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Abstract—Recent years have known the development of radio
propagation models (RPM) and specially the AI-based ones.
These models are interesting for many applications such as
radio planing and design, fingerprinting-based localization, radio
resources management etc. However most of the proposed AI-
based RPMs have been trained on simulated radio data making
them not ready or reliable for real condition applications. In
this work we tackle the problem of learning and fine-tuning
an AI-based RPM from simulated data to real world radio
measurements. We raise the inherent problems and limitations
and then propose solutions to overcome them. The study has
been focused on 5 GHz Wi-Fi and Home network environment.

Index Terms—Wi-Fi, indoor propagation, measurements, AI.

I. INTRODUCTION

The prediction of radio maps using AI-based models has
undergone significant developments. AI-based RPMs provide
reduced computing time and simplicity of usage : for indoor
only a simple floor plan image is required without any need
of tedious vectorization. Several models have been already
proposed in the literature, some for indoor and others for out-
door [1][2][3][4]. However, almost all these AI-based models
have been trained on simulated radio data. The RPMs used
to generate such data are mainly ray tracing models. Little
attention has been devoted to the use of real world data to
train AI-based models, due to the high cost in terms of time,
effort and expertise involved in collecting and processing such
data. Reference [5] proposes to calibrate the model parameters
on real world data for each new environment, using few points
to generate the entire radio map. In order to predict realistic
radio maps, we have identified 3 strategies.
Strategy 1: Train an AI-based RPM from scratch on huge
and reliable radio measurements in different environments.
Measurements are made by radio experts in order to obtain
reliable data [6] and tailor-made for the radio map prediction
task. However, such a process takes an enormous amount
of time and effort. It requires not only radio experts, but
also dedicated measurement equipment and access to a large
sample of environments.
Strategy 2: Fine tune locally an AI-based RPM already trained
on simulation data with new data collected on the environment
under study [5]. This approach can be applied in 2 ways :

train a model with few measurement points to tune part or
all its parameters or just center the prediction of the model
assuming you know the shift between real and simulated
data. This approach is less costly in the short term, but can
be limited in term of performance. It requires tuning, and
therefore measurement operations for each new environment.
Strategy 3: Fine-tune an AI-based RPM trained on simulated
data with crowd-sourced data. In other words, this strategy
is based on transfer learning [7]. The purpose is to use
knowledge from a related domain (called the source domain)
to improve learning performance or reduce the number of
samples required in the target domain. We assume that there is
a relation between a simulated and a measured radio map. As
it is easier to generate simulated radio map than to collect
real world radio data, transferring the knowledge learned
from simulated data can help reducing the number of real
world radio samples to train RPMs. Moreover, using crowd-
sourced data spares us the need for measurement campaigns
made by experts while ensuring easy access to a diversity of
environments. It does, however, present some disadvantages
such as the reliability of the collected data and calibration
issues due to the diversity of devices used for data collection.
In this work, we have experimented with the third approach.
Our contributions are as follows:

• Firstly, we expose our measurement campaign dedicated
to 5 GHz Wi-Fi in Home environments, based on crowd-
sourced radio data collected by several smartphones.

• Then we propose a method for processing and calibrating
the collected RSSI data.

• In a previous work [8] we had detailed a new AI-based
indoor RPM based on Generative Adversarial Networks
(GANs) trained only on simulated data. We propose to
tune it by transfer learning on the collected data and
compare its accuracy to the initial version not fine tuned.

The remainder of the paper is organized as follows. The radio
propagation measurements are described in Section II. The
data processing and analysis are detailed in Section III. Our
AI-based radio propagation model, its training, its fine tuning
and the results analysis are presented in Section IV. Finally,
conclusions are drawn in Section V.



II. PROPAGATION MEASUREMENTS

This section focuses on the different data acquisition pro-
cesses. The first part concerns crowd-sourced data and the sec-
ond part concerns data for calibration as the collected crowd-
sourced data originate from different types of smartphones
whose RSSI scales are not necessarily aligned.

