temp1)⊕RK1[SRK[i]]
7: IV = S1(IV ⊕ temp2)⊕ temp1
8: end for
9: MAC = S2(IV)

10: end procedure

B. MAE Variants Comparison
The characteristics of the three variants can be sum-

marized as follows:

• The encryption process of all variants can be exe-
cuted in parallel, while the message authentication
process is done in a chaining mode.

• The first variant processes one block at a time, while
the second and third variants process two input
blocks.

• The second variant requires more execution time
than the first variant.

• The third MAE variant exhibits the minimum exe-
cution time and resources.

• The second and third variant are associated with a
dynamic mixing between processed blocks, which
makes the relation between the authenticated blocks
more complicated.

Furthermore, the proposed variants have a greater
degree of security due to their higher degree of ran-
domness and sensitivity, which is based on the concept
of dynamic cryptographic primitives and dynamic input
block selection. A short comparison among the proposed
MAE variants is presented in Table II, and among the
existing MAE solutions in Table III.

VI. SECURITY ANALYSIS

In this section, several tests are performed to assess
and confirm the robustness of the proposed MAE vari-
ants against analytic attacks. The security level of the
proposed MAE variants is evaluated by measuring the
randomness, uniformity, and sensitivity, to prove their
resistance against statistical, plaintext/selected/known ci-
phertext, and brute force attacks [46], [34]. The outcome
of this section shows that any modern MAE algorithm
must have the following properties to be considered
immune to attacks:
• To avoid chosen/known plain-text attacks and key-

related attacks, the avalanche effect should be ful-
filled for both the message and the key.

• To avoid statistical attacks, ciphertexts and their
corresponding MAC values should have a high
degree of randomness and a uniform distribution.

• Exhaustive search attacks (brute force attacks) are
prevented when the secret key (K), the dynamic
vector, and the various cryptographic primitives
have all a large enough size (≥ 128 bits).

• In addition, the produced MAC should have a
length sufficiently large (≥ 128 bits) to avoid birth-
day attacks.

In terms of randomness and uniformity, the proposed
MAE variants are compared to existing MAE algorithms
such as CMAC and GMAC. Several properties are
evaluated for 1,000 input messages, which follow the
normal distribution with a mean of 128, and a standard

10

Table II: Comparison between the proposed MAE approaches

Metric First Variant Second Variant Third Variant
Error propagation - + +
Parallel Ciphering/deciphering (block level) Yes Yes Yes
Delay More delay Higher delay Lower one
Randomness + ++ +
Robustness + ++ +

Table III: Comparison between the proposed MAE variants and existing MAE solutions

.

MAE
algorithms

Number of
pass

Number of
rounds

Using Dynamic
Key

Flexible message
block size

Optimized
Implementation

CCM 2 r ≥ 10 No No (128 bits for AES) Yes
GCM 2 r ≥ 10 No No (128 bits for AES) Yes
OCB 1 r ≥ 10 No No (128 bits for AES) Yes
ChaCha20-
Poly1305

2 20 No No(512 bits) Yes

Proposed Ones 1 1 Yes Yes(N × 8 bits) No

deviation of 16, and N = 32. For the security tests, we
present the results of the first variant since the second
and third variants show similar results.

A. Statistical Analysis

To guard against statistical attacks, the ciphertext and
MAC must have high levels of randomness and unifor-
mity. Several statistical tests were introduced in [21],
and applied to the generated ciphertexts and MACs. To
confirm the levels of uniformity, the Probability Density
Function (PDF) and entropy tests are required. As for the
randomness and independence properties, we evaluate
the recurrence and the correlation coefficient, in addi-
tion to the percentage difference between the original
and encrypted messages. The levels of randomness and
uniformity of the MAC values are evaluated using the
same or similar tests.

1) Cipher-text/MAC Uniformity Analysis: The
ciphertext must meet the uniformity condition: the
occurrence probability of all symbols in the encrypted
message should be close to 1

n , where n denotes the
symbols’ space, and is equivalent to 256 for one-byte
messages. Similarly, the occurrence probability of all
symbols in the MAC should be close to 1

N , where N
denotes the length in bytes of the MAC. This could be
assessed statistically, or by visualizing the PDF of the
encrypted message or the generated MACs.

The PDF of the original messages is not uniform,
but the PDF of their corresponding encrypted messages
follow the uniform distribution for both MAE variants,
and all symbols have a probability of occurrence close
to 1

256 = 0.039, as shown in Figure 2, with a random
SK.

This result is also validated using the entropy test at
the message level, as detailed in [21]. If the entropy value
of the encrypted messages, using a random SK, and
256-byte input blocks, is close to 8, then, the message
uniformity is satisfied. Figure 3-a) illustrates the PDF
results of the entropy values, repeated for 1,000 times.
The results show clearly that the encrypted messages
always have an entropy close to the desired value of
8. The entropy statistical results are given in Table IV,
which shows that the encrypted messages, using the first
MAE variant, satisfy the uniformity property.

On the other hand, the MAC values (each of 32
bytes) for 1,000 random session keys, for the three
proposed MAE variants are computed. Then, their
values are converted to hexadecimal to produce 64
digits for N=32. Figure 2 (c) and (f) show, for the first
variant, the recurrence and histogram values. The hex
values (0 to 15) are equally distributed, which confirms
their high level of randomness and uniformity.

We also ran a test to determine the number of unique
bytes within each MAC value. These tests were applied
1,000 times, each time with a new dynamic key and
messages. The results for the probability of unique byte
elements, for the first MAE variant, as well as for Tb =
256, are shown in Figure 3-b).

For the first variant, about 13.4% of the MAC values
have 32 unique bytes, approximately 29.5% have
31 unique bytes, and approx 30.1% have 30 unique
bytes. For the second and third MAE variants, similar
results were obtained, which confirms that the MAC
values follow a uniform distribution with a high degree
of randomness. Note that increasing the value of N
improves the randomness and uniformity degrees.

11

100 120 140 160
X(t)

100

120

140

160

X(
t+

1)

(a)

0 50 100 150 200 250
X(t)

0

50

100

150

200

250

X(
t+

1)

(b) (c)

100 110 120 130 140 150
Original

0.00

0.01

0.02

0.03

0.04

0.05

0.06

PD
F

(d)

0 50 100 150 200 250
Ciphertext

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

PD
F

(e) (f)

Figure 2: Statistical analysis results: the recurrence of (a) the original message and (b) ciphertext, using the first
MAE variant with a random dynamic key N = 32. The corresponding PDF of the (d) original message and of
the (e) produced ciphertext. The recurrence (c) and histogram distribution (f) of 1,000 MAC values in hexadecimal
format for the first MAE variant.

2) Ciphertext Randomness Analysis: In addition to
the previous recurrence tests, two additional tests can
be performed to evaluate the randomness level of the
encrypted messages:

1) The correlation between plaintext and ciphertext
2) The percentage difference between the original and

encrypted messages
The correlation between the original and encrypted

images were computed for each new input message. The
PDF of the correlation coefficient between plaintext and
ciphertext, for 1,000 random session keys, are shown
in Figure 3-(c) for the first variant, and the obtained
values are always close to 0, which confirms the high
level of randomness.

The difference test, which evaluates the percentage
difference between plaintext and ciphertext, should be

close to 50% at the bit level. Figure 3-(d) this difference
for the first MAE variants. Table IV provides the numer-
ical statistical results of the correlation and difference
tests for the proposed MAE variant. The results confirm
that the generated ciphertexts are independent of the
original ones.

3) Statistical Tests of ”TestU01” and ”Practrand” :
Two statistical randomness tests were used to evaluate
the randomness of the obtained ciphertext, TestU01 [47]
and ”Practrand” [48]. The tests included 100 different
secret keys, the input plaintext consists of all zeros, and
the message length is 217. The two tests are extremely
difficult randomness tests, and the results show that
both MAE variants produced ciphertexts that passed all
randomness tests of ”TestU01” and ”Practrand”.

12

7.900 7.925 7.950 7.975 8.000 8.025 8.050 8.075
Entropy

0.00

0.02

0.04

0.06

0.08

0.10
PD

F

(a)

25 26 27 28 29 30 31 32
Unique Values

0.05

0.10

0.15

0.20

0.25

0.30

0.35

PD
F

0.1 0.4
2.4

6.9

17.7

28.0
30.1

14.4

(b) First Variant

0.10 0.05 0.00 0.05 0.10
Correlation Coefficient

0.00

0.02

0.04

0.06

0.08

0.10

PD
F

(c)

49.4 49.6 49.8 50.0 50.2 50.4 50.6
Dif

0.00

0.02

0.04

0.06

0.08

0.10

PD
F

(d)

49.4 49.6 49.8 50.0 50.2 50.4 50.6
Key Sensitivity

0.00

0.02

0.04

0.06

0.08

0.10

PD
F

(e)

42.5 45.0 47.5 50.0 52.5 55.0 57.5
KS of MAA

0.02

0.04

0.06

0.08

0.10

0.12

PD
F

(f)

Figure 3: Statistical analysis results: (a) PDF of the ciphertext entropy, (b) PDF of the different ASCII characters,
(c) PDF of the correlation coefficient, and (d) PDF of the percentage difference between original and encrypted
messages; (e) PDF of the key sensitivity (KS) for the first message encryption, and (f) authentication algorithm
after changing a random bit of the secret key. All these results are obtained for 1,000 random session secret keys
and by using the proposed first variant with Tb = 256 bits.

B. Avalanche Effect Analysis

The message and key sensitivity tests are performed
to confirm that different ciphertexts and MAC values
are produced when a slightly different SK is used, and
to validate that the update process produces different
cryptographic primitives. The avalanche effect consists
of measuring the difference in percentages between the
encrypted messages or MACs, for a minor variation in
secret key or message. At the bit level, a 50 % difference
is required.

1) Key Avalanche effect: This test computes the
change in the ciphertexts or MAC values for a 1-bit
change in SK. Note that all cryptographic and update
primitives are generated from SK. Hence, this one-bit
change in SK produces a different dynamic vector DV ,
and consequently, a different set of cryptographic and

update primitives, which eventually leads to different ci-
phertexts and MAC values. To measure such difference,
we compute the Hamming distance between every pair
of ciphertexts or MAC values, which basically counts
the number of differing bits between two bit streams via
the XOR operation. We use the equation:

KSw =

∑Tb
i=1Bi
Tb

× 100% (2)

where the Hamming distance KSw is obtained
using the session keys SKw and SKw′ . We denote
Xw = MEAKw

(Mw) and Xw′ = MEAKw′ (Mw)
as the resulting ciphertexts or MAC values using
SKw and SKw′ , and their binary representations
as BVw = Bin(Xw), BVw′ = Bin(Xw′), and
B = BVw ⊕ BVw′ . The Tb value indicates the number
of bits in the MAC value in the case of the message

13

authentication algorithm. We introduce a 1-bit difference
between SKw and SK ′w in the Least Significant Bit
(LSB) of a randomly chosen byte.

Figure 3 (e)-(f) shows the session key sensitivity
for 1,000 random keys for both variants. According to
the results, the difference between both ciphertexts or
MACs, for both variants, is very close to the desired
value of 50%, with the majority of the cases = 50%.
Table IV shows the numerical statistical results for both
MAE variant. The results are similar to the ones with
CMAC and HMAC. In conclusion, an attempt to decrypt
a message with an incorrect dynamic key, with just one-
bit difference, will not provide any useful information
about the original message.

2) Message Avalanche Effect: This test computes the
change in the ciphertexts or MAC values for a small
change in the input message. However, the proposed
schemes, by design, require a new SK for a new input
message, even if the same message is to be encrypted
again. Accordingly, and based on the key sensitivity, the
message sensitivity is inherent in the proposed structure.

C. Collision Resistance of the Proposed Approach

For this essential property, we determine the possi-
bility of two separate input data producing the same
MAC value. This test was run 1,000 times with 1,000
different session keys, and each time a different bit
in the message is changed. Then, for each variant, we
compute and compare the MAC values of the original
and modified messages. Also, we check the number of
identical ASCII characters at the same locations using
the following equation:

Diff =

N∑
i=1

D{MAC(i),MAC ′(i)}, (3)

where D(x, y) = 1 if x = y, else = 0.

The MAC values of the original and modified mes-
sages are represented by MAC and MAC ′, respectively.
Also, MAC(i) corresponds to the ith ASCII character
of MAC. The results are shown in Table V, and it can
be seen that only three characters at maximum are equal,
for Tb = 128 (N = 16) and 256 (N =32). This confirms
that the proposed MAE variants are resistant to collision
and analytic attacks, including birthday attacks, meet-
in-the-middle attacks, and differential attacks, according
to [49].

VII. CRYPTANALYSIS

In this section, we assess the resistance of the pro-
posed MAE variants against cryptanalysis, mainly ana-
lytic attacks as they manifest in the existing confiden-
tiality and authentication attacks.

A. Key Space Analysis

The secret-key space of the proposed MAE variants is
sufficiently large; it is equal to 2Tb, with Tb =128, 160,
196, or 256. According to [34], the key space should be
greater or equal to 2128 to prevent brute force attacks,
which is the case with the proposed MAE variants. The
secret key can be 2128, 2196, or 2256 bits long, and DV
has a size of 512 bits. These values are sufficiently large
to prevent brute force attacks.

B. Resistance against confidentiality attacks

• Resistance against statistical attacks: The use
of variable cryptographic primitives and a vari-
able pseudo-random selection of input blocks com-
plicates the task of statistical attacks. This was
validated by the high levels of randomness and
uniformity, as shown in Figure 2 and Figure 3,
respectively. Accordingly, the statistical attacks on
the ciphertext or MAC will not return any relevant
information.

• Resistance against linear attacks: This can be
validated based on the following points:
1) Figure 3 (c)-(d) proved the independence of

the original and encrypted messages. Also, the
non-linearity between the original and encrypted
blocks is enhanced since two different key-
dependent substitution tables (S1 and S2) are
used for each input image.

2) The relationship between the original and
encrypted-authenticated blocks is further en-
hanced by selecting the input blocks in a pseudo-
random manner.

3) The secret key sensitivity has been satisfied and
all cryptographic and update primitives depend
on this SK. Moreover, any secure key derivation
function can be used to produce DV (512 bits),
and to ensure a strong collision resistance. The
probability of generating all cryptographic and
update primitives is 1

2512 .
• Resistance against differential attacks: Launching

differential attacks against the proposed variants is
very challenging since 1) the SK is changed for
each new session, 2) the cryptographic primitives
are changed for each input message, and 3) the

14

Table IV: Statistical results for 1,000 random keys using the proposed first variant of the proposed MAE algorithm.

First variant of the proposed cipher scheme
Min Mean Max Std

Dif 49.361 50.01 50.61 0.174
KS 49.47632 50.000763 50.54077 0.168
HE 7.976 7.98 7.99 0.0016
ρ -0.0299736 8.479536e-05 0.031 0.01

First variant of the proposed message authentication algorithm
Min Mean Max Std

KS 40.625 50.176 59.38 3.036
HMAC 4.578 4.88 5.0 0.082
UV 26 30.15 32 1.27

Table V: Percentage distribution of ASCII characters with the same value at the same location in the MAC value
for random LSB bit of secret key when Tb =256

Number of Hits
PPPPPPTb

hits 0 1 2 3 4

128 94.4% 4.9% 0.6% 0.1%
256 88.3% 11.2% 0.5% -

schemes exhibit high levels of randomness, unifor-
mity, and key sensitivity.

