
GROUP THEORY OF MESSENGER RNA METABOLISM

AND DISEASE

MICHEL PLANAT†, MARCELO AMARAL‡, DAVID CHESTER‡, FANG FANG‡

RAYMOND ASCHHEIM‡ AND KLEE IRWIN‡

Abstract. Our recent work has focused on the application of infinite
group theory and related algebraic geometric tools in the context of
transcription factors and microRNAs. We were able to differentiate be-
tween “healthy” nucleotide sequences and disrupted sequences that may
be associated with various diseases. In this paper, we extend our efforts
to the study of messenger RNA metabolism, showcasing the power of
our approach. We investigate (i) mRNA translation in prokaryotes and
eukaryotes, (ii) polyadenylation in eukaryotes, which is crucial for nu-
clear export, translation, stability, and splicing of mRNA, (iii) miRNAs
involved in RNA silencing and post-transcriptional regulation of gene
expression, and (iv) the identification of disrupted sequences that could
lead to potential illnesses. To achieve this, we employ (a) infinite (finitely
generated) groups fp, with generators representing the r+1 distinct nu-
cleotides and a relation between them [e.g., the consensus sequence in the
mRNA translation (i), the poly(A) tail in item (ii), and the miRNA seed
in item (iii)], (b) aperiodicity theory, which connects “healthy groups”

fp to free groups Fr of rank r and their profinite completion F̂r, and (c)
the representation theory of groups fp over the space-time-spin group
SL2(C), highlighting the role of surfaces with isolated singularities in
the character variety. Our approach could potentially contribute to the
understanding of the molecular mechanisms underlying various diseases
and help develop new diagnostic or therapeutic strategies.
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1. Introduction

Genome-scale metabolic pathways [1, 2], genