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Abstract—In the paper, a fuzzy double Q-learning (FDQL) 
based energy management strategy is proposed for fuel cell 
hybrid electric vehicles (FCHEV). Model-free characteristic of 
the proposed novel reinforcement learning enable the agent to 
enhance performance through environment interactions 
without relying on specific models. To enable the continuous 
space application  for the studied energy system, fuzzy logic is 
involved to approximate the state-action value function of 
conventional Q-Learning. Moreover, the introduction of dual 
estimators solves its inherent overestimation problem. With 
python-based environment, low computation and fast 
convergence of the proposed FDQL are reflected in the training 
process. Also, adaptability to the changes in driving conditions 
and initial states are verified in the tests. Finally, the goal of 
reducing hydrogen fuel consumption and maintaining battery 
operation of FCHEV are both achieved. 

Keywords— reinforcement learning, energy management 
strategy, function approximation, fuzzy logic, double Q-learning. 

I. INTRODUCTION 
The energy crisis and environmental pollution have 

brought enormous pressure and challenges to the traditional 
internal combustion engine vehicles, and the development of 
renewable energy vehicles is gradually becoming the main 
direction of the world automobile industry. Fuel cell hybrid 
electric vehicles (FCHEV) are attracting increasing attention 
because of their highly efficient, green, pollution-free, fast 
charging (hydrogen), and competitive vehicle performance 
[1].  FCHEV usually consists of fuel cells and batteries to form 
an energy system. Energy management strategies (EMS) 
usually plays a very important role in FCHEV. It is used for 
power distribution among different energy sources to make the 
system work more efficiently and reliably. 

However, the difficulty of modeling fuel cell systems, the 
time-varying model, and the uncertainty of operation 
conditions bring great challenges to the design of EMS. 
Scholars have proposed various EMS methods for different 
applications, and all those methods can be classified into three 
categories: rule-based, optimization control based, and 
learning based methods. Rule-based EMS is highly relayed on 
historical data and experience makes it difficult to obtain 
optimal solutions [2]. Among optimization based strategy, 
dynamic programming (DP) based EMS is a global optimal 
solution [3]. However, it can not be used for real-time control 
due to its backward calculation chrematistic. Stochastic 
dynamic programming (SDP) [4], Pontryagin's minimum 
principle (PMP) [5] and equivalent consumption minimization 
strategy (ECMS) [6] are applied to solve the real-time 

optimization problem. However, high-precision models and 
prior knowledge are required, and it is difficult to exploit their 
performance in complex models and time-varying systems. [7] 

Reinforcement learning (RL), as a kind of machine 
learning, is attracting increasing attention in EMS 
development [8]. The process of the reinforcement learning 
agent making decisions is a Markov decision process (MDP). 
The most discriminant property of RL is that the control policy 
can be learned by interacting with the environment, and 
without relying on the system model and prior knowledge of 
driving conditions. Thanks to the property, RL-based methods 
have the potential to adapt to environment changes, such as the 
degradation of vehicle components and the changes in vehicle 
driving conditions.  

Q-Learning is a typical model-free algorithm, which was 
proposed by Watkins [9]. It is a milestone in the development 
of reinforcement learning and is currently the most widely 
used reinforcement learning. Q-learning has the advantage of 
environment model independence, fewer parameters 
requirement, off-policy with high training efficiency, and 
convergence guarantee. However, the application of Q-
Learning is limited by three drawbacks: 

● Overestimation of value due to maximization policy. 
● Impractical when the state-action space is very large. 
● Only works for discrete action and state space. 

To address the overestimation problem, Hasselt proposed 
double Q-learning on NIPS in 2010 [10]. It aims to replace the 
overestimation problem of Q-learning with underestimation 
by introducing double-estimator for the state-action value. 

Fuzzy logic imitates the human brain's uncertainty concept 
judgment, and reasoning way of thinking, which is believed to 
enable function approximation with good generalization 
ability. Combined with fuzzy logic to approximate Q-function, 
fuzzy Q-learning (FQL) is proposed in [11], which is the first 
fuzzy reinforcement learning (FRL). In FRL, fuzzy inference 
system (FIS) is utilized to approximate the value function of 
state or action, which solves the discrete space problem. A 
FQL-based EMS has been developed for an off-hybrid electric 
vehicle.[12]. And a fuzzy rule value reinforcement learning 
(FRVRL) based EMS is proposed for fuel cell hybrid electric 
vehicles [13], which directly learns the value of each rule 
through reinforcement learning. However, the problem of 
overestimation of Q-Learning has not been solved in those 
fuzzy reinforcement learning methods. 

In the paper, a novel fuzzy double Q-learning (FDQL) 
based EMS is proposed for FCHEV, which approximates the 



state-action value function based on fuzzy logic to reduce 
computation and solve continuous space problem. It is also 
based on double-learning to reduce the overestimation effect 
of Q-learning. Meanwhile, this model-free self-reinforcing 
learning can break the policy performance limit of experience-
based design and overcome the difficulty modeling and time-
varying problems of complex model. Therefore, a self-
learning FDQL-based EMS will be studied in this paper, its 
principle will be elaborated and analyzed, and its performance 
on FCHEV will be tested by changing the initial state of the 
environment and different driving conditions. 

II. SYSTEM MODELING  
The energy system of FCHEV consists of a fuel cells 

system, lithium batteries system and motor system. The fuel 
cell system and the battery system are connected to the DC bus 
through DC/DC converters to supply power to the load motor 
system or recover braking or deceleration energy from the 
motor system. The detailed scheme of the studied FCHEV 
energy system is shown in Fig. 1. 
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Fig. 1. Energy system for fuel cell hybrid electric vehicle. 

