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A B S T R A C T 

In the paper, a novel self-learning energy management strategy (EMS) is proposed for fuel cell hybrid 

electric vehicles (FCHEV) to achieve the hydrogen saving and maintain the battery operation. In the EMS, 

it is proposed to approximate the EMS policy function with fuzzy inference system (FIS) and learn the 

policy parameters through policy gradient reinforcement learning (PGRL). Thus, a so-called Fuzzy 

REINFORCE algorithm is first proposed and studied for EMS problem in the paper. Fuzzy REINFORCE 

is a model-free method that the EMS agent can learn itself through interactions with environment, which 

makes it independent of model accuracy, prior knowledge, and expert experience. Meanwhile, to stabilize 

the training process, a fuzzy baseline function is adopted to approximate the value function based on FIS 

without affecting the policy gradient direction. Moreover, the drawbacks of traditional reinforcement 

learning such as high computation burden, long convergence time, can also be overcome. The effectiveness 

of the proposed methods were verified by Hardware-in-Loop experiments. The adaptability of the proposed 

method to the changes  of driving conditions and system states is also verified. 
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1. Introduction 

In recent years, under the dual pressure of energy crisis and low-carbon 

requirements, the traditional fossil fuel automobile industry is facing a 

severe situation. Hydrogen energy, due to its environment friendly nature, 

large reserves and diverse production routes,  has attracted more and more 

attention from various countries. Accordingly, fuel cell hybrid electric 

vehicles (FCHEV) are attracting increasing attention because of their 

environment friendly nature and competitive vehicle performance [1]. In 

the control framework of FCHEV, energy management strategy (EMS) is 

a key element to make the whole powertrain system work more efficiently 

by adjusting the power distribution among different energy sources. 

EMS methods can be generally classified into three categories: Rule 

based, optimal control based, and learning based methods. Rule-based EMS 

establishes rules based on the characteristics of the concerned system. 

Among different rule based EMS methods, fuzzy logic rule based EMS is 

one of the most attractive due to its practical effectiveness [2]. However, 

the design of the EMS rules highly rely on on expert experience in most 

cases [3]. 

Energy management problems can be regarded as a constrained 

horizontal sequence optimization problem [4]. Among various resolution 

methods, dynamic programming (DP) based EMS can provide a numerical 

global optimal solution [5]. However, the vehicle operating condition and 

model have to be known in prior to implement DP based EMS which is 

unrealistic in practice. Stochastic dynamic programming (SDP) [6], 

Pontryagin's minimum principle (PMP) [7] and equivalent consumption 

minimization strategy (ECMS) [8] have also been proposed to solve the 

optimization problem. Using these methods, quasi-optimal solution can be 

obtained via real-time implementation. However, accurate system models 

and the information of future driving condition are needed to achieve high 

performance [9][10].  

Reinforcement learning (RL), as a kind of machine learning, is attracting 

increasing attention in EMS development [11]. When applying RL, the 

solution of a constrained sequential decision optimization problem can be 

learned progressively by interacting with the environment without relying 

on the system model and prior knowledge of driving condition. Thanks to 

the property, RL-based methods have potential to adapt to environment 

changes, such as the model degradation of energy sourses and the variations 

of vehicle driving conditions or drivers’ behivor. Q-Learning, as a basic 

value-based RL method, has been proposed in various hybrid vehicles to 

solve energy management problems [12][13]. The main drawback of Q-

Learning based methods is that it only works for discrete action space and 
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state space while EMS needs to be implemented in continuous action and 

state spaces.  

For continuous space problems in reinforcement learning, its solution 

usually involves a function approximation to approximate value function 

or/and policy function. The used approximative function can be linear or 

nonlinear. The linear function approximation is realized through a linear 

combination of the extracted state features. For instance, polynomial, 

Fourier basis, corse coding and tile coding are commonly used functions to 

extract state features [14] [15].  

Nonlinear function approximators such as neural networks and 

Gaussian functions generally have better generalization capabilities and 

adapt to more scenarios. A Gaussian based non‑linear function 

approximation for RL is proposed in [16], which solves the information loss 

problem of linear function approximation. Deep neural networks have been 

extensively applied as a function approximation method for reinfoecement 

learning. A large number of deep reinforcement learning (DRL) algorithms 

have been developed and researched rapidly [17]. For EMS problems, DRL 

such as Deep Q-Networks (DQN) [18] and Deep Deterministic Policy 

Gradient (DDPG) [19] have been proposed and achieved interesting results 

[20]. However, the nonlinear function approximation based on deep neural 

networks has drawbacks, such as high computational complexity, 

hyperparameter tuning difficulty, hurdling its practical applications [21]. 

Fuzzy inference system (FIS) is a system that defines input, output and 

state variables on fuzzy sets. It captures the ambiguity of human brain 

thinking and can imitate human comprehensive inference to deal with the 

problems that are difficult to solve by conventional mathematical 

methods[22]. Similar to neural networks, FIS also has good generalization 

ability and function approximation ability. The first application of the FIS 

function approximator in reinforcement learning is fuzzy Q-learning 

(FQL), in which the state-action value function is approximated using FIS 

engine[23]. In energy demain, FQL are applied to solve the optial problem 

of energy management [24][25], to reduce energy loss, improve efficiency 

and economy. In our previous work, a FQL-based EMS for a fuel cell 

hybrid electric vehicle is also proposed in [26] to prolong the lifetime of 

fuel cells.  Even low computation requirement has been justified in this 

work, the inherent drawbacks of Q-Learning, such as value overestimation 

and large training variance,are not well addressed.  

To overcome the drawbacks of FQL, FIS can also be used as the policy 

function approximator to form a fuzzy policy gradient (FPG), and faster 

and smoother convergency can often be achieved in policy gradient 

learning paradigm [27]. Monte-Carlo Policy Gradient, referred as 

REINFORCE, is the a policy gradient RL method that can be used to solve 

the continuous state discrete action space. Meanwhile, in the learning 

process, the agent can explore the action space and avoid getting stuck in a 

local optimum by making small perturbations near the target action [28].  

In the paper, a fuzzy REINFORCE-based EMS method is proposed for 

FCHEV, which apply FIS to approxiamtare policy function in Monte-Carlo 

Policy Gradient. Moreover, to suppress of the training variance of 

REINFORE, a fuzzy basline function [29] is also used in the paper. Thanks 

to the model-free characteristic of the proposed methods, the EMS 

controller does not require an accurate system model. The optimal control 

can be achieved by interacting with the environment . In addition, the 

learned fuzzy REINFORCE based EMS also demonstrates satisfactory 

robustness to the unknown external input and the different system states. 

The main contributions of the paper are thus as follows: 

1) Fuzzy REINFORCE, as a model-free learning based EMS, is 

initially proposed to tackle energy management problems for 

FCHEVs.  

2) Fuzzy baseline function is proposed to suppress the training 

variance of Fuzzy REINFORE; 

3) The adaptability of the propose methods to the variation of driving 

conditions and system states are justified. 

4) The proposed Fuzzy REINFORE has been implemented 

successfully in a single-chip microcomputer and in real-time, 

which justifies  its low computational requirements. 

The paper is organized as follows: Section 2 introduces the modeling of 

FCHEV energy system, including fuel cells, batteries and vehicle kinetic 

models. Section 3 describes the principle of the proposed Fuzzy 

REINFORCE based energy management strategy. Section 4 shows the 

analysis of the simulation and Hardware-in-Loop experiment results. The 

paper is finally concluded in Section 5. 

2. Modeling of FCHEV Energy System 

The studied energy system of the FCHEV is shown in Fig. 1. Its power 

source consists of a fuel cell (FC) system and a battery system. Due to the 

slow dynamic response of the FC, the battery is mainly used to absorb the 

power surplus and provide instantaneous high-power output. They all share 

the DC bus through the DC/DC converter, which is used to provide the 

power required by the load or to absorb the load energy.  
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Fig. 1 - Energy system for fuel cell hybrid electric vehicle. 

The specific model of each part will be analyzed in the sequel. 

2.1. Fuel cells model 

Proton exchange membrane fuel cell (PEMFC) is a low-temperature 

fuel cell, which is an electrochemical device that uses hydrogen as fuel and 

polymer proton exchange membrane as the conductive medium. The 

product is only water.  The single-cell voltage 𝑉𝑐𝑒𝑙𝑙 of the PEMFC stack can 

be expressed as [30]: 
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  (1) 

where 𝐸0 = 1.23 𝑉 is the open-circuit voltage of fuel cell reaction at 

standard atmospheric pressure, 𝑅 = 8.3145 is the gas constant, 𝑇 =

333.15 𝐾  is the fuel cell temperature, ∆𝑇 = 𝑇 − 273.15 = 60K, 𝑛 = 2, 

𝐹 = 96485 is Faraday constant, 𝛼 = 1 is the transfer coefficient, 𝑃 is the 

local pressure of the reactants and products. 𝑖𝑓𝑐 is the current density. 

𝑖𝑙𝑜𝑠𝑠 = 2𝑚𝐴/𝑐𝑚2 is the current loss, 𝑖0 = 0.003𝑚𝐴/𝑐𝑚2 is the exchange 

current density. 𝐼𝑙𝑖𝑚 = 1.6𝐴/𝑐𝑚2 is the limiting current density. 𝑅𝑜ℎ𝑚 =

0.11Ω is the fuel cell resistance.  
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For the FC stack, the model is as follows: 

 
fc cell cell

fc fc fc

V n V

I A i

= 

= 
    (2) 

where 𝑛𝑐𝑒𝑙𝑙 is the number of single FCs, and 𝐴𝑓𝑐  is the active area of the FC 

electrode plate. Then the hydrogen consumption model of the FC stack can 

be derived as follows [31]: 
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where �̇�𝐻2
 is the rate at which hydrogen is consumed, and 𝑀𝐻2

 is the molar 

mass of hydrogen. 𝑃𝑓𝑐 is the output power of FCs. The converter model will 

only be concerned about its power characteristics. The efficiency model of 

the DC/DC converter for FCs is that: 

 /fc fc dc auxP P P= +   (4) 

where 𝑃𝑓𝑐
′  is the output power of the FC system. It is considered that 𝑃𝑓𝑐

′  is 

equal to the power command from the control strategy. 𝜂𝑑𝑐 is the efficiency 

of DC/DC converter for fuel cells. 𝑃𝑎𝑢𝑥  is the auxiliary system, and it 

includes the air compressor motor power, water-heat management system 

power and other auxiliary control systems power. Then the auxiliary system 

power model is as follows: 

 2

60
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=
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where 𝑇𝑎𝑖𝑟  and 𝑁𝑎𝑖𝑟  are the torque and speed of the air compressor, 

respectively. The power of the air compressor is related to the operating 

power of the fuel cell. When the power of the fuel cell is small, the air 

compressor does not work. When the power of the fuel cell is large, the 

required power of the air compressor increases. For the other parts in the 

auxiliary system are consider as a constant current load 𝐼𝑎𝑢𝑥. 
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Fig. 2 - The output voltage and efficiency of fuel cells 

The model parameters of fuel cell vehicles refer to the Argonne National 

Lab (ANL) 's test report for Toyota Mirai I [32]. In the model, 𝑛𝑐𝑒𝑙𝑙 = 370, 

the effective area of the electrode is 𝐴𝑓𝑐 = 282 𝑐𝑚2, the pressure of anode 

hydrogen is 50 kPa over atmosphere pressure, and cathode oxygen is 

obtained from the air by air compressor . As shown in Fig. 2 when the 

current is 439.8 A, the FC power reaches the max power of 117.8 kW and 

the efficiency is 48.57%; When the current is 63.2 A, the FC efficiency 

reaches the max efficiency of 55.21%, and the power is 19.9 kW. The 

parameters of the fuel cell model are fitted to match Mirai I, more details 

of Mirai I vehicle data can be found in [32]. 

2.2. Battery model 

The battery cell is modeled using a simple one-order circuit model [33]. 