• Resistance against key-related attacks: The key
sensitivity of both MAE variants have been vali-
dated according to Figure 3 (e)-(f). As a result,
key-related attacks are extremely difficult to be
performed.

C. Message Authentication Attacks

1) Pseudo-collision Resistance: In a pseudo-collision
attack, the attacker uses vulnerabilities in the compres-
sion function to alter the message and its associated
MAC value [50], [51]. The proposed variants are im-
mune to such attacks since 1) they are based on variable
cryptographic primitives, 2) pseudo-random selection of
the input blocks, and 3) the compression function is non-
linear and non-commutative.

2) Resistance to Birthday Attacks: Birthday attacks
are conventional attacks that seek to identify two mes-
sages with identical MAC values in less than 2

Tb
2 trials

(where Tb is the size of the input block and is also
equal to the size of the MAC value) [3]. The smallest
MAC size in the proposed MAE variants is 128, which
requires 264 trials for a brute force attack. This makes
them collision-resistant and thus, immune to birthday
attacks.

3) Resistance to Meet-in-the-Middle Attack:
Given a message with nb blocks, M =
(m1, m2, . . . , mnb−1, mnb), the meet-in-the-
middle attack aims at finding a block mi that can
replace one of the nb blocks without changing the

final MAC value [52], [53]. The MAC values were
calculated by replacing a random data block (one bit)
with a random mi. This test was repeated 1,000 times,
and two statistical tests were conducted, the difference
percentage between both produced MAC values, and
the percentage of each bit being equal to 1 versus its
corresponding index in the MAC. Figure 4-a) and -c)
show that the difference percentage between the MAC
values for any modification in any block is at least 50%.
Moreover, the percentage of each bit being equal to 0
or 1 for the obtained MACs is also close to 50%, as
shown in Figure 4-b) and -d). Note that similar results
were obtained for Tb =128 and 512. This confirms that
the use of pseudo-random input block selection, and
variable cryptographic primitives for every message,
renders the proposed MAE variants immune against
authentication attacks.

On the other hand, the existing analytic attacks have
been designed to attack static cryptographic algorithms
with static keys and known cryptographic primitives.
Thus, they are unable to break the proposed MAE vari-
ants since they are based on the dynamic cryptographic
approach.

VIII. PERFORMANCE ANALYSIS

The performance and effectiveness, of the proposed
MAE variants, are evaluated in terms of the computa-
tional complexity and execution time, in addition to the
influence of error propagation and the required memory
consumption.

15

(a) (b)

Figure 4: Percent of the distribution of changed bit number between H
′′

n and H versus 1000 tests(a), and percentage
of each bit to be equal to 1 versus its corresponding index in MAC (b) for the first MAE variant, respectively.

A. Computational Delay

To compute the total delay, we define the delays as-
sociated with the individual components of the proposed
schemes:

1) Txor: the time to perform ”xor” on two blocks of
N bytes;

2) TKDF : the time to generate DV with a size of 64
bytes using a key derivation function;

3) TKSA: the time to generate a substitution table
using the KSA of the RC4 algorithm;

4) TMKSA(x): the time to generate a permutation
table of x elements by using the modified KSA of
RC4;

5) TPRNG: the time to run the Pseudo-Random Num-
ber Generation (PRNG) algorithm to generate m
round key blocks;

The initial computational delay to construct the cryp-
tographic and update primitives, for each new session,
is expressed by CDCPC as expressed by the following
equation:

CDCPC = TKDF + 3× TKSA + 4× TMKSA(nb)

+ TPRNG (4)

The permutation and substitution tables can be gen-
erated using the KSA and MKSA techniques, which
exhibit a low computational delay. Furthermore, any
lightweight PRNG can be employed to produce the
required round keys (RK1 and RK2). The required
computational delay to update the cryptographic primi-

tives, for each new input message, is given by CDUCP ,
as expressed by the following equation:

CDUCP = TKSA + 2× TMKSA(nb) (5)

We can see that the update process is faster than
the initialization process, and it can be performed in
parallel with the encryption-authentication process at
IoT devices or application server(s). The following is
an evaluation of the delay associated with the proposed
MAE authentication process for both variants:

1) TS : the time it takes to substitute a block of N
bytes.

2) TSl: the time to select an input block from a vector
of blocks.

Therefore, in case of the first variant, and for two input
blocks for the second and third variants, the required
Computational Delays (CD) to encrypt and authenticate
a message, for one data block, are represented by:

CDV 1 = 3× (TS + Txor + TSl) (6)
CDV 2 = 6× TS + 7× (Txor + TSl) (7)
CDV 3 = 4× TS + 4× (Txor + TSl) (8)

The equations show that the second variant requires
more operations compared to the first and third variants.
Moreover, the third variant requires the minimum
number of operations and hence, it introduces the
lowest latency. Moreover, the final computational delay
to encrypt and authenticate a message of nb blocks
for each one of these variants (Equations 6, 7, and 8)
should be multiplied only by nb.