A. Vehicle dynamics model 
The dynamic model of the vehicle is shown as (1) with the 

velocity 𝑣𝑣 and the road slope 𝜃𝜃. 
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where 𝐹𝐹𝑚𝑚 represents the driving force provided by the motor, 
𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 is air resistance, 𝐹𝐹𝑓𝑓  is rolling resistance, 𝐹𝐹𝑠𝑠denotes slope 
resistance and 𝐹𝐹𝑎𝑎 represents acceleration resistance. 𝜌𝜌 and 𝐶𝐶𝐷𝐷 
represent air density and air resistance coefficient respectively. 
𝐴𝐴  represents the windward surface volume of the vehicle 
body, and 𝑣𝑣 represents the vehicle velocity. 𝑚𝑚 represents the 
vehicle mass. 𝐺𝐺 = 𝑚𝑚𝑚𝑚 represents the gravity of the vehicle, 
and 𝑓𝑓 represents the sliding resistance coefficient.  

The required power for the vehicle is: 

 /veh m mP F v η= ⋅   (2) 
where, 𝑃𝑃𝑣𝑣𝑣𝑣ℎ  represents the required power of the motor, 𝜂𝜂𝑚𝑚 
represents the transmission efficiency of the motor. According 
to the power balance, the required power of the motor is 
provided by the fuel cell and battery: 

 veh fc batP P P′ ′= +   (3) 
For the studied vehicle, the vehicle weight is 2500 𝑘𝑘𝑚𝑚, the 

windward area is 1.8 𝑚𝑚2, the air density is 1.25 𝑘𝑘𝑚𝑚/𝑚𝑚2, the 
air resistance coefficient is 0.3, the rolling friction coefficient 
is 0.01, and the total mechanical transmission efficiency is set 
as 90%, the gravity acceleration is 9.8 𝑚𝑚/𝑠𝑠2 

a) Fuel cell model 
The mathematical model of the fuel cells stack is as 

follows: 
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where 𝑛𝑛𝑐𝑐𝑣𝑣𝑐𝑐𝑐𝑐  is the number of single fuel cells, 𝐸𝐸𝑛𝑛𝑠𝑠𝑛𝑛  is the 
theoretical voltage called the Nernst electromotive force, 𝑉𝑉𝑎𝑎𝑐𝑐𝑛𝑛  
is the activated polarization voltage, 𝑉𝑉𝑐𝑐𝑐𝑐𝑛𝑛 is the concentration 
polarization voltage, and 𝑉𝑉𝑐𝑐ℎ𝑚𝑚 is the ohmic voltage loss. 𝐼𝐼𝑓𝑓𝑐𝑐  is 
the output current of the fuel cell stack, 𝐼𝐼𝑎𝑎𝑢𝑢𝑢𝑢 is the auxiliary 
system current, 𝑖𝑖𝑓𝑓𝑐𝑐 is the current flowing through the unit area 
of the electrode plate. The specific model of each voltage part 
is expressed as: 
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where 𝐸𝐸0 = 1.23 𝑉𝑉 is the open-circuit voltage of fuel cell 
reaction at standard atmospheric pressure, 𝑅𝑅 = 8.3145 is the 
gas constant, 𝑇𝑇 = 333.15 𝐾𝐾 is the fuel cell temperature, ∆𝑇𝑇 =
𝑇𝑇 − 273.15, 𝑛𝑛 = 2, 𝐹𝐹 = 96485 is Faraday constant, 𝛼𝛼 = 1 
is the transfer coefficient, 𝑃𝑃  is the local pressure of the 
reactants and products at this atmospheric pressure. 𝑖𝑖𝑓𝑓𝑐𝑐  is the 
current density. 𝑖𝑖𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 = 2𝑚𝑚𝐴𝐴/𝑐𝑐𝑚𝑚2  is the current loss, 𝑖𝑖0 =
0.003𝑚𝑚𝐴𝐴/𝑐𝑐𝑚𝑚2 is the exchange current density. 𝐼𝐼𝑐𝑐𝑎𝑎𝑚𝑚 = 1.6𝐴𝐴/
𝑐𝑐𝑚𝑚2 is the limiting current density. 𝑅𝑅𝑐𝑐ℎ𝑚𝑚  is the fuel cell 
resistance. Then the hydrogen consumption model of the FC 
stack can be derived as follows: 
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where �̇�𝑚𝐻𝐻2  is the rate at which hydrogen is consumed, and 
𝑀𝑀𝐻𝐻2 is the molar mass of hydrogen. 𝑃𝑃𝑓𝑓𝑐𝑐  is the total power of 
fuel cells stack.  

For the fuel cells side DC/DC converter, only its efficiency 
model is considered, since its response time scale is much 
smaller than that of the fuel cell systems: 
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where 𝑃𝑃𝑓𝑓𝑐𝑐′  is the output power of the FC system to the DC bus. 
𝜂𝜂𝑑𝑑𝑐𝑐 is the efficiency of DC/DC converter. 𝑃𝑃𝑎𝑎𝑢𝑢𝑢𝑢 is the auxiliary 
system power, and 𝐼𝐼𝑎𝑎𝑢𝑢𝑢𝑢 = 2.0 𝐴𝐴. 
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Fig. 2. The output voltage and efficiency of fuel cells 



In our application, the cells number is 𝑛𝑛𝑐𝑐𝑣𝑣𝑐𝑐𝑐𝑐 = 370, the 
electrode area is set as 𝐴𝐴𝑓𝑓𝑐𝑐 = 324 𝑐𝑐𝑚𝑚2, the anode hydrogen 
pressure is 50 kPa, and cathode oxygen is obtained from the 
air by natural aspiration. Fig. 2 depicts the characteristics of 
fuel cells stack. The maximum power point is the current of 
437A and the power of 104kW with the efficiency of 60%. 
The highest efficiency point is the current of 63.2A, and the 
efficiency is: 54.49% with the power of 15.7kW. 