The model of the battery pack is realized in series and parallel according to 

the single battery cell model. The open circuit voltage 𝑉𝑜𝑐 and equivalent 

resistance 𝑅𝑏𝑎𝑡 of the battery pack can be expressed as:  
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where 𝑉𝑜𝑐,𝑐𝑒𝑙𝑙 is the open circuit voltage of the single cell, 𝑅𝑐𝑒𝑙𝑙 is the cell 

equivalent resistance, 𝑁𝑆  is the number of series cells, and 𝑁𝑃  is the parallel 

cells of the battery pack. For the single cell battery, 𝑉𝑜𝑐,𝑐𝑒𝑙𝑙  and 𝑅𝑐𝑒𝑙𝑙 are 

dependent on the state of charge (SOC) of the battery according a map 

functions shown in Fig. 3 (a). The output current 𝐼𝑏𝑎𝑡 of the battery pack 

and the evolution of the battery state of charge 𝑆𝑂𝐶𝑏𝑎𝑡 are characterized by 

the following equations. 
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When 𝐼𝑏𝑎𝑡 > 0, the battery is discharged, and when 𝐼𝑏𝑎𝑡 < 0, the battery 

is charged. 𝑄𝑏𝑎𝑡 is the battery capacity. Considering the power loss of the 

battery-side DC/DC converter, the battery output power can be expressed 

as: 

 
( 0)

/ ( 0)

bat discharge bat

bat

bat charge bat

P P
P

P P





 
 = 


  (8) 

where 𝑃𝑏𝑎𝑡
′  is the output power of the bi-directional converter, and its 

charge efficiency is considered as constant value of 𝜂𝑐ℎ𝑎𝑟𝑔𝑒 = 95% and 

discharge effiency is similar with 𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 94.44%. In our application, 

the capacity of the studied battery is set as 6.6 Ah, and the standard voltage 

is 244.8V, which is also referred to the parameters of Toyota Mirai I 

reported by ANL [32]. 
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Fig. 3 - The characteristics of the batteries 

2.3. Vehicle dynamics model 

Supposing a vehicle is moving forward at velocity 𝑣 on a road with 

gradient 𝜃, its dynamic function is: 
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where 𝐹𝑚  represents the driving force provided by the motor, 𝐹𝑎𝑖𝑟 is air 

resistance, 𝐹𝑓  is rolling resistance, 𝐹𝑠 denotes slope resistance and 𝐹𝑎 

represents acceleration resistance. 𝜌 and 𝐶𝐷  represent air density and air 
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resistance coefficient respectively. 𝐴  represents the windward surface 

volume of the vehicle body, and 𝑣  represents the vehicle velocity.  𝑚 

represents the vehicle mass. 𝐺 = 𝑚𝑔 represents the gravity of the vehicle, 

and 𝑓 represents the sliding resistance coefficient.  

The required power for the vehicle is: 

 /veh m mP F v =      (10) 

where, 𝑃𝑣𝑒ℎ represents the required power of the motor, 𝜂𝑚 represents the 

transmission efficiency of the electric machine. According to the power 

balance, the required power of the motor is provided by the fuel cell and 

battery: 

 
veh fc batP P P = +     (11) 

For the studied vehicle, the paremetes are show in Table 1, and the total 

mechanical transmission efficiency is set as a contant value 90%. The 

parameters of the vehicle is designed to match Toyota Mirai I FCHEV 

reported by ANL [32]. 

Table 1 – Vehicle parameters 

Vehicle Parameters 

Mass 2500𝑘𝑔 

Windward area 1.8 𝑚2 

Air density 1.25𝑘𝑔/𝑚3 

Air resistance coefficient 0.3𝐶𝑑 

Rolling friction coefficient 0.01 

Gravity acceleration 9.8m/s2 

 

3. Fuzzy Policy Gradient EMS 

3.1. EMS problem formulation 

The objective of EMS is to optimize vehicle performance by dispatching 

instantaneously the demand power among different energy sources. In this 

work, the objective is to minimize fuel (hydrogen) consumption while 

maintaining the battery SOC. The objective function is formulated 

mathematically as the integral of instantaneous reward: 
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where 𝑟(𝑡) is the instant reward, and it contains two parts. The first part is 

about the hydrogen consumpation rate �̇�𝐻2
(𝑡), and the second part is to 

maintain the SOC of batteries in a safety range to make its long operation, 

and 𝑆𝑂𝐶𝑟𝑒𝑓  is the reference of SOC corresponding to the battery 

characteristics. The EMS is dedicated to determining 𝑃𝑓𝑐(𝑡), 𝑡 ∈ [0, 𝑇] 

using the observables [𝑃𝑣𝑒ℎ(𝑡), 𝑆𝑂𝐶𝑏𝑎𝑡(𝑡)] to achieve the maximum of the 

objective function 𝐽.  

3.2. Fuzzy Interrace System for the Energy Management Problem of 

FCHEV 

Fuzzy logic imitates the human brain's uncertain concept judgment and 

reasoning thinking. A basic FIS consists of four parts: fuzzifier, defuzzifier, 

inference engine, and knowledge base. 

Fuzzifier
Inference

Engine
Defuzzifier

Machine 

Learning

Fuzzy 

Input

Fuzzy 

OutputCrisp 

Input

Crisp 

Output

Knowledge Base

Data 

Base

Rule 

Base

Or

 

Fig. 4 - Fuzzy Interrace System scheme  

The control based on FIS is an effective and widely used method to deal 

with energy management problems. In our application, the EMS deals with 

a multi-input single-output FIS control system. As shown in Fig. 4, the crisp 

input is the system state 𝒔 = [𝑃𝑣𝑒ℎ , 𝑆𝑂𝐶𝑏𝑎𝑡], and the crisp output is the 

action of the control system 𝒂 = [𝑃𝑓𝑐]. 

Table 2 - Vehicle Required Power Fuzzy Table 

𝑷𝒗𝒆𝒉 Fuzzy sets NH NM NL ZO PL PM PH 

Typical value (kW) -50 -20 -10 0 10 20 50 

Table 3 - Batteries System Power Fuzzy Table 

𝑺𝑶𝑪𝒃𝒂𝒕 Fuzzy sets VL L M H VH 

Typical value (%) 20 40 50 60 80 

With fuzzifier, the fuzzy state 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑚]𝑇of the energy system 

can be derived by predefined membership functions of state variables in 𝒔. 

The meaning of the fuzzy sets [“NH”, “NM”, “NL”, “ZO”, “PL”, “PM”, 

“PH”] for 𝑃𝑣𝑒ℎ are “Negative High”, “Negative Middle”, “Negative Low”, 

“Zero”, “Positive Low”, “Positive Middle”, and “Positive High”. As shown 

in Fig.5(a), the membership functions of "NH" and "PH" adopt Z-shape and 

S-shape, while other membership functions adopt triangular shape, so that 

the power points that near the boundary values of membership functions -

50kW and 50kW will have higher weights. This will help the EMS to be 

more sensitive to the input state boundary value when making strategic 

decisions, to avoid actions that are out of bounds and limited. The triangle 

functions are used due to their simplicity. 