16

Next, we compute the delays associated with the
existing MAE schemes that rely on the AES encryption
algorithm, CCM, GCM, OCB and Chacha20-poly1305.
The total computational delay of AES to encrypt or
authenticate one block [54] is expressed as follows:

CDAES = r×TS+(r+1)×Txor+(r−1)×TD+r×TSR
(9)

1) TD: the time for the AES ”mix-column” step;
2) TSR: the time for the AES ”shift-rows” step;
3) r represents the number of rounds.
For the minimum number of rounds (r=10) and the

minimum key size (128 bits), the execution time to
encrypt or authenticate one block is equal to:

CDAES(r=10) = 10×TS+11×Txor+9×TD+10×TSR
(10)

Accordingly, AES exhibits a larger delay than the
proposed MAE variants. This is mainly due to the
diffusion operation and the multi-round structure. Thus,
CCM, GCM, OCB and Chacha20-poly1305 are slower
and have a lower throughput compared to the proposed
MAE variants. The results are illustrated in Table VII.

B. Execution Time on Physical Devices

The proposed MAE variants are programmed in
Python and C, and their implementations are tested
on three different Raspberry Pi devices (RPI-0, RPI-3
and RPI-4). The results are compared to those of
CCM, GCM, and OCB, which are based on the
optimized version of AES with OpenSSL in addition
to Chacha20-poly1305 MAE algorithm. Figure 5-a)
shows the throughput (bytes/second) of the proposed
MAE variants with a message length of l = 786432
bytes versus different sizes of N . The results show
that as N increases, the execution time decreases, and
consequently, the throughput increases. Furthermore,
when both Raspberry devices were considered, the third
variant was the fastest for N ≥ 32, and the first variant
was the fastest for N = 16. Also, RPI-4 results into the
maximum throughput with the lowest latency.

Table VII shows the ratio of throughput of the pro-
posed MAE variants over CCM, GCM, OCB and over
Chacha20-poly1305 for different classes of Raspberry Pi
devices. The results show the advantage of the proposed
MAE variants over the optimized implementations of
CCM, GCM, OCB and Chacha20-poly1305. Note that
OpenSSL uses optimized assembly instructions to reduce
the execution time. Thus, if we make use of hardware
optimization for the proposed MAE variants, we could

achieve an even higher performance as compared to
CCM, GCM,OCB and Chacha20-poly1305.

When comparing the proposed variants against each
other, we obtained the results of Figure 6. We can see
that the first variant has a higher throughput compared
to the second variant. For N = 16, the first variant
achieves a higher throughput compared to the third one.
Also, when compared to the first variant, with RPI-0,
the second variant has a reduced throughput by a factor
of 30%, while the third variant has a higher throughput
by a factor of 13%, for N = 32. On RPI-3, and
when compared to the first variant, the throughput of
the second MAE variant is reduced by a factor of 38%,
while the third variant achieves a higher throughput by a
factor of 12%, for N = 32. On RPI-4, and as compared
to the first variant, the throughput of the second MAA
variant is reduced by a factor of 35%, while the third
variant achieves a higher throughput by a factor of 10%.
Regardless of the second variant’s overhead delay, all
variants outperform CCM, GCM, OCB and Chacha20-
poly1305 in terms of performance, as seen in Table VII.

C. Flexibility

The proposed MAE algorithms are designed to process
blocks with a variable length, N , which may be changed
based on the device restrictions and the application
requirements. With powerful devices, the value of N can
be increased to achieve a higher resistance to attacks.

D. Memory Consumption

The encryption and authentication processing of one
block requires the input block (N bytes), two sets of m
round keys (RK1 and RK2) for (2 × N × m) bytes,
and two permutations tables (π and SRK), each with
nb elements. The values of π vary between 0 and nb
and the values of SRK vary between 1 and m. We also
need two update permutation tables (π3 and π4) of nb
elements, and an update substitution table. Therefore, the
required memory consumption to encrypt-authenticate
one block, for the first variant or two blocks for the
second variant is (3 × 256 + 2 × m × N + 4 × nb)
bytes. For limited memory devices, we can use only three
permutations tables instead of four to reduce the required
memory consumption. This can be done by updating
π and SRK with the same update permutation table.
Moreover, substitution table S1 can be updated through
S2 and vice versa, S2 updated through S1. In such a case,
the required memory becomes (2× 256 + 2×m×N +
3×nb) bytes. When compared to AES, one substitution
table of 256 bytes is required, in addition to the input
key, and r round keys. Let us indicate that a higher value

17

(a) (b) (c)

Figure 5: Average throughput in bytes per second for 10,000 times, of the proposed variants for the input message
of bytes length versus N ranging from 16 to 64 on RPi-0 (a), RPi-3 (b), and RPI-4 (c).

Table VI: Throughput of the proposed MAE variants versus (CCM, GCM, OCB and Chacha20-poly1305), for N =
32.

RPI-Devices CCM GCM OCB Chacha20-poly1305 V1 V2 V3
Raspberry Pi0 5.0179e+06 6.846e+06 1.426e+07 1.422e+07 2.102e+07 1.469e+07 2.37e+07
Raspberry Pi3 1.073e+07 2.799e+07 2.862e+07 2.892e+07 4.753e+07 2.976e+07 5.287e+07
Raspberry Pi4 1.9218e+07 4.209e+07 5.625e+07 5.697e+07 1.08e+08 6.96e+07 1.18e+08

Table VII: Throughput ratio between the proposed MAE variants and (CCM, GCM, OCB and Chacha20-poly1305
), for N = 32.