B. Battery model 
The modeling of the batteries is as shown in (8), which is 

first order circuit model [14]. 
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where 𝐼𝐼𝑏𝑏𝑎𝑎𝑛𝑛  is the output current of the batteries. When 𝐼𝐼𝑏𝑏𝑎𝑎𝑛𝑛 >
0, the battery is discharged, and when 𝐼𝐼𝑏𝑏𝑎𝑎𝑛𝑛 < 0, the battery is 
charged. 𝑆𝑆𝑆𝑆𝐶𝐶𝑏𝑏𝑎𝑎𝑛𝑛 is the state of charge (SOC) of batteries. 𝑄𝑄𝑏𝑏𝑎𝑎𝑛𝑛  
is the battery capacity. Especially, the open-circuit voltage 𝑉𝑉𝑐𝑐𝑐𝑐  
and the internal resistance 𝑅𝑅𝑏𝑏𝑎𝑎𝑛𝑛 are dependent on 𝑆𝑆𝑆𝑆𝐶𝐶𝑏𝑏𝑎𝑎𝑛𝑛, and 
their characteristics are shown in Fig. 3. For the battery-side 
DC/DC converter, its efficiency 𝜂𝜂𝑏𝑏𝑑𝑑𝑐𝑐 can be expressed as: 
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where 𝑃𝑃𝑏𝑏𝑎𝑎𝑛𝑛′  is the output power of the bi-directional converter. 
The capacity of the studied battery is 6.6 Ah, and the standard 
voltage is 244.8V.  
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Fig. 3. The characteristics of the batteries 

III. THE PROPOSED NOVEL FUZZY Q-LEARNING BASED EMS 

A. EMS problem formulation 
The objective of EMS is to optimize vehicle performance 

by adjusting the distribution of energy between different 
energy sources under constraints. In the paper, the objective is 
to minimize the fuel (hydrogen) consumption and maintain the 
battery SOC. The objective is formulated mathematically as 
the integral of instantaneous reward 𝑟𝑟(𝑡𝑡): 
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( ) ( ) ( ( ) ) ( )

( ) ( ) ( 1)
H soc bat ref bat

bat bat bat

J r t dt

r t m t k SOC t SOC SOC t

SOC t SOC t SOC t

∞
=

= − − − ∆

∆ = − −

∫
   (10) 

where 𝑆𝑆𝑆𝑆𝐶𝐶𝑎𝑎𝑣𝑣𝑓𝑓  is the reference of SOC corresponding to the 
battery characteristics, 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆  is the weight factor of the SOC, 
and Δ𝑆𝑆𝑆𝑆𝐶𝐶𝑏𝑏𝑎𝑎𝑛𝑛 is the difference of the current SOC compared to 
the previous moment. The EMS is dedicated to determining 
𝑃𝑃𝑓𝑓𝑐𝑐(𝑡𝑡), 𝑡𝑡 ∈ [0,𝑇𝑇] using the observables [𝑃𝑃𝑣𝑣𝑣𝑣ℎ(𝑡𝑡), 𝑆𝑆𝑆𝑆𝐶𝐶𝑏𝑏𝑎𝑎𝑛𝑛(𝑡𝑡)] 
to achieve the maximazation of the objective function 𝐽𝐽 . 

Considering the system characteristics and security, the 
following constraints 𝒮𝒮 and 𝒜𝒜(𝑠𝑠) should be satisfied: 
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B. Fuzzy logic approximator: 
Fuzzy logic imitates the fuzzy cognition and reasoning 

ability of the human brain. As shown in Fig. 4, a basic fuzzy 
inference system (FIS) consists of four parts: fuzzifier, 
defuzzifier, inference engine, and knowledge base.  
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Data 
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Rule 
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Machine 
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Input
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OutputCrisp 
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Fig. 4. Fuzzy Interrace System scheme  

With fuzzifier, the FIS converts the crisp states 𝑠𝑠 to fuzzy 
values by membership functions. Then the obtained 
membership degrees are combined with each other by logical 
“AND”, thus the fuzzy state 𝜙𝜙(𝑠𝑠) = [𝜙𝜙1,𝜙𝜙2, … ,𝜙𝜙𝑀𝑀] of each 
rule can be derived. In our EMS application, the input state is 
the state 𝑠𝑠 = [𝑃𝑃𝑣𝑣𝑣𝑣ℎ , 𝑆𝑆𝑆𝑆𝐶𝐶𝑏𝑏𝑎𝑎𝑛𝑛], and the crisp output is the action 
𝑎𝑎 = [𝑃𝑃𝑓𝑓𝑐𝑐].  

The memebership functions of 2 states are designed as Fig. 
5. For state 𝑠𝑠1 = 𝑃𝑃𝑣𝑣𝑣𝑣ℎ, 7 membership functions are designed. 
And the typical values of the 𝑠𝑠1 memebership funciton is set 
as [-50,-20,-10,0,10,20,50] (kW) with fuzzy labels [“NH”, 
“NM”, “NL”, “ZO”, “PL”, “PM”, “PH”]. For state 𝑠𝑠2 =
𝑆𝑆𝑆𝑆𝐶𝐶𝑏𝑏𝑎𝑎𝑛𝑛 , 5 membership functions are designed with typical 
values [20%,40%,50%,60%,80%] whose labels are [“VL”, 
“L”, “M”, “H”, “VH”]. Hence, the dimensional number of 
fuzzy state 𝜙𝜙(𝑠𝑠) is 𝑀𝑀 = 35. 
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Fig. 5. Membership functions of 2 input states 

Here, the output of FIS is defuzzied with a Takagi-Sugeno 
fuzzy model, and the average weighted method is adopted in 
TS fuzzy model as shown in (12). 
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where 𝑦𝑦𝑘𝑘  is the 𝑘𝑘𝑛𝑛ℎ output, 𝑁𝑁𝑐𝑐𝑢𝑢𝑛𝑛 is the number of the output 
variables, and 𝑦𝑦𝑘𝑘,𝑎𝑎  means the 𝑖𝑖𝑛𝑛ℎ  fuzzy ouput of the 𝑦𝑦𝑘𝑘 . 
Traditionally, the value of 𝑦𝑦𝑘𝑘,𝑎𝑎  will be determined by fuzzy 
rules. Here the fuzzy rules will not be specfic rules, but instead 
they will be established by reinforcement learning and then 
infer fuzzy outputs. 



In the paper, when the output of FIS is 𝑎𝑎 = 𝑃𝑃𝑓𝑓𝑐𝑐 , the typical 
value of the fuzzy output sets are 𝑈𝑈 = [0, 1, 2, 5, 10, 20, 50, 
100] (kW). Thus the number of fuzzy action is 𝑁𝑁𝑈𝑈 = 8. Their 
fuzzy labels are [“ZO”, “SL”, “VL”, “L”, “M”, “H”, “VH”, 
“SH”]. Then the fuzzy actions 𝑎𝑎𝑎𝑎 , 𝑖𝑖 = 1,2, … ,𝑀𝑀  will be 
chosen from the typical values 𝑈𝑈 of fuzzy output sets. As a 
result, the ouput action 𝑎𝑎 can be deffuzied with fuzzy actions 
𝑎𝑎𝑎𝑎 and fuzzy state 𝜙𝜙𝑎𝑎(𝑠𝑠) by average weighted method, which 
is the first-order TS fuzzy model.  

C. Reinforcement learning principle 
Reinforcement learning realizes continuous self-learning 

by the interaction of agent and environment. Meanwhile, the 
environment is required to have Markov properties, which 
means that the transition probability of the next state can be 
only determined by the current state 𝑠𝑠(𝑡𝑡) and the action 𝑎𝑎(t). 
Thus, a sequence [𝑠𝑠(0), 𝑎𝑎(0), 𝑟𝑟(0), 𝑠𝑠(1), 𝑎𝑎(1), 𝑟𝑟(1), … ] can 
be obtained during the learning process until the terminal state. 
This process is a Markov decision process. 

Agent Enviroment

Action a

State s

Next State s’

Reward r

 
Fig. 6. Reinforcement Learning Principle 

The goal of the RL agent is to maximize the cumulative 
rewards 𝐽𝐽 from the initial state 𝑠𝑠0  to the terminal state 𝑠𝑠𝑇𝑇  at 
time 𝑡𝑡 = 𝑇𝑇 by optimizing the policy. 
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where 𝜋𝜋 is the policy to obtain the action, and 𝛾𝛾 is a discount 
factor, 0 ≤ 𝛾𝛾 < 1. 𝛾𝛾 = 0 means immediate return, γ tends to 
1 means future return. And 𝛾𝛾 determines how much the future 
time will affect the return. The cumulative return is used as an 
evaluation function to evaluate the performance of the policy. 
The value function of the state 𝑠𝑠 at time 𝑡𝑡 is donated as  
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However the cumulative reward is difficult to calculate 
directly due to unknow future rewards. Q-learning uses the Q-
function to solve the problem, which is a time-difference 
method, thus it can be updated step by step by bootstrapping. 
The Q-value represents the state-action value at the time 𝑡𝑡: 

[ ]
~ '

( , ) ( ) ( )γ ′= +
s s

Q s a r t V s                 (15) 

where 𝑠𝑠′ is the next state, and 𝑄𝑄(𝑠𝑠, 𝑎𝑎) means the expectation 
of the discounted communitive rewards from state 𝑠𝑠  and 
action 𝑎𝑎 to the terminal state, and 𝑉𝑉(𝑠𝑠′) is the value function 
of the next state 𝑠𝑠′. In Q-learning, maximization estimation 
method is used to obtain the estimated value function donated 
as 𝑉𝑉∗(𝑠𝑠′) [9]. 
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where 𝑄𝑄∗(𝑠𝑠, 𝑎𝑎) the optimal state-action value function, then 
the optimal policy 𝜋𝜋∗ is specified as follows: 

 
~ ( )

( ) arg max ( ( , ))
a s

s Q s a
π

π ∗ ∗

′
=   (17) 

The Q-Learning will be updated with the time-difference 
learning of (16). The update law is expressed as follows [15]: 
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where 𝛼𝛼 ∈ (0,1)  is the learning rate of Q-learning, which 
represents the update speed of the 𝑄𝑄-table 𝑄𝑄(𝑠𝑠, 𝑎𝑎). According 
to general experience, 𝛼𝛼 is set close to 0, and 𝛾𝛾 is close to 1. 
However, only for discrete space and overestimation of Q-
Learning limit its application in energy management. 

D. Fuzzy Double Q-learning 
Overestimation of the value function of Q-learning will 

lead the agent to make non-optimal decisions in some states. 
"Overestimation" usually refers to finding the maximum value 
and then finding the expectation for a series of numbers, which 
is usually larger than finding the expectation first and then 
finding the maximum value. The mathematical expression is: 

 1 2 1 2[max( , ,...)] max( [ ], [ ],...)X X X X≥     (19) 

To solve the overestimation problem of Q-Learning, 
double-estimator is proposed to evaluate the state-action value 
function of next state 𝑠𝑠′ , which is double Q-learning [10]. 
Double Q-learning stores two Q-functions as the double-
estimator: 𝑄𝑄1(𝑠𝑠, 𝑎𝑎) and 𝑄𝑄2(𝑠𝑠, 𝑎𝑎), and each Q-function will be 
updated with the other’s maximum action 𝑎𝑎2∗  and 𝑎𝑎1∗  of the 
next state 𝑠𝑠′. For each step, there will be only one Q-function 
can be updated with 𝑠𝑠′ with probability 0.5. After updated by 
enough samples, the expectations of 𝑄𝑄1(𝑠𝑠′, 𝑎𝑎2∗) and 𝑄𝑄2(𝑠𝑠′, 𝑎𝑎1∗)  
will approach the optimal state-action value 𝑄𝑄∗(𝑠𝑠′, 𝑎𝑎∗).  