For another state 𝑆𝑂𝐶𝑏𝑎𝑡 , the meaning of [“VL”, “L”, “M”, “H”, “VH”] are 

“Very Low”, “Low”, “Middle”, “High”, and “Very High”. Their 

membership functions are mainly triangular, but changes are made to the 

membership functions of "VL" and "VH". As shown in Fig.5(b), the 

membership functions are mainly triangular, but the membership functions 
of "VL" and "VH" are changed a little. The weights of these two 

membership functions are 1 in the state where the SOC is less than 20% or 

greater than 80%. This is because we set the SOC range of [20%, 80%] to 

be safe, and for the unsafe range, giving the highest weight 1 for battery 

safety. Similarly, the triangle functions are used due to their simplicity， 

and non-equal membership function values were used. The reason why 

50% is the center is because the set battery SOC reference value is 50%, 

and it is located at the midpoint of the SOC physical range [0%, 100%], so 

higher fuzzy accuracy is required.  
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(a) Membership of 𝑃𝑣𝑒ℎ (b) Membership of 𝑆𝑂𝐶𝑏𝑎𝑡 

Fig. 5 - Membership functions of state variables 

The membership functions of input states are shown in Fig. 5. Then the 

two crisp input states can be transformed into fuzzy states 𝒙 with fuzzy 

logic operation “AND” of two sets of membership functions. The number 

of states in 𝒙 is identical to the number of rules. The membership functions 

of 𝑃𝑣𝑒ℎ  and 𝑆𝑂𝐶𝑏𝑎𝑡  are 7 and 5 respectively. Hence, the dimensional 

number of fuzzy states 𝒙 is 𝑚 = 35. 

Traditionally, fuzzy rules can be constructed using experienced data 

and/or engineering experience. The logic rules are usually formed like: 

IF 𝑃𝑣𝑒ℎ  is “ Positive High” (PH), AND 𝑆𝑂𝐶𝑏𝑎𝑡  is “Very Low”(VL), 

THEN 𝑃𝑓𝑐 is “Super High” (SH).  

The inference engine deduces then the fuzzy output based on each rule. 

The control action is calculated by a defuzzifier combining all fuzzy 

outputs. For instance, the calculation can be realized using the weighted 

average defuzzification method: 

 1
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u 



=

=

=
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  (13) 

where 𝜇𝑖  is the 𝑖𝑡ℎ  weight for the output fuzzy action sets, 𝑢𝑖  is the 𝑖𝑡ℎ 

compoment of the typical value vector 𝑼, which is related to each fuzzy set 

of 𝑃𝑓𝑐, and 𝑛 = 8 is the number of fuzzy action. Their values in this study 

are shown in Table 4. Here, a non-equidistant method is used for the 

division of fuzzy sets, and the state with lower power is divided more finely. 

Table 4 - Fuel Cells System Power Fuzzy Table 

𝑷𝒇𝒄 Fuzzy Sets SL SL VL L M H VL SH 

Typical value (kW) 0 1 2 5 10 20 50 100 

In traditional FIS, the performance of the fuzzy logic controller is 

limited by the designed rules due to the shortage of data and experience. In 

this work, policy gradient reinforcement learning is employed to explore 

the rules automatically. Combining fuzzy logic technology and 

reinforcement learning will break the empirical performance limits and be 

able to adapt to model changes such as fuel cell degradation. 

Agent Enviroment

Action at

State st

Next State st+1

Reward rt+1

 

Fig. 6 - Reinforcement Learning Principle 

3.3. REINFORCE: Monte-Carlo Policy Gradient 

Reinforcement Learning (RL) is a type of machine learning that which 

the agent takes actions through interacting with the environment for 

maximum cumulative rewards [34] (see Fig. 6). As a result, a sequence 

[𝒔0, 𝒂0, 𝑟1 , 𝒔1, 𝒂1 , 𝑟2 , 𝒔2 … ]  can be obtained during the learning process. 

𝒔𝑡 , 𝒂𝑡  denote respectively the state, action and reward 𝑟𝑡+1  denotes the 

instantaneous reword between instant 𝑡 and 𝑡 + 1. 

Policy Gradient (PG) Reinforcement Learning is one of the main class 

methods of reinforcement learning. In policy gradient, the policy can be 

parameterized as a stochastic function  𝜋𝜃(𝒂|𝒔, 𝜽)  which represents the 

probability of taking action 𝒂 in a given state 𝒔. 𝜽 is the parameter of the 

policy function. The goal is to adjust 𝜽  to maximize the expected 

accumulated reward or return denoted by 𝐺(𝜏), expressed by the formula: 

  
~

( ) ( )J G



 

 = E   (14) 

where 𝜏 = ⟦0, 𝑇 − 1⟧ means a complete time sequence from the initial state 

to the terminal state in each episode, and 𝜏~𝜋θ means that we have different 

time sequence 𝜏 due to the policy 𝜋θ is a stochastic policy. In theory, it is 

necessary to generate different trajectories t through the interaction between 

the agent and the environment, and then calculate the expected value of the 

objective function once by calculating the average value of the cumulative 

rewards of multiple trajectories [35], which will cost a lot of computation. 

In the paper, it is propoed to chose Monte-Carlo Policy Gradient 

(MCPG), also called REINFORCE as the PG method for two reasons: 1) It 

does not require additional estimation of the value function which facilitates 

the configuration and training of the algorithm; 2) Monte-Carlo is an 

unbiased estimation method for 𝔼
𝜏~𝜋θ

[𝐺(𝜏)] [35]. Thus, function 𝐺(𝜏) can 

be connected with the discrete form of EMS objective function 𝐽  by 

introducing discounted function as: 

 
2 1 1

1 2 3

1

0

T
T i

T i

i

G r r r r r   − −

=

= + + + + =   (15) 

where 𝛾  is a discount factor that is highly close to 1, and 𝐺0  is the 

discounted accumulative reward from the initial state of time 𝑡 = 0 under 

the trajectory 𝜏 . Usually, for maximization problems, we can use the 

gradient ascent algorithm to find the maximum value. 

 * ( )θ θθ θ J = + 
   (16) 

To optimize the parameters step by step, we need to get 𝛻𝜃𝐽(𝜋𝜃), the 

gradient of the final reward function 𝐽(𝜋𝜃) with respect to 𝜃, which is the 

policy gradient. 
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  (17) 

where 𝑃(𝜏|𝜃) is the product of the probabilities at each time step 𝑡 in a 

trajectory 𝜏 , and the compact expression ln 𝑃 (𝜏|𝜃)  is used for the 

fractional vector 
𝛻𝜃 𝑃(𝜏|𝜃)

𝑃(𝜏|𝜃)
. With further derivation according to the 

maximum likelihood method, we have the basic theory of policy gradient 

[14]: 

 
1

0~
)( ) ln ( )( |

θ

θ θ θ θ
a st

T

t tGJ
 

  
+

=
 =
 

 E   (18) 

In this case, 𝐺(𝜏)  represents the discount rewards for the entire 

trajectory of each episode. For each step here is: 

 1

1 1

1

T
i

t i t t

i t

G r r G −

+ +

= +

= = +   (19) 

Therefore, to update parameters for each step, (18) can be rewritten as 

follows: 

 
, ~

( ) ln ( | )
θ

θ θ θ θ
a s

t

t
s

t tJ G
 

     E   (20) 

where ∝ means a proportional relationship between two sides. Since the 

policy gradient only needs to be guaranteed to be in the same direction as 

the gradient, the scaling factor will be included in 𝛼. In this way, policy 

parameters can be updated step by step as follows according to (16): 
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 : ln ( | )θ θθ θ a stt t

tG = +    (21) 

where 𝜽 is the update result of the last episode parameter at step 0. The 

update method is the back-to-front method of the gradient and reward 

estimation from the current state to the terminal state in each trajectory 𝑡 =

𝑇 − 1, 𝑇 − 2, … ,1,0.  

Traditional REINFORCE is designed for a discrete and stochastic action 

application. In our case, the algorithm should be constructed with 

continuous 𝒂 and 𝒔. 

3.4. Fuzzy REINFORCE: a Policy Gradient Method with Function 

Approximation 

In the paper, a novel fuzzy policy gradient method named Fuzzy 

REINFORCE is proposed. In this method, fuzzy logic is used to construct 

the policy function. The proposed fuzzy policy function mainly consists of 

a fuzzifier, linear process, soft-max function and defuzzifier as shown in 

Fig. 7. 
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Fig. 7 - The proposed Fuzzy REINFORCE scheme 

In the fuzzifier, the state variable s is projected to x as mentioned in 

Section 3.2. Then, from fuzzy states to action preferences, a linear process 

is integrated as: 

 ( , )h x θ θ x= •
  (22) 

where 𝒉 = [ℎ1, ℎ2, … ℎ𝑛]𝑇  are action preferences. The dimension of 𝜽 ∈

𝑹𝒎×𝒏 depends on the fuzzy state 𝒙 and the action preference 𝒉 as shown in 

Fig. 7. The actions with higher preferences in each state also have higher 

probabilities of being chosen. 

To choose an action, the stochastic policy for each typical action vector 

𝑼 = {𝑢1 , 𝑢2, … , 𝑢𝑛} is chosen as an exponential soft-max function.  
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where 𝜋𝜃(𝑢𝑖|𝒙𝑡 , 𝜽)  is the target policy for 𝑢𝑖 , and ℎ𝑗  reperesents 𝑗𝑡ℎ 

anction preference. The stochastic policy we use is an exponential soft-max 

function. This is because soft-max has a compact form in the derivation 

involving logarithms, which facilitates the calculation of the inverse 

gradient in our algorithm. The gradient term in (20) can be deduced as [14]: 
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  (24) 

where 𝜃𝑗 ∈ 𝑹𝒎 is the parameter vector of 𝜽, which is connected to the 𝑖𝑡ℎ 

action preference ℎ𝑗 as shown in Fig. 7. In the fuzzy policy gradient RL, the 

probability for each fuzzy action set can be obtained with policy 

𝜋θ(𝒂𝑡|𝒙𝑡 ,θ) in (23). A common way is to select the action with the greatest 

probability as the output. However, this approach requires the action space 

to be discrete. In our application, the action space is continuous. To tackle 

the issue, the probability corresponding to an action set can also be seen as 

the weight of the action. Denoting weight vector corresponding to each 

typical value 𝑢𝑖 of the fuzzy action set as 𝝆 = [𝜌1 , 𝜌2, … 𝜌𝑛], the elements 

can be calculated as: 

 ( | , ), 1,2,...,θ x θi i tu i n = =   (25) 

For stochastic application with discrete action space, the proposed fuzzy 

intensification has been done with 𝝆 . For the deterministic case of 

continuous action, the proposed method is to apply a defuzzifier for the 

probability of fuzzy action sets. Here, we use each action's weight 𝝆 as the 

membership 𝝁 of the action fuzzy sets in (13). Thus, the weighted average 

method shown in (13) can be deployed and the action 𝒂𝑡 can be derived as: 

 1
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a

n

t i ii

fc t t

u

P


=

=

= +
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N

    (26) 

where 𝒩𝑡 is a random exploration noise. The exploration rate is set from 

10% to 0.01% of 𝒂𝑡 in our application during the process. Based on the 

above analysis, the pseudo-code of the algorithm Fuzzy REINFORCE is 

summarized in Table 5. 

Table 5 - The pseudo-code of the Fuzzy REINFORCE 

Fuzzy REINFORCE: Fuzzy Monte-Carlo Policy Gradient  

Initialize policy parameter 𝜽 ∈ 𝑹𝒎×𝒏 with a random seed 

Repeat for each episode: 

    Empty the sequence memory 𝑴 

    Reset the environment with 𝒔𝟎 

    Get fuzzy state 𝒙𝑡 from state 𝒔𝑡 with Fig.5 

    Repeat for each step 𝑡 = 0,1, … , 𝑇 − 2, 𝑇 − 1: 

        Get the preferance 𝒉 by with 𝜽⊤𝒙𝑡  

        Get the fuzzy action weight 𝝆 with softmax(𝒉) 

        Obtain and take action 𝒂𝒕 with defuzzifier of 𝝆 and random 𝒩𝑡 

        Observe the reward 𝑟𝑡+1 and next state 𝒔𝑡+1  

        Get fuzzy state 𝒙𝑡+1 from state 𝒔𝑡+1 with fig.5 

        Add [𝒙𝑡+1, 𝒂𝑡 , 𝑟𝑡+1] to the sequential memory 𝑴. 