A. Crowd-sourced data
Our goal is to collect a large amount of Wi-Fi RSSI data

(corresponding to the received Wi-Fi beacon frames) using
smartphones with meta data about the context such as floor
plan image, physical dimensions, the types of building mate-
rials, the type of Wi-Fi gateway and the type of smartphone
used. For this purpose, we have organized a FUT (Friendly
User Test). We had around 50 volunteers in different French
towns. We focused the experiment on large apartments or
houses in order to consider the worst cases of Wi-Fi coverage.
In all the further analysis transmitter and receiver are always
on the same floor. To simplify the data analysis and further
calibrations, we selected 3 types of smartphones which were
the most common among the testing panel: Samsung S10, S21
and A32. The Wi-Fi measurements have been performed with
the Netspot App for android with a 1 m resolution mesh grid
after a scaling step of the floor plan. From this grid, physical
dimensions in meters can easily be deduced. Below we detail
some statistics on the collected data set.

TABLE I
STATISTICS

Values
Number of data points 5409
Number of floor plans 58
Number of APs types 5

Number of different building materials 8
Smartphones S10, A32, S21

Surface [65m2, 150m2]

B. Data for Calibration
1) Measurement environment: Many studies like [9] high-

lighted the fact that the Wi-Fi RSSI reported by smartphones
may present strong deviations between vendors at the same
measurement place, up to around 20 dB. RSSI reported
depends highly on the device Wi-Fi chipset. Therefore cal-
ibration is needed to be closer to true RSSI values, or at
least to be able to compare them to a common and reliable
reference like an omnidirectional receiving dipole antenna. For
this purpose, calibration measurements have been done in a
dedicated apartment at Orange Labs Belfort (Fig. 1). The size
of the environment is 10.4 x 11.7 x 2.6 m3. There are different
types of building materials and thicknesses (14 to 60 cm). The
environment contains several pieces of wooden furniture.

2) Measurement system setup: All the elements of the
measurement system are shown in Fig 2. The measurement
system is composed of 3 Samsung smartphones (S10, S21,
A32) on a rotating plate and 1 dipole antenna1 as receivers.

1https://www.mouser.fr/pdfDocs/linx-ant-w63ws2-ccc-ds1.pdf

Fig. 1. Measurement apartment in Orange Labs Belfort.

The laptop is connected to the spectrum analyzer to control it
and collect the RSSI measurements from the dipole antenna.
In term of transmitter, we selected 3 recent models of Orange
Wi-Fi gateways for high speed Home Internet, the same as
encountered during the FUT. We also developed an android
application which allows us to automate measurements and
capture RSSI of different Wi-Fi access points. The developed
android application is responsible of capturing RSSI measure-
ments at a given sampling rate (typically each 5 s) and storing
them in file which is later used for calibration.

Fig. 2. Measurement setup.

3) Measurement procedure: The RSSI captures have been
done on 9 points Pn n=0.. 9, spread across the apartment. For
each point, we made measurements for 4 different azimuths
of the transmitter (0°, 90°, 180°, 270°).
For the smartphones the measurements have been carried out
as follows. For each point Pn and orientation of the transmitter,
we made at least 6 min 30 s of captures with a 5 s sampling



rate and the smartphones in continuous rotation (360° in 45
s). This allows us getting the distribution of RSSI according
to transmitter and smartphone orientation. Our goal here is
to attenuate the effect of smartphones and gateways antenna
radiation pattern as we don’t have any control on it and any
information on their orientation for the crowd-sourced data.
By this way we remove also fast fading effects.
For the dipole antenna, the measurements have been carried
out on a square wooden plate of size 46.5cmx46.5cm displayed
in Fig 3, as if the receiving antenna was on a wooden table.
For each points Pn and transmitter orientation, we made 50
acquisitions during around 10 s on the 5 different locations A,
B, C, D and E displayed in Fig 3. Note that, the circle around E
denotes the location of the rotating plate for the smartphones.
The retained RSSI value is the median of each collected series
across the A, B, C, D locations and the 4 transmitter azimuths.
In term of duration, each point Pn took around 1 hour 20 min
of measurement. The measurement process is repeated with
the 3 different recent models of Orange Wi-Fi gateways and
also Wi-Fi extenders.

AD

BC

E

Fig. 3. Dipole antenna measurement surface

III. DATA PROCESSING AND ANALYSIS

In this section, we present, and analyze the FUT data and
the measurement data from our apartment. We highlight the
need to process the data and then detail the methods used for
this and particularly for RSSI calibration.