Standard MAE MAE Variant Raspberry Pi0 Raspberry Pi3 Raspberry Pi4
CCM

First

4.19 4.427 5.62
GCM 3.07 1.7 2.567
OCB 1.4741 1.0302 1.662
Chacha20-poly1305 1.4782 1.0331 1.6667
CCM

Second

2.93 2.77 3.624
GCM 2.15 1.2 1.65
OCB 1.6607 1.04 1.847
Chacha20-poly1305 1.6435 1.03 1.83
CCM

Third

4.731 4.93 6.136
GCM 3.47 1.9 2.8
OCB 1.92 1.237 2.1
Chacha20-poly1305 1.89 1.22 2.07

(a) (b) (c)

Figure 6: Average throughput ratio for 10,000 times for the first proposed MAE variant with the second and third
MAE variants for the input message of bytes length versus N ranging from 16 to 64 on RPi-0 (a), RPi-3 (b), and
RPI-4 (c).

18

of N can be used if the employed devices possess more
memory. In the case of limited devices, smaller values of
m and N are preferable. Finally, N should be selected
to achieve a good balance between performance and
security level. The proposed schemes might require more
memory compared to standard cryptographic algorithms,
but this overhead is acceptable for certain devices and
can be reduced by decreasing the values of N and m or
by using only one substitution table instead of 2.

IX. CONCLUSIONS

Data security is a crucial requirement in IoT networks.
Given the large amount of data and the constraints of
some IoT devices, it is essential to design lightweight
security solutions. In this paper, we propose a new
approach for an MAE solution with three variants. The
solution consists of two phases, a pseudo-random block
selection, and a round function. It is based on the
dynamic key-dependent approach such that a dynamic
vector is produced for each new session, and used to
generate a set of cryptographic and update primitives.
The cryptographic primitives are updated for each new
input message using the update primitives. The variants
use simple cryptographic operations such as ”xor”, sub-
stitution and permutation. The first MAE variant works
with one data block at a time, whereas the second and
third MAE variants work with two at a time. The existing
MAE solutions require two passes, and employ cryp-
tographic algorithms that involve multiple rounds such
as CCM, GCM and other ones such as OCB requires
only one pass. The proposed approach outperforms these
MAE solutions; it is based on a single pass with one
round to provide the important security services of data
confidentiality, integrity, and source authentication. The
statistical test results confirmed that all three variants
exhibit high levels of randomness, uniformity, and sen-
sitivity, in addition to strong resistance to collision. The
proposed approach achieves an excellent optimization
between the security level and system performance. The
results of cryptanalysis confirmed that the proposed
MAE variants are resistant to different types of attacks.
The computational complexity and throughput were as-
sessed, and they were compared to the well-known MAE
algorithms, CCM, GCM, OCB and Chacha20-poly1305.
The results showed that the proposed MAE variants
outperform these two schemes, with lower execution
time and fewer required resources. For example, the
third MAE variant achieves a low execution time with a
reduction of at least 78.85% compared to CCM, 47.91
% compared to GCM, and close to 19 % reduction
compared to OCB and Chacha20-poly1305 schemes.
This was achieved by making use of common steps

for the message encryption and authentication processes.
On the other hand, the high security level was ensured
through the pseudo-random block ordering. Finally, the
characteristics and flexibility of the proposed MAE vari-
ants enable them to be adopted in emerging networks
and not just within the IoT paradigm. For future work,
we will work on the design of an efficient and robust
control access scheme for IoT devices.

ACKNOWLEDGMENT

This work has been funded by the EIPHI Graduate
School (contract “ANR-17-EURE-0002”).

REFERENCES

[1] C. Paar and J. Pelzl, Understanding Cryptography: A Textbook
for Students and Practitioners. Springer-Verlag New York Inc,
2010.

[2] J. Katz and Y. Lindell, Introduction to Modern Cryptography
(Chapman & Hall/Crc Cryptography and Network Security Se-
ries). Chapman & Hall/CRC, 2007.

[3] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook
of Applied Cryptography, 1st ed. Boca Raton, FL, USA: CRC
Press, Inc., 1996.

[4] M. A. Simplicio, B. T. De Oliveira, C. B. Margi, P. S. Barreto,
T. C. Carvalho, and M. Näslund, “Survey and comparison of
message authentication solutions on wireless sensor networks,”
Ad Hoc Networks, vol. 11, no. 3, pp. 1221–1236, 2013.

[5] J. Song, R. Poovendran, J. Lee, and T. Iwata, “The aes-cmac
algorithm,” Tech. Rep., 2006.

[6] M. J. Dworkin, “Sp 800-38b. recommendation for block cipher
modes of operation: The cmac mode for authentication,” 2005.

[7] M. Dworkin, “NIST SP 800-38A: recommendation for block
cipher modes of operation,” National Institute of Standards and
Technology (NIST), USA, 2001.

[8] K. Paterson, J. Foley, and D. McGrew, “Authenticated encryption
with aes-cbc and hmac-sha,” 2014.

[9] J. M. Turner, “The keyed-hash message authentication code
(hmac),” Federal Information Processing Standards Publication,
vol. 198, no. 1, 2008.

[10] D. McGrew and K. Igoe, “Aes-gcm authenticated encryption
in secure rtp (srtp),” draft-ietf-avtcore-srtp-aes-gcm-15 (work in
progress), 2015.

[11] W. Stallings, “The offset codebook (ocb) block cipher mode
of operation for authenticated encryption,” Cryptologia, vol. 42,
no. 2, pp. 135–145, 2018.

[12] F. De Santis, A. Schauer, and G. Sigl, “Chacha20-poly1305 au-
thenticated encryption for high-speed embedded iot applications,”
in Design, Automation Test in Europe Conference Exhibition
(DATE), 2017, 2017, pp. 692–697.

[13] P. Szalachowski, B. Ksiezopolski, and Z. Kotulski, “Cmac, ccm
and gcm/gmac: Advanced modes of operation of symmetric block
ciphers in wireless sensor networks,” Information Processing
Letters, vol. 110, no. 7, pp. 247–251, 2010.

[14] N. Doraswamy and D. Harkins, IPSec: the new security standard
for the Internet, intranets, and virtual private networks. Prentice
Hall Professional, 2003.

[15] D. Maimut and R. Reyhanitabar, “Authenticated encryption:
Toward next-generation algorithms,” Security & Privacy, IEEE,
vol. 12, no. 2, pp. 70–72, 2014.

[16] K. A. McKay, L. Bassham, M. S. Turan, and N. Mouha, “Report
on lightweight cryptography,” NIST DRAFT NISTIR, vol. 8114,
2016.

19

[17] A. Y. Poschmann, “Lightweight cryptography: cryptographic
engineering for a pervasive world,” in PH. D. THESIS. Citeseer,
2009.

[18] H. N. Noura, L. Sleem, M. Noura, M. M. Mansour, A. Chehab,
and R. Couturier, “A new efficient lightweight and secure image
cipher scheme,” Multimedia Tools and Applications, Sep 2017.

[19] H. N. Noura and D. Courousse, “Method of encryption
with dynamic diffusion and confusion layers,” Jun. 9 2016,
wO Patent App. PCT/EP2015/078,372. [Online]. Available:
https://www.google.com/patents/WO2016087520A1?cl=en

[20] H. N. Noura, A. Chehab, M. Noura, R. Couturier, and M. M.
Mansour, “Lightweight, dynamic and efficient image encryption
scheme,” Multimedia Tools and Applications, pp. 1–35, 2018.

[21] H. Noura, A. Chehab, L. Sleem, M. Noura, R. Couturier, and
M. M. Mansour, “One round cipher algorithm for multimedia
IoT devices,” Multimedia tools and applications, vol. 77, no. 14,
pp. 18 383–18 413, 2018.

[22] H. N. Noura, M. Noura, A. Chehab, M. M. Mansour, and
R. Couturier, “Efficient and secure cipher scheme for multimedia
contents,” Multimedia Tools and Applications, pp. 1–30, 2018.

[23] R. Melki, H. N. Noura, M. M. Mansour, and A. Chehab, “An
efficient ofdm-based encryption scheme using a dynamic key
approach,” IEEE Internet of Things Journal, 2018.

[24] H. Soroush, P. M. Irey IV, G. Pardo-Castellote, and S. Canup,
“Next-generation cytbersecurity for advanced real-time dis-
tributed systems,” 2015.

[25] T. Mizoguchi and Y. Ito, “Effect of qos degradation caused by
6to4 and ipsec on qoe for web services,” in Consumer Electronics
(GCCE), 2014 IEEE 3rd Global Conference on. IEEE, 2014,
pp. 5–9.

[26] A. Nieto and J. Lopez, “Analysis and taxonomy of security/qos
tradeoff solutions for the future internet,” Security and Commu-
nication Networks, vol. 7, no. 12, pp. 2778–2803, 2014.

[27] H. N. Noura, A. Chehab, and R. Couturier, “Efficient & secure
cipher scheme with dynamic key-dependent mode of operation,”
Signal Processing: Image Communication, vol. 78, pp. 448 – 464,
2019.

[28] H. N. Noura, O. Salman, R. Couturier, and A. Chehab, “Novel
one round message authentication scheme for constrained IoT
devices,” Journal of Ambient Intelligence and Humanized Com-
puting, pp. 1–17, 2021.

[29] Z. Fawaz, H. N. Noura, and A. Mostefaoui, “An efficient and
secure cipher scheme for images confidentiality preservation,”
Signal Processing: Image Communication, vol. 42, pp. 90–108,
2016.

[30] P. Zhang, Y. Jiang, C. Lin, Y. Fan, and X. Shen, “P-coding: secure
network coding against eavesdropping attacks,” in INFOCOM,
2010 Proceedings IEEE. IEEE, 2010, pp. 1–9.

[31] L. Pradeep and A. Bhattacharjya, “Random key and key de-
pendent s-box generation for AES cipher to overcome known
attacks,” in International Symposium on Security in Computing
and Communication. Springer, 2013, pp. 63–69.

[32] I. Damgård, “A design principle for hash functions,” in Proceed-
ings of the 9th Annual International Cryptology Conference on
Advances in Cryptology, ser. CRYPTO ’89. London, UK, UK:
Springer-Verlag, 1990, pp. 416–427.