 * * * *
1 2 2 1[ ( , )] ( , ) [ ( , )]Q s a Q s a Q s a′ ′ ′= =    (20) 

where the actions 𝑎𝑎∗, 𝑎𝑎1∗ and 𝑎𝑎2∗  will be based on the greedy 
policy. Equation (20) is the application of double-estimator in 
Q-Learning. Theoretically, either of 𝑄𝑄1(𝑠𝑠, 𝑎𝑎)  and 𝑄𝑄2(𝑠𝑠, 𝑎𝑎) 
can be used as the estimate of 𝑄𝑄(𝑠𝑠, 𝑎𝑎), but it is usually the 
average value of two Q-functions. In addition, fuzzy logic is 
applied to approximate the value function to overcome the 
weakness of double Q-Learning.  

In the proposed FDQL, double-estimator is used to 
suppress the overestimation of Q-learning. And the fuzzifier is 
applied to transfer continuous states into fuzzy states [16], 
while the action is obtained by the defuzzifier with the fuzzy 
actions. In fuzzy double Q-learning, 2 Q-functions need to be 
estimated with average weighted defuzzifier. 
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where 𝑄𝑄1 , 𝑄𝑄2  are the 2 evaluated Q-functions of double-
estimator, and 𝑞𝑞1, 𝑞𝑞2 are 2 fuzzy q-arrays. Donated 𝑉𝑉1, 𝑉𝑉2 are 
the two value functions of the next state 𝑠𝑠′: 
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which are determined by each other's greedy actions 𝑎𝑎2∗  and 
𝑎𝑎1∗: 
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where 𝑞𝑞1,𝑎𝑎 , 𝑞𝑞2,𝑎𝑎  are the 𝑖𝑖𝑛𝑛ℎ  fuzzy q-arrays of 𝑞𝑞1 , 𝑞𝑞2 , and 𝑎𝑎1,𝑎𝑎
∗  

and 𝑎𝑎2,𝑎𝑎
∗  are the 𝑖𝑖𝑛𝑛ℎ  greedy fuzzy actions to maximum 𝑞𝑞1,𝑎𝑎 , 

𝑞𝑞2,𝑎𝑎. In the paper, the sizes of each 𝑞𝑞1,𝑎𝑎 and 𝑞𝑞2,𝑎𝑎 are [1 × 𝑁𝑁𝑈𝑈] 
Both of greedy fuzzy actions will sample from the predefined 
fuzzy output set 𝑈𝑈 . Then the 𝑖𝑖𝑛𝑛ℎ  fuzzy evaluated value 
functions 𝑣𝑣1,𝑎𝑎 and 𝑣𝑣2,𝑎𝑎 can be update with each other's greedy 
fuzzy actions 𝑎𝑎2,𝑎𝑎

∗  and 𝑎𝑎1,𝑎𝑎
∗ . 
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To obtain the crisp value functions 𝑉𝑉1  and 𝑉𝑉2 , the 
defuzzifier of the fuzzy inference system should be employed 
with the next fuzzy state 𝜙𝜙(𝑠𝑠′). 
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where 𝑉𝑉1, 𝑉𝑉2 are obtained by defuzzing the fuzzy state values 
𝒗𝒗1 = [𝑣𝑣1,1, 𝑣𝑣1,2, … , 𝑣𝑣1,𝑀𝑀]  and 𝒗𝒗2 = [𝑣𝑣2,1, 𝑣𝑣2,2, … , 𝑣𝑣2,𝑀𝑀] 
corresponding to each rule fired strength of the next state 𝑠𝑠′ by 
applying the weighted average method. Then the 𝑖𝑖𝑛𝑛ℎ rule of 
FDQL with fuzzy language can be formed as follows: 