A. Crowd-sourced data processing

In Fig. 4 are depicted the raw RSSI measurements from
the crowd-sourced data according to the log10 of the distance
in meter between transmitter and receiver and the type of
smartphone used to collect the data. As studied in [9], we
can observe an offset according to the type of smartphone.
Fig. 5 shows a filtered version of the crowd-sourced data
according to the following processing. Looking at the data,
in particular the RSSI, we noticed for each site some outliers
generally located near the gateway (d < 1m) or when the
signal is lower than -90 dBm. This may be due to a saturation
of the RSSI measurement scale. From this observation, we
removed all the measurements points at less than 1 meter
from the transmitter and those whose RSSI is less than -
90 dBm. Then, we did a linear regression of RSSI on the
log10 of distance and removed all the measurements out of the
confidence interval of 95%. Fig. 6 and 7 shows respectively
the calibrated measurements with the S10 and dipole antenna
as reference. We observed also that the S21 RSSI presents
some high offsets. In fact we have some 20 dB random jumps
at a same location measurement in static conditions and so

we decided to discard S21 data from the further analysis.
Calibration constants corresponding to the RSSI offsets were
then deduced from the regression lines for each smartphone.
The constant for aligning the A32 to the S10 is -5.302 dB .

Fig. 4. RSSI distribution according to the distance and type of mobile before
processing

Fig. 5. RSSI distribution according to the distance and type of mobile after
filtering

Fig. 6. RSSI distribution according to the distance and type of mobile after
filtering and relative calibration on the S10 mobile

B. RSSI calibration

Crowd-sourced data allowed making a relative alignment of
the distribution coming from the different smartphones on the
distribution of a given one. However this is not enough as we
can’t say which one is close to the ground truth RSSI. For
this reason and as described above, we made a measurements
campaign with a dipole antenna as reference for the ground



Fig. 7. RSSI distribution according to the distance and type of mobile after
filtering and calibration on the dipole antenna

truth RSSI. Fig. 8 and 9 shows respectively the average
RSSI for the points Pn without and with calibration. Similar
trends can clearly be observed, however, with an offset before
calibration. The large amount of data from our measurements
has enabled us not only to observe the temporal variation
of the signal, the behavior of the different mobiles, Wi-Fi
gateway, but also to quantify the standard deviations of the
measurements at each points over the different orientations
of the transmitter and receiver. For example, we observed a
standard deviation of 3.14 dB. This value was obtained by
averaging the standard deviation of the series of measurements
over the nine points. Tab II shows the calibration constants
drawn from the measurement campaign.
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Fig. 8. Data points according to the type of receiver before calibration

TABLE II
CALIBRATION CONSTANT ACCORDING TO THE TYPE OF MOBILE AND

ACCESS POINTS

Mobiles
Access points S10 A32

AP1 -1.0 dB -5.5 dB
AP2 -1.3 dB -4.9 dB
AP3 -2.2 dB -5.8 dB

Mean -1.5 dB -5.4 dB

0 2 4 6 8

−60

−50

−40

Points

R
SS

I
(d

B
m

)

AP1-S10 AP1-A32 AP1-REF
AP2-S10 AP2-A32 AP2-REF
AP3-S10 AP3-A32 AP3-REF

Fig. 9. Data points according to the type of receiver after calibration

IV. MODELING AND RESULTS

In this section, first we introduce our AI-based RPM and
the fine tuning process, then we present and analyze the tuning
results.

A. Modeling

In our last works [8], we proposed a cGAN-based indoor
radio propagation model called E-IRGAN (Enhanced-Indoor
Radio GAN) trained indoors for the 2.4 GHz frequency. Our
model has been trained on simulated data based on WinProp
models. For the purpose of the actual works, we re-trained
our model from scratch on new simulated data for the 5
GHz frequency band. Fig. 10 displays one prediction of the
model compared to the ground truth radio map. The model
is designed to handle different types of indoor home envi-
ronments with different building materials (concrete, brick,
plasterboard, wood). In order to fine tune our pre-trained radio

Fig. 10. Prediction from E-IRGAN trained on simulated data. From left to
right : Floor plan, Ground truth, Prediction.