[33] R. C. Merkle, “A certified digital signature,” in Proceedings on
Advances in cryptology, ser. CRYPTO ’89. New York, NY, USA:
Springer-Verlag New York, Inc., 1989, pp. 218–238. [Online].
Available: http://dl.acm.org/citation.cfm?id=118209.118230

[34] W. Stallings, Cryptography and network security: principles and
practice. Pearson Upper Saddle River, 2017.

[35] A. Langley, W. Chang, N. Mavrogiannopoulos, J. Strombergson,
and S. Josefsson, “ChaCha20-Poly1305 cipher suites for transport
layer security (tls),” RFC 7905, no. 10, 2016.

[36] J. A. Yaacoub, M. Noura, H. N. Noura, O. Salman, E. Yaacoub,
R. Couturier, and A. Chehab, “Securing internet of medical
things systems: Limitations, issues and recommendations,”

Future Gener. Comput. Syst., vol. 105, pp. 581–606, 2020.
[Online]. Available: https://doi.org/10.1016/j.future.2019.12.028

[37] J. A. Yaacoub, O. Salman, H. N. Noura, N. Kaaniche, A. Chehab,
and M. Malli, “Cyber-physical systems security: Limitations,
issues and future trends,” Microprocess. Microsystems, vol. 77,
p. 103201, 2020. [Online]. Available: https://doi.org/10.1016/j.
micpro.2020.103201

[38] C. Wang, D. Wang, Y. Tu, G. Xu, and H. Wang, “Understanding
node capture attacks in user authentication schemes for wireless
sensor networks,” IEEE Transactions on Dependable and Secure
Computing, pp. 1–1, 2020.

[39] J. Wei, X. Chen, X. Huang, X. Hu, and W. Susilo, “RS-HABE:
Revocable-storage and hierarchical attribute-based access scheme
for secure sharing of e-health records in public cloud,” IEEE
Transactions on Dependable and Secure Computing, vol. 18,
no. 5, pp. 2301–2315, 2021.

[40] D. Wang, H. Cheng, D. He, and P. Wang, “On the chal-
lenges in designing identity-based privacy-preserving authentica-
tion schemes for mobile devices,” IEEE Systems Journal, vol. 12,
no. 1, pp. 916–925, 2018.

[41] Y. Chen, H. Wen, H. Song, S. Chen, F. Xie, Q. Yang, and L. Hu,
“Lightweight one-time password authentication scheme based on
radio-frequency fingerprinting,” IET Communications, vol. 12,
no. 12, pp. 1477–1484, 2018.

[42] S. Chen, H. Wen, J. Wu, A. Xu, Y. Jiang, H. Song, and
Y. Chen, “Radio frequency fingerprint-based intelligent mobile
edge computing for internet of things authentication,” Sensors,
vol. 19, no. 16, p. 3610, 2019.

[43] F. Xie, H. Wen, Y. Li, S. Chen, L. Hu, Y. Chen, and H. Song, “Op-
timized coherent integration-based radio frequency fingerprinting
in internet of things,” IEEE Internet of Things Journal, vol. 5,
no. 5, pp. 3967–3977, 2018.

[44] S. Qiu, D. Wang, G. Xu, and S. Kumari, “Practical and provably
secure three-factor authentication protocol based on extended
chaotic-maps for mobile lightweight devices,” IEEE Transactions
on Dependable and Secure Computing, 2020.

[45] C. Wang, D. Wang, G. Xu, and D. He, “Efficient privacy-
preserving user authentication scheme with forward secrecy for
industry 4.0,” Science China Information Sciences, vol. 65, no. 1,
pp. 1–15, 2022.

[46] C. Paar and J. Pelzl, Understanding cryptography: a textbook for
students and practitioners. Springer Science & Business Media,
2009.

[47] P. L’Ecuyer and R. J. Simard, “Testu01: A c library for
empirical testing of random number generators,” ACM Trans.
Math. Softw, vol. 33, no. 4, pp. 22:1–22:40, 2007. [Online].
Available: http://doi.acm.org/10.1145/1268776.1268777

[48] J. D.cook, “Testing RNGs with practrand: Xoroshiro, xor-
shift, mt, pcg,” https://www.johndcook.com/blog/2017/08/14/
testing-rngs-with-practrand/, August 2017.

[49] X. Wang and H. Yu, “How to break md5 and other hash
functions,” in In EUROCRYPT. Springer-Verlag, 2005.

[50] A. Akhavan, A. Samsudin, and A. Akhshani, “A novel parallel
hash function based on 3d chaotic map,” EURASIP Journal on
Advances in Signal Processing, vol. 2013, no. 1, pp. 1–12, 2013.

[51] B. Yang, Z. Li, S. Zheng, and Y. Yang, “Hash function construc-
tion based on coupled map lattice for communication security,”
in Global Mobile Congress 2009, Oct 2009, pp. 1–7.

[52] M. Amin, O. S. Faragallah, and A. A. A. El-Latif, “Chaos-based
hash function (cbhf) for cryptographic applications,” Chaos,
Solitons & Fractals, vol. 42, no. 2, pp. 767–772, 2009.

[53] A. Kanso and M. Ghebleh, “A structure-based chaotic hashing
scheme,” Nonlinear Dynamics, vol. 81, no. 1-2, pp. 27–40, 2015.

[54] J. Daemen and V. Rijmen, The design of Rijndael: AES-the
advanced encryption standard. Springer Science & Business
Media, 2013.

20