IF the fuzzy state 𝜙𝜙𝑎𝑎(𝑠𝑠), THEN take 𝑎𝑎2,𝑎𝑎
∗  with 𝑞𝑞2,𝑎𝑎 to update 𝑣𝑣1,𝑎𝑎 

take 𝑎𝑎1,𝑎𝑎
∗  with 𝑞𝑞1,𝑎𝑎  to update 𝑣𝑣2,𝑎𝑎 

And there will be 𝑀𝑀  fuzzy rules. The fuzzy double Q-
Learning will also be updated with the time-difference 
learning, and the target Q-function is set as: 𝑄𝑄1,𝑛𝑛𝑎𝑎𝑎𝑎𝑡𝑡𝑣𝑣𝑛𝑛(𝑠𝑠, 𝑎𝑎) =
𝑟𝑟 + 𝛾𝛾𝑉𝑉1(𝑠𝑠′)  and 𝑄𝑄2,𝑛𝑛𝑎𝑎𝑎𝑎𝑡𝑡𝑣𝑣𝑛𝑛(𝑠𝑠, 𝑎𝑎) = 𝑟𝑟 + 𝛾𝛾𝑉𝑉2(𝑠𝑠′) . Then Δ𝑞𝑞1,i 
and Δ𝑞𝑞2,i  the increments of the fuzzy double q-arrays 
corresponding to the 𝑖𝑖𝑛𝑛ℎ rule are shown as: 
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where ∆𝒒𝒒1 and ∆𝒒𝒒2 are based on the fuzzifier with fuzzy state 
𝜙𝜙(𝑠𝑠). And they are used in (27) to update the fuzzy q-arrays: 
𝒒𝒒1 and 𝒒𝒒2 which are corresponding to each rule update: 
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where 𝛼𝛼 ∈ (0,1) is the learning rate of the FDQL. 𝑎𝑎𝑎𝑎 are the 
actual fuzzy actions corresponding to the 𝑖𝑖𝑛𝑛ℎ rule. Here, the 
average value of the two fuzzy q-functions is used as the 
estimate fuzzy state-action value 𝑞𝑞 = (𝑞𝑞1 + 𝑞𝑞2)/2. Then the 
action can be determined by maximum policy.  
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To avoid difficulty in convergence due to the accumulation 
of errors in 𝑞𝑞1 and 𝑞𝑞2, it is necessary to synchronize 𝑞𝑞1 and 𝑞𝑞2 
with 𝑞𝑞 every certain period 𝑁𝑁𝑠𝑠𝑠𝑠𝑛𝑛 of the episodes, that is: 𝑞𝑞1 =
𝑞𝑞2 = 𝑞𝑞. At that time, add the following rules need to be added 
in the 𝑖𝑖𝑛𝑛ℎ fuzzy rule of the proposed fuzzy method: 

IF the fuzzy state 𝜙𝜙𝑎𝑎(𝑠𝑠), THEN update 𝑞𝑞1,𝑎𝑎 , 𝑞𝑞2,𝑎𝑎 with Δ𝑄𝑄1, Δ𝑄𝑄2 

and take 𝑎𝑎𝑎𝑎 with (𝑞𝑞1,𝑎𝑎 + 𝑞𝑞1,𝑎𝑎)/2 

The fuzzy actions need to be transformed into the actual 
action with average weighted defuzzifier. Then the optimal 
action is: 

 † 1

1

( )
( )

( )

M
i ii

M
ii

a s
a s

s

φ

φ
=

=

= ∑
∑

  (29) 

where 𝑎𝑎†(𝑠𝑠) is the action derived by maximum policy. To 
avoid the agent of the RL falling into a local optimum during 
the learning process, it is necessary to balance exploration and 
exploitation. Therefore, the behavior policy needs to be 
selected with a certain probability between the optimal action 
and the random action. 
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where 𝑎𝑎 is the behavior policy with 𝜀𝜀-greedy, and 𝑎𝑎𝒩𝒩  is the 
random action  according to the present state 𝑠𝑠. 𝒩𝒩𝑛𝑛  is a random 
value that sampled from [0,1]. In the paper, the exploration 
rate 𝜀𝜀 decays exponentially from 1 to close to 0. With FDQL, 
the requirement of continuous state and action space problems 
are solved with fuzzy inference system, and the overestimation 
problem is suppressed by the double-estimator. Then the 
pseudocode of the proposed FDQL is as follows:  

TABLE I.  THE PROCEDURE OF THE PROPOSED FDQL 

Fuzzy Doube Q-Learning (FDQL) 
  Randomly initialize q-arrays: 𝒒𝒒1 and 𝒒𝒒2, with the size of [𝑀𝑀 × 𝑁𝑁] 
  M: the number of fuzzy rules; N: the total number of fuzzy outputs 
   for 𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒 = 1 to 𝐿𝐿 do: 
      Reset the environment with the initialized state 𝑠𝑠0 
      Obtain fuzzy state 𝜙𝜙(𝑠𝑠) with membership fucntions of each rules 
      for 𝑡𝑡 = 1 to 𝑇𝑇 do: 
           Obtain fuzzy actions: 𝑎𝑎𝑎𝑎, with maximizing (𝑞𝑞1,𝑎𝑎 + 𝑞𝑞2,𝑎𝑎)/2 
                 𝑞𝑞𝑎𝑎 = (𝑞𝑞1,𝑎𝑎 + 𝑞𝑞2,𝑎𝑎)/2,  𝑎𝑎𝑎𝑎 = arg max 

𝑢𝑢𝑖𝑖∈𝑈𝑈
𝑞𝑞𝑎𝑎(𝜙𝜙𝑎𝑎(𝑠𝑠),𝑢𝑢𝑎𝑎), 𝑖𝑖 = 1, … ,𝑀𝑀 

          Select action 𝑎𝑎 by defuzzing fuzzy actions and 𝜀𝜀-Greedy 

                     𝑎𝑎†(𝑠𝑠) = ∑ 𝑎𝑎𝑖𝑖𝜙𝜙𝑖𝑖(𝑠𝑠)𝑀𝑀
𝑖𝑖=1
∑ 𝜙𝜙𝑖𝑖(𝑠𝑠)𝑀𝑀
𝑖𝑖=1

, 𝑎𝑎 = � 𝑎𝑎†(𝑠𝑠) ,  𝜀𝜀 ≤ 𝒩𝒩𝑛𝑛(0,1)
𝑎𝑎𝒩𝒩 ∈ 𝒜𝒜(𝑠𝑠) ,  𝜀𝜀 > 𝒩𝒩𝑛𝑛(0,1) 

          Observe the reward r and next state 𝑠𝑠′ 
          Obtain the next fuzzy state 𝜙𝜙(𝑠𝑠′) 
          Evaluate fuzzy value functions: 

                     
𝑎𝑎𝑘𝑘,𝑎𝑎
∗ = arg max 

𝑎𝑎𝑘𝑘,𝑖𝑖
∗ ∈𝑈𝑈

𝑞𝑞𝑘𝑘,𝑎𝑎(𝜙𝜙𝑎𝑎(𝑠𝑠 ′),𝑎𝑎1,𝑎𝑎
∗ )

𝑣𝑣𝑘𝑘,𝑎𝑎(𝜙𝜙𝑎𝑎(𝑠𝑠′)) = 𝑞𝑞𝑘𝑘,𝑎𝑎�𝜙𝜙𝑎𝑎(𝑠𝑠 ′),𝑎𝑎3−𝑘𝑘,𝑎𝑎
∗ �

𝑘𝑘 = 1,2, 𝑖𝑖 = 1, … ,𝑀𝑀 

          Get value funtions and Q-functions with deffuzifier: 
                                    𝑉𝑉𝑘𝑘(𝑠𝑠′) = 𝒗𝒗𝑘𝑘

⊤𝜙𝜙(𝑠𝑠′)
∑𝜙𝜙(𝑠𝑠′)

,𝑄𝑄𝑘𝑘 = 𝒒𝒒𝑘𝑘
⊤𝜙𝜙(𝑠𝑠)
∑𝜙𝜙(𝑠𝑠)

,𝑘𝑘 = 1,2 
          with 0.5 probability: 
              Get the increment of the 1st fuzzy q-array: ∆𝑞𝑞1,𝑎𝑎, with 𝑉𝑉1(𝑠𝑠′) 

                         ∆𝑞𝑞1,𝑎𝑎 = [𝑟𝑟 + 𝑉𝑉1(𝑠𝑠′)− 𝑄𝑄1(𝑠𝑠, 𝑎𝑎)] 𝜙𝜙𝑖𝑖(𝑠𝑠)
∑ 𝜙𝜙𝑖𝑖(𝑠𝑠)𝑀𝑀
𝑖𝑖=1

 , 𝑖𝑖 = 1, … ,𝑀𝑀 

              Update the fuzzy q-array 𝒒𝒒1: 
                        𝑞𝑞1,𝑎𝑎(𝜙𝜙𝑎𝑎(𝑠𝑠),𝑎𝑎𝑎𝑎): = 𝑞𝑞1,𝑎𝑎(𝜙𝜙𝑎𝑎(𝑠𝑠),𝑎𝑎𝑎𝑎) + 𝛼𝛼𝛼𝛼𝑞𝑞1,𝑎𝑎  , 𝑖𝑖 = 1, … ,𝑀𝑀 

          else: 
              Get the increment of the 2nd fuzzy q-array: ∆𝑞𝑞2,𝑎𝑎, with 𝑉𝑉2(𝑠𝑠′) 

                         ∆𝑞𝑞2,𝑎𝑎 = [𝑟𝑟 + 𝑉𝑉2(𝑠𝑠′)− 𝑄𝑄2(𝑠𝑠, 𝑎𝑎)] 𝜙𝜙𝑖𝑖(𝑠𝑠)
∑ 𝜙𝜙𝑖𝑖(𝑠𝑠)𝑀𝑀
𝑖𝑖=1

 , 𝑖𝑖 = 1, … ,𝑀𝑀 

              Update the fuzzy q-array 𝒒𝒒2: 
                        𝑞𝑞2,𝑎𝑎(𝜙𝜙𝑎𝑎(𝑠𝑠),𝑎𝑎𝑎𝑎): = 𝑞𝑞2,𝑎𝑎(𝜙𝜙𝑎𝑎(𝑠𝑠),𝑎𝑎𝑎𝑎) + 𝛼𝛼𝛼𝛼𝑞𝑞2,𝑎𝑎  , 𝑖𝑖 = 1, … ,𝑀𝑀 

          Update state: 𝑠𝑠 ← 𝑠𝑠′,𝜙𝜙 (𝑠𝑠) ← 𝜙𝜙(𝑠𝑠′) 
      end for 
      if 𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒 % 𝑁𝑁𝑠𝑠𝑠𝑠𝑛𝑛 == 0: 
                                        𝑞𝑞 = (𝑞𝑞1 + 𝑞𝑞2)/2, 𝑞𝑞1 = 𝑞𝑞2 = 𝑞𝑞 
      end if 
end for 

IV. SIMULATIONS AND RESULTS ANALYSIS 
The proposed FDQL-based EMS for FCHEV will be 

trained and tested by a python-based platform with version 
3.8.13. The processor is Intel(R) Core (TM) i5-9400H CPU @ 
2.50GHz, and there is no need to use GPU due to its less 
computation. The environment model of FCHEV is referred to 
the report of Toyota's Mirai FCHEV given by the Argonne 
National Laboratory [17].   



A. Test driving cycles  
The proposed FDAL-based EMS is tested under 4 standard 

driving cycles Urban Dynamometer Driving Schedule 
(UDDS), New European Driving Cycle (NEDC). The velocity 
and power of the specific FCHEV under those 2 driving cycle 
are shown in Fig. 7.  
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(a) “UDDS” (b) “NEDC” 

Fig. 7. Velocity and power of the FCHEV under different driving cycles 

The detailed information of those driving cycles are shown 
in TABLE II. For the proposed EMS, the “UDDS” will be 
used as the external input of the training environment with the 
initial state 𝑆𝑆𝑆𝑆𝐶𝐶𝑏𝑏𝑎𝑎𝑛𝑛 = 50%, and the test process will be based 
on those 2 driving cycles with the different initial states. 