        Update fuzzy state 𝒙𝑡 ← 𝒙𝑡+1 

    Until 𝒔𝑡+1 is terminal 

    Repeat for 𝑡 = 𝑇 − 1, 𝑇 − 2, … ,1,0: 

𝐺𝑡 ← 𝑟𝑡+1 + 𝛾𝐺𝑡+1 

𝜽 ← 𝜽 + 𝛼𝜃𝛾𝑡𝐺𝑡∇ ln 𝜋(𝒂𝑡|𝒙𝑡 , 𝜽) 

Until 𝐺0 is convergent. 
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3.5. Fuzzy REINFORCE with the baseline of fuzzy value function 

A typical problem with the traditional REINFORCE is that it suffers 

from high variance during the gradient updates [29]. To reduce variance 

and stabilize learning, a baseline 𝑏(𝒔𝑡) is introduced into the function (20) 

[14] as: 

, ~
)( ) ln( ) (( | )

θ

θ θ
ss a

t t

t

t t t
s

tbJ G
 

     −  E
  (27) 

The baseline 𝑏(𝒔𝑡) can be designed as a constant value, or a function 

related to the state 𝒔𝑡. The gradient direction of the objective function 𝐽 is 

not affected since ∇𝜃𝑏(𝒔𝑡) = 0 . Therefore, the parameters 𝜽  can be 

rewritten as: 

 
)[ ( )]: ln ( |θ θθ θ ss a

t

t t ttG b  −= + 
   (28) 

A value function 𝑉(𝑠𝑡) is proposed to estimate the accumulated reward 

and used as the baseline function 𝑏(𝒔𝒕).  

Therefore, the update method of the parameters 𝜽 can be written as: 

 : ln ( | )[ ( )]θ θθ θ a s st t

t

t tG V  −= +    (29) 

In this work, FIS is also used to be the function approximator of value 

function for the baseline.  Specifically, the fuzzy value function can be 

constructed using the weighted average method: 
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where 𝑣𝑖 ∈ 𝒗 is the 𝑖𝑡ℎ  fuzzy state value corresponding to the 𝑖𝑡ℎ  fuzzy 

state 𝑥𝑖(𝒔𝑡). 𝑣𝑖 can be updated according to the weight of the fired strength 

of each fuzzy state: 
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where 𝑣𝑖 will also be updated as a Monte-Carlo method from time 𝑡 = 𝑇 −

1  to 𝑡 = 0 in each episode. The pseudo-code of the Fuzzy REINFORCE 

with fuzzy baseline value function is shown in Table 6. 

Table 6 - The pseudo-code of the Fuzzy REINFORCE with baseline 

Fuzzy REINFORCE with Fuzzy Baseline Function 

Initialize policy parameter 𝜽 ∈ 𝑹𝒎×𝒏, 𝒗 ∈ 𝑹𝑚with random seeds 

Repeat for each episode: 

    Empty the sequence memory 𝑴 

    Reset the environment with 𝒔𝟎 

    Get fuzzy state 𝒙𝑡 from state 𝒔𝑡 with Fig.5 

    Repeat for each step 𝑡 = 0,1, … , 𝑇 − 2, 𝑇 − 1: 

        Get the preferance 𝒉 by with 𝜽⊤𝒙𝑡  

        Get the fuzzy action weight 𝝆 with softmax(𝒉) 

        Obtain and take action 𝒂𝒕 with defuzzifier of 𝝆 and random 𝒩𝑡 

        Observe the reward 𝑟𝑡+1 and next state 𝒔𝑡+1  

        Get fuzzy state 𝒙𝑡+1 from state 𝒔𝑡+1 with fig.5 

        Add [𝒙𝑡+1, 𝒂𝑡 , 𝑟𝑡+1] to the sequential memory 𝑴. 

        Update fuzzy state 𝒙𝑡 ← 𝒙𝑡+1 

    Until 𝒔𝑡+1 is terminal 

    Repeat for 𝑡 = 𝑇 − 1, … ,1,0: 

𝐺𝑡 ← 𝑟𝑡+1 + 𝛾𝐺𝑡+1, 𝑉(𝒔𝑡) =
∑ 𝑥𝑖(𝒔𝑡)𝑣𝑖

𝑀
𝑖=1

∑ 𝑥𝑖(𝒔𝑡)𝑀
𝑖=1

 

𝜽 ← 𝜽 + 𝛼𝜃𝛾𝑡∇ ln 𝜋(𝒂𝑡|𝒙𝑡 , 𝜽) (𝐺𝑡 − 𝑉(𝒔𝑡)) 

𝒗 ← 𝒗 + 𝛼𝑣(𝐺𝑡 − 𝑉(𝑠𝑡))
𝒙(𝑠𝑡)

∑𝒙(𝒔𝑡)
 

Until 𝐺0 is convergent. 

4. Simulations and Results Analysis 

A Python-based training and testing platform have been established for 

the proposed Fuzzy REINFORCE based EMS. Moreover, a Hardware-in-

Loop (HIL) experimental platform has also been built with dSPACE 

MicroLabBox, and a microcontroller ESP32. The performance of each 

calculation unit is as shown in Table 7. Note that, the model of FCHEV is 

based on Toyota's Mirai  whose database can be found in [32]. In this 

section, the results of the proposed EMS are analyzed and discussed.  

Table 7 - Vehicle Required Power Fuzzy Table 

Platforms Processors 

Host PC Intel Core i5 9400H @ 2.5GHz 

dSPACE MicroLabBox Dual-core real-time processor @ 2GHz 

ESP32 
Xtensa dual-core 32-bit LX6 

microprocessor @ 240 MHz 

 

4.1. Test driving cycles  

The proposed EMS is tested using 2 standard driving cycles Urban 

Dynamometer Driving Schedule (UDDS) and New European Driving Cycle 

(NEDC). The velocity and power of the specific FCHEV under those 2 

driving cycle are shown in Fig. 8.  
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Fig. 8 - Velocity and power of the FCHEV under different driving 

cycles: (a) “UDDS”; (b) “NEDC” 

4.2. Test Results Analysis 

The decay rate in (15) is set as 𝛾 = 0.999. The system states and control 

action are constrained as 𝑃𝑣𝑒ℎ(𝑡) ∈ [−50𝑘𝑊, 50𝑘𝑊]  , 𝑆𝑂𝐶𝑏𝑎𝑡(𝑡) ∈

[0%, 100%] , and 𝑃𝑓𝑐(𝑡) ∈ [0, 50 𝑘𝑊] . The learning curves of the 

proposed Fuzzy REINFORCE are shown in Fig. 9. 