map generator G, we split the data set composed of 58 input-
output pairs into train and test set. The training set contains
50 samples and the remainder is used for test. We used Adam
Optimizer [10] for the learning process. We have noticed
that when no layer is frozen, due to the size of the model
(39 million parameters) and the amount of data available for
fine tuning, the model over-fits, memorizing the training set
without being better on test set. After some tests, we decided
to set only the 6 last layers as trainable for the fine tuning.
The learning rate is set to 10−4 and decreases progressively
to 10−14. We fixed the number of epochs to 80.
The generator G loss function is the L1 loss given by:

L1 = Ex,y pdata(x,y){||y −G(x)||1}. (1)



The model implementation is based on TensorFlow [11]. The
training of the model is realized on HP Z8 workstation with
2 NVIDIA Quadro P5000 GPUs.

B. Results

Table III shows the performance of our proposed RPM
according to the training and testing data set. Firstly we
quantify the accuracy of the model trained on simulated data
with respect to real world data. Then we explore how to
enhance it by using real data for fine tuning and study the
importance of data filtering and calibration. The letters F, C
means respectively filtering, calibration. Thus ”Real w/o FC”
means real world data without filtering and without calibration.
The first part of Table III exposes the performance of our

TABLE III
E-IRGAN PERFORMANCE ACCORDING TO TRAINING AND TESTING

DATASET

Training data Testing Data MEAN STD RMSE
Simulated Simulated -0.9 dB 5.5 dB 6.3 dB
Simulated Real w/o FC -16.9 dB 10.2 dB 20.2 dB
Simulated Real w F -16.3 dB 8.8 dB 18.9 dB
Simulated Real w FC -12.8 dB 8.8 dB 16.1 dB
Real w/o FC Real w/o FC -0.8 dB 9.0 dB 10.1 dB
Real w/o FC Real w F -0.4 dB 7.8 dB 8.7 dB
Real w/o FC Real w FC 3.0 dB 7.8 dB 9.1 dB
Real w F Real w F -0.9 dB 7.6 dB 8.9 dB
Real w F Real w FC 2.5 dB 7.6 dB 9.1 dB
Real w FC Real w FC -1.1 dB 7.5 dB 8.6 dB

model trained with simulated data on real data. From a simple
observation, we can see that there is a large offset between
predicted RSSI and measurements. By assuming, we know
its value from sample of measurements, we can mitigate this
just by adding a constant to center the model. This can help
reducing errors but is not enough. For instance, doing this in
our case reduced errors to a minimum of 10.2 dB in term
of RMSE and 8.2 dB in term of standard deviation error.
Note that the log distance model standard deviation deduced
from the same filtered measurements (Fig. 7) is 12.5 dB. As
expected, an AI-based radio propagation model trained on high
accurate radio propagation model is not necessarily accurate
on real world data. The second part of Table III displays the
performance of our model fine tuned with real data, processed
or not according to F or C. We can see that fine tuning
our model on real data centers automatically the model and
reduces drastically the error.

As detailed previously crowd-sourced data induces some
severe limitations. Transmitter and receiver antenna orienta-
tion is not known, which induces a non removable error of
at least 3.14 dB standard deviation between any prediction
model and measurements. The measurement devices diversity
induces also some RSSI calibration errors. The crowd-sourced
measurement locations may be also inaccurate, with 1 m meter
resolution at the best with the Netspot app. It is also important
to note that the home gateways can be placed into or behind
some furniture, which also induces some additional errors as
well as the other furniture present in the environment but not

represented on the floor plan image for sake on simplicity for
the end user. A more accurate model with respect to simulated
data (3.5 dB of RMSE) led to a RMSE of 5.5 dB with respect
to real data w FC which is our best performance.

V. CONCLUSION

In this paper, we proposed a new way to fine tune an AI-
based RPM from crowd-sourced data. We have highlighted
the fact that using such data for RPM fine tuning is chal-
lenging due to their low reliability (random antenna orienta-
tion, positioning errors, diversity of devices, shadowing due
to furniture). We have presented our different measurement
campaigns for collecting data and for RSSI calibration. We
have analyzed the variability of RSSI according to types of
devices and proposed a calibration method to deal with it.
Finally, we have underlined the gap between a model trained
on simulated data and real world data. In future works, we
plan to use more data and other frequencies to improve the
accuracy and extent the model usage.
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