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Microfabricated (MEMS) alkali vapor cells are at the core of high-precision integrated atomic 
quantum sensors and devices1, such as microwave and optical clocks, or magnetometers. The first 
chip-scale atomic device was a microwave atomic clock based on coherent population trapping2. 
It has offered in its industrial and commercialized version an ultra-low size-power-instability 
budget, impacting a plethora of industrial and scientific applications. Nevertheless, the short-term 
stability of these clocks is usually limited at about 10−10 at 1 s.  
Hot vapor MEMS-based optical frequency standards constitute a new generation of miniaturized 
clocks, with enhanced stability. These references keep the benefit of using wafer-scalable and 
mass-producible vapor cells while preventing ultra-high vacuum technologies and laser cooling. 
Among the transitions explored, the 6S1/2 − 
7P1/2 near-UV transition of Cs atom was used 
to demonstrate an optical reference3 with a 
stability of 2.1 × 10−13 at 1 s and averaging 
down to a few 10−14. However, this reference 
was based on a 5 cm-long glass-blown cell, not 
compliant with the advent of a fully-
miniaturized and low-power optical clock. 
In this work4, we present the characterization 
of sub-Doppler resonances detected in a 
microfabricated cell by probing, in a simple 
saturated absorption configuration, the Cs 
atom 6S1/2 – 7P1/2 transition at 459 nm. The 
impact of the laser intensity and cell 
temperature on the sub-Doppler resonance is 
experimentally investigated. Optimal values 
are identified for the development of a near-
UV microcell-stabilized frequency reference. Detection noise measurements are also reported, 
predicting a short-term stability in the 10−13 range at 1 s. Tests of cells with embedded getters5 are 
under progress for improved purity of the cell inner atmosphere and narrowing of the resonance. 
Latest results will be presented at the conference. 
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Figure 1 : Sub-Doppler spectroscopy of the Cs 
atom	6S!/# → 7P!/#	transition at 459 nm recorded 
from a Cs MEMS cell heated at 117 ºC. 
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