41 10 −= 

42 10 −= 

55 10 −= 
41 10 −= 

42 10 −= 

55 10 −= 

 

Fig. 9 - Training Process of the proposed Fuzzy REINFORCE based 

EMS: (a) 𝑮𝟎; (b) average reward 

As shown in Fig. 9, 𝐺0  is the main criterion for evaluating the 

reinforcement learning training process, which represents the discounted 
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cumulative reward from the initial state to the terminal state. The second 

figure is about the average reward for each episode. The tests were 

conducted with different learning rates 𝛼, and the results show that 𝛼𝜃 =

0.0002 has a faster convergence rate and can achieve the same training 

results. In addition, the training process of the proposed fuzzy 

REINFORCE with fuzzy baseline function is shown in Fig. 10. The 

learning rate parameters are chosen as: 𝛼𝜃 = 0.0002,  𝛼𝑣 = 0.002. With 

baseline, 𝐺0 value and average reward at  stablised region are both higher 

than those without baseline setting. With fuzzy baseline function, a better 

policy optimization path can be found and local optimum can be avoided to 

a great extent.  

 

Fig. 10 - Training Process of the proposed Fuzzy REINFORCE with 

baseline: (a) 𝑮𝟎; (b) average reward 

Here we compare the training time and convergency episode of 4 

different RL algorithms as shown in Table 8. For the Q-learning and Fuzzy 

Q-learning from our previous works in [13] and [26], the training 

environments of them are same with FCHEV model and driving conditions 

in this paper. Due to the difference in algorithm principles, they have 

different levels of demand for computation. 

Table 8 The training time and convergency of 4 RL algorithms 

RL Agent 
Training 

Time 

Convergency 

Episode 
Computation Size 

Q-Learning [13] 4 hours 95000 [10201 × 101] 

Fuzzy Q-Learning [26] 15 minutes 450 [35 × 8] 

Fuzzy REINFORCE 4 minutes 20 [35 × 8] 

Fuzzy RIENFORCE 

with Baseline 
10 minutes 120 [35 × 8] 

For the computation of those RL moethods, Q-Learning needs to store 

the learned experience to a Q-table whosesize in our application is 

[10201 × 101]. It means that all states and actions are discretized to an 

accuracy of 1% of  the feasible ranges. In Q-Learning, only one item in the 

table is updated in one learning step. For the Fuzzy Q-Learning, a [35 × 8] 

fuzzy Q-table   is stored and 8 items in the table are updated in one learning 

step. For the 2 proposed Fuzzy REINFORCE methods, [35 × 8] parameter 

matrix 𝜽  is stored and all elements are updated in each learning step. 

Compared to traditional reinforcement learning and fuzzy Q-learnig, the 

proposed 2 Fuzzy REINFORCE methods significantly reduces the 

convergence time of training. Fast training and less computational resource 

ensure its possibility as a real-time online learning algorithm. Moreover, 

Fuzzy REINFORCE with baseline, achieves better performance while 

maintaining satisfactory learning speed and light data storage space. 

After the training process, different tests with 3 different initial SOC are 

carried out, which aims to validate the adaptability of the proposed methods 

to initial state changes. The vehicle is tested under the driving cycles of 

“UDDS” with different initial state 𝑆𝑂𝐶𝑏𝑎𝑡 = 25%, 50%, 75%. Fig. 11 

shows the cumulative loss during the test process, and a higher loss means 

a lower reward for the agent. When there is no baseline, the loss increases 

significantly. Especially when the initial value is 75%, the loss is much 

higher than that with baseline. This situation in reinforcement learning 

generally means that the region is less explored. In Fig. 12, it shows the 

SOC trajectories of the proposed Fuzzy REINFORCEE based EMS. To 

ensure the continuous cycle operation of the battery, the SOC is always 

required to be within a certain range according to the actual situation of the 

vehicle. In the paper, the SOC trajectory is set to be close to 50%. It is 

shown that the SOC trajectory with a baseline can move closer to the 

reference SOC value more quickly. 

 

Fig. 11 - Loss of the proposed Fuzzy REINFORCEE based EMS 

under the diving condition “UDDS”: (a) without baseline; (b) with 

baseline 

  

Fig. 12 - The SOC trajectories of the proposed Fuzzy REINFORCEE 

based EMS under the diving condition “UDDS”: (a) without baseline; 

(b) with baseline 

  

Fig. 13 - The power allocation of the proposed Fuzzy REINFORCE 

based EMS under the driving cycle “UDDS” (simulation test) 
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Fig. 14 - The power allocation of the proposed Fuzzy FEINFORCE 

with baseline based EMS under the driving cycle “UDDS” (simulation 

test) 

In addition, Fig. 13 and Fig. 14 show the power allocation of the 

proposed 2 methods under the driving condition of “UDDS” with 3 

different initial SOC. Fig. 15 and Fig. 16 illustrate the power allocation of 

the proposed EMSs under 10 driving cycles of “NEDC”, which is unknown 

to the EMS agents trained using “UDDS”. In contrast, behaviors of the one 

with baseline function are more conservative, which is more beneficial in 

actual vehicle operation. The test results show that even in different initial 

states and unknown external input conditions, the proposed method still has 

good adaptability to those environment changes, to realizes power 

allocation strategies between different energy sources, and thus improves 

the overall work efficiency. 

The battery SOC trajectories of 10 driving cycles of “UDDS” and “NEDC” 

for the FCHEV are shown in Fig. 17 and Fig. 18. The test results show that 

the SOC trajectory is well maintained at around 50% under different driving 

conditions. For  the proposed Fuzzy REINFORCE without baseline 

function, the final SOC of batteries is 49.68% and 53.72% under the driving  

 

 

Fig. 15 - The power allocation of the proposed Fuzzy REINFORCE 

based EMS under 10 driving cycles of “NEDC” (simulation test) 

  

Fig. 16 - The power allocation of the proposed Fuzzy REINFORCE 

with baseline based EMS under 10 driving cycles of “NEDC” 

(simulation test) 

cycle “UDDS” and “NEDC”. After 10 driving cycles, with the same initial 

state SOC set as 50%, the total hydrogen consumption of “UDDS” is 

416.5g, and the hydrogen consumption of “NEDC” is 397.4g, which is at 

the level near the optimal references provided using DP (“UDDS:”362.4g, 

“NEDC”: 344.7g). For the proposed Fuzzy REINFORCE with baseline 

function, the final SOC of batteries is 50.90% and 67.12% under the driving 

cycle “UDDS” and “NEDC”. After 10 driving cycles, with the same initial 

state SOC set as 50%, the total hydrogen consumption of “UDDS” is 

307.53, and the hydrogen consumption of “NEDC” is 316.5g, which are 

better than the EMS without baseline. The detailed results are summarized 

in Table 9 and Table 10. The hydrogen consumption performance of the 

two proposed methods in the two test driving cycles is shown in Fig. 19. 