TABLE II.  DIFFERENT DRIVING CYCLES INFORMATION 

Driving 
Cycle 

Duration 
(s) 

Distance 
 (km) 

Average 
speed 

(km/h) 

Minimum 
Power 
(kW) 

Maximum 
Power 
(kW) 

UDDS 1369 11.99 31.53 -37.19 44.89 

NEDC 1180 10.93 33.35 -43.07 34.22 

 

B. Training Process of the proposed FDQL-based EMS 
In the training process, the learning rates for both two 

fuzzy Q-functions of the proposed FDQL are set as 𝛼𝛼 =
0.002 , the decay factor for the cumulative reward is 𝛾𝛾 =
0.999, the reference for SOC trajectory is set as 𝑆𝑆𝑆𝑆𝐶𝐶𝑎𝑎𝑣𝑣𝑓𝑓(𝑡𝑡) =
50%, and the weight factor of SOC in the objective function 
is 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 = 200. The training environment is a python-based 
energy system of FCHEV with the driving condition of 
“UDDS” with the initial SOC of batteries 𝑆𝑆𝑆𝑆𝐶𝐶𝑏𝑏𝑎𝑎𝑛𝑛(0) = 50%. 

 
Fig. 8. The average reward and the average fuel consumption rate in each 

episode during the training process of the proposed FDQL-based EMS 
for FCHEV. 

 For the training process, the average reward and the 
average hydrogen consumption for each episode are shown in 
Fig. 8. The agent converges steadily until the 800th episode, 
and the training time is 20 minutes, which verifies the fast 
convergence and effectiveness of the proposed FDQL during 
the training process.  

C. Test Process of the proposed FDQL-based EMS 
The test process will be based on 4 different driving 

conditions mentioned before and 3 different initial state of 
SOC: 25%, 50% and 75%. For the well-trained agent of FDQL 
with the driving condition “UDDS”, the other 3 driving cycles 
are total unknown. This will be a challenging ordeal for the 
adaptability of the proposed FDQL to unknown dynamics. 

In Fig. 9, the detail power allocation strategy is illustrated 
under the driving condition of the cycle “UDDS”, and the 
initial state of SOC is set as 50%, the same as the training 
environment. The cumulative reward during the test task is -
42.56, and the average reward is -0.032. The cumulative 
hydrogen consumption is 42.56g, hence the hydrogen 
consumption per 100 km is 354.96g. 

 
Fig. 9. Power allocation strategy of the proposed FDQL based EMS under 

the driving cycle “UDDS” with initial state of SOC 50%. 

 
(a) FQL (b) FDQL 

Fig. 10. SOC trajectory of the FQL and the FDQL based EMS under the 
driving cycle “UDDS” with different initial state of SOC. 

To further verify that the well-trained agent is not sensitive 
to the initial state, and the agent can adjust the SOC trajectory 
to be near the preset reference value under different SOC 
initial values, several tasks are being tested with the initial 
state of SOC 25%, 50% and 75%. SOC trajectory of the FQL 
and the FDQL based EMS are shown in Fig. 10. As shown in 
Fig. 10 (a), the terminal SOC state of the FQL based EMS 
under initial SOC 25%, 50% and 75% are 49.06%, 49.07% 
and 62.13%. And in Fig. 10 (b), the same tests based on the 
proposed FDQL are carried out with the results of 50.93%, 
50.93% and 50.94%. The test results show that the proposed 
FDQL have better the adaptability performance on initial state 
change. 

The next test is about the adaptability of the proposed EMS 
to different driving conditions. The "UDDS" cycle is the 
training condition, while "NEDC" is test condition, which are 



completely unknown to the well-trained agent. In Fig. 11, it 
illustrates SOC trajectories of the batteries under 10 repeat 
cycles of those 2 standard driving conditions with the FQL-
based EMS. The terminal states of SOC are 49.06% and 49.67 
with the driving conditions of “UDDS” and “NEDC”, 
separately. And in Fig. 12, it illustrates that the terminal SOC 
states of two diving conditions are 50.93% and 50.84% under 
the same test environment. The test results shows that the 
proposed FDQL based-EMS has faster convergency than that 
of the FQL on SOC trajectories, which means better 
adaptability performance to unknow driving conditions. 

 
Fig. 11. The SOC trajectary of 10 repeat cycles of 2 different driving 

conditions under different initial state of SOC with the FQL-based 
EMS.  

 
Fig. 12. The SOC trajectary of 10 repeat cycles under different initial state 

of SOC with the FDQL-based EMS. 

TABLE III.  TEST RESULTS OF THE FQL-BASED AND THE 
PROPOSED FDQL-BASED EMS 

Driving 
Cycle 

Initial 
SOC 

FQL-based EMS FDQL-based EMS 
Average 
Reward 

H2 Rate 
(g/km) 

Average 
SOC 

Average 
Reward 

H2 Rate 
(g/km) 

Average 
SOC 

UDDS 

25% -0.049 60.63 44.78% -0.052 64.44 48.75% 

50% -0.030 40.74 46.91% -0.032 42.56 49.93% 

75% -0.028 30.73 64.11% -0.021 22.05 56.95% 

NEDC 

25% -0.055 58.72 43.54% -0.058 62.08 45.80% 

50% -0.033 39.10 47.75% -0.035 40.77 47.50% 

75% -0.030 27.97 73.35% -0.025 23.14 67.54% 

V. CONCLUSION 
In the paper, a novel fuzzy reinforcement learning 

algorithm FDQL-based energy management strategy is 
proposed to suppress the overestimation of fuzzy Q-learning. 
The proposed FDQL combines the fuzzy logic and 
reinforcement learning to approximate the state-action value 
function of Q-learning, so that continuous action and state 

space operations can be enabled. Besides, the training time can 
be significantly reduced, which makes it possible to apply for 
real-time training and tests. Moreover, since the proposed 
FDQL is a model-free self-learning method, it does not need 
to model the energy system of FCHEV, and can adjust itself 
to adapt to the changed environment. Finally, the Python-
based training and testing platform verify that the proposed 
FDQL-based EMS has good adaptability to the unknown 
driving conditions, and uncertain initial states. and it shows 
excellent performance in those difficulty tests to achieve the 
goals of saving hydrogen fuel consumption and maintaining 
the batteries operation for a long time. 
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