Saturated absorption spectroscopy of the near-UV Cs atom 6S_{1/2}-7P_{1/2} transition in a MEMS vapor cell

E. Klinger, A. Mursa, C. M. Rivera-Aguilar, R. Vicarini, N. Passilly and R. Boudot FEMTO-ST, CNRS, Université de Franche-Comté, ENSMM, Besançon, France

Email: emmanuel.klinger@femto-st.fr

Microfabricated (MEMS) alkali vapor cells are at the core of high-precision integrated atomic quantum sensors and devices¹, such as microwave and optical clocks, or magnetometers. The first chip-scale atomic device was a microwave atomic clock based on coherent population trapping². It has offered in its industrial and commercialized version an ultra-low size-power-instability budget, impacting a plethora of industrial and scientific applications. Nevertheless, the short-term stability of these clocks is usually limited at about 10^{-10} at 1 s.

Hot vapor MEMS-based optical frequency standards constitute a new generation of miniaturized clocks, with enhanced stability. These references keep the benefit of using wafer-scalable and mass-producible vapor cells while preventing ultra-high vacuum technologies and laser cooling.

Among the transitions explored, the $6S_{1/2} - 7P_{1/2}$ near-UV transition of Cs atom was used to demonstrate an optical reference³ with a stability of 2.1×10^{-13} at 1 s and averaging down to a few 10^{-14} . However, this reference was based on a 5 cm-long glass-blown cell, not compliant with the advent of a fully-miniaturized and low-power optical clock.

In this work⁴, we present the characterization of sub-Doppler resonances detected in a microfabricated cell by probing, in a simple saturated absorption configuration, the Cs atom $6S_{1/2} - 7P_{1/2}$ transition at 459 nm. The impact of the laser intensity and cell temperature on the sub-Doppler resonance is experimentally investigated. Optimal values are identified for the development of a near-UV microcell-stabilized frequency reference.

Figure 1 : Sub-Doppler spectroscopy of the Cs atom $6S_{1/2} \rightarrow 7P_{1/2}$ transition at 459 nm recorded from a Cs MEMS cell heated at 117 °C.

UV microcell-stabilized frequency reference. Detection noise measurements are also reported, predicting a short-term stability in the 10^{-13} range at 1 s. Tests of cells with embedded getters⁵ are under progress for improved purity of the cell inner atmosphere and narrowing of the resonance. Latest results will be presented at the conference.

¹ J. Kitching, Appl. Phys. Rev. 5, 031302 (2018).

² S. Knappe, V. Shah, P.D.D. Schwindt, L. Hollberg, J. Kitching, L-A. Liew and J. Moreland, Appl. Phys. Lett. **85**, 1460 (2004).

³ J. Miao, T. Shi, J. Zhang and J. Chen, Phys. Rev. Appl. 18, 024034 (2022).

⁴ E. Klinger, A. Mursa, C. M. Rivera-Aguilar, R. Vicarini, N. Passilly, and R. Boudot, arXiv:2311.18459 (2023).

⁵ R. Boudot, J. P. McGilligan, K. R. Moore, V. Maurice, G. D. Martinez, A. Hansen, E. de Clercq and J. Kitching, Sci. Rep. **10**, 16590 (2020).