 

Fig. 17 - The SOC trajectories of the proposed Fuzzy REINFORCE 

based EMS under 10 driving cycles: (a) UDDS; (b) NEDC 

 

Fig. 18 - The SOC trajectories of the proposed Fuzzy REINFORCE 

with baseline based EMS under 10 driving cycles: (a) UDDS; (b) 

NEDC 
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Table 9 - Test Results after 10 Driving Cycles Time (without Baseline) 

Driving 

Cycle 

Initial 

SOC 

Average 

reward 

H2 

Consumed 

(g) 

Fuel Rate 

(g/100km) 

Final 

SOC 

UDDS 

25% -0.1585 436.4 364.0 49.68% 

50% -0.0336 416.5 347.4 49.68% 

75% -0.1912 396.2 327.1 49.68% 

NEDC 

25% -0.2169 417.4 381.9 53.71% 

50% -0.0422 397.4 363.6 53.71% 

75% -0.1353 377.9 345.8 53.71% 

 

Table 10  Test Results after 10 Driving Cycles Time (with Baseline) 

Driving 

Cycle 

Initial 

SOC 

Average 

reward 

H2 

Consu

med (g) 

Fuel Rate 

(g/100km) 

Final 

SOC 

UDDS 

25% -0.0252 330.4 275.56 50.90% 

50% -0.0232 307.5 256.46 50.90% 

75% -0.024 286.5 238.95 50.90% 

NEDC 

25% -0.0557 339.7 310.80 67.12% 

50% -0.0532 316.5 289.57 67.12% 

75% -0.0587 295.4 270.27 67.12% 
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Fig. 19 – H2 consumption per 100km of the FCHEV with the 

proposed 2 Fuzzy REINFORCE methos after 10 driving cycles 

4.3. Experiment results: 

The experiment platform dedicated to Hardware-in-Loop (HIL) tests is 

formed as shown in Fig. 20. During the HIL experiment test, The controlled 

object is virtual, and its model is executed in the real time in dSPAECE 

MicroLabBox. As for the controller, ESP32microcontroller is used to 

deploy the EMS program. FCHEV simulator interacts with the 

microcontroller through the analog inputs and outputs offered by RTI and 

HIL libraries after they are downloaded to dSPACE. The information of 

states 𝑃𝑣𝑒ℎ , 𝑆𝑂𝐶𝑏𝑎𝑡  and �̇�𝐻2
 are transferred to ESP32. Then ESP32 

feedbacks with the power command for the fuel cells system output power 

according to the system states. The command is sent through its digital-to-

analog conversion (DAC) block to FCHEV simulator. The algorithm 

deployment of Fuzzy REINFORCE is entirely realized on ESP32. All test 

data are monitored and saved in the designed user interface with 

ControlDesk and Matlab/Simulink. The data exchange of dSPACE is 

through Ethernet, while the data exchange of ESP32 is achieved through 

Wi-Fi or serial port. 

dSPACE MicroLabBox ESP32

FCHEV Models

(FCs+Batteries+Vehicle)

MATLAB/Simulink

Energy management

(Reinforcement learning agent)

RTI and HIL C Coder

User Interface and Data Acquisition

ControlDesk XCP Mode in Simulink

fcP

2
, ,veh bat HP SOC m

TCP/IP Wi-Fi, Serial-Port

.sdf .bin

AD/DA

 

Fig. 20 – Hardware-in-Loop Experiment platform 

As shown in Fig. 21 and Fig. 22, the effective of the power allocation 

of the proposed Fuzzy REINFORCE with baseline is validated under 1 

UDDS driving cycle and 10 NEDC driving cycles. Compared to simulation 

results, the strategy in the HIL experiment tends to output larger fuel cell 

system power reference, while the overall strategy trends of the two are 

basically the same. 

 

Fig. 21 - The power allocation of the proposed Fuzzy FEINFORCE 

with baseline based EMS under the driving cycle “UDDS” 

(experimental test)  
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Fig. 22 - The power allocation of the proposed Fuzzy REINFORCE 

with baseline based EMS under 10 driving cycles of “NEDC” 

(experimental test) 

Compared to simulation results, the strategy in the HIL experiment 

tends to output larger fuel cell system power reference, while the overall 

strategy trends of the two are basically the same. Fig. 23 and Fig. 24 show 

the SOC trajectories with proposed Fuzzy FEINFORCE with baseline 

under 1 UDDS driving cycle and 10 NEDC driving cycles. The trajectory 

of the SOC in HIL is more constrained compared with the simulation 

results. In Fig. 23, the average value of SOC under “UDDS” is 49.75%, 

which is close to the preset 50% SOC reference value. The standard 

deviation of the SOC is reduced from 1.62% to 1.20% compared to 

simulations. In Fig. 24, the average SOC is 51.25%, while the standard 

deviation of the SOC is reduced from 6.47% to 3.64%.  

The difference between the simulation and experimental results mainly 

comes from the deviation of numerical calculation and the sampling error 

from AD/DA. As there is a trend towards using fuel cells rather than 

batteries, increased hydrogen consumption  and a more stable SOC 

trajectory are observed. 

 

Fig. 23 - The SOC trajectories of the proposed Fuzzy REINFORCE 

based EMS under 1 driving cycles of  UDDS (experimental test) 

 

Fig. 24 - The SOC trajectories of the proposed Fuzzy REINFORCE 

based EMS under 10 driving cycles of  NEDC (experimental test) 

 

5. Conclusions 

In the paper, Fuzzy FEINFORCE based energy management strategies 

are studied for fuel cell hybrid electric vehicles. The proposed Fuzzy 

REINFORCE methods utilize fuzzy inference system to approximate the 

policy function and the policy parameters are updated with Monte-Carlo 

method. Moreover, a fuzzy baseline function is proposed to achieve more 

stable convergency. Since the proposed methods are model-free 

reinforcement learning, the well-trained EMS agent can obtain near-

optimal results without accurately modelling, without highly relying on 

experience or prior knowledge. 

The simulation and HIL experiments test results show that the proposed 

Fuzzy REINFORCE has fast  and smooth convergence and can self-adapt 

to environment changes such as the initial state change and unknown 

driving condition. The originally proposed fuzzy baseline function makes 

the training convergemore stable and faster, while better performance, in 

terms of hydrogen consumption reduction and SOC preservation, is also 

achieved. Faster convergence and less computation also make the proposed 

methods suitable for online self-learning. The implementation of the 

proposed methods in a microcontroller has justified their online 

applications.  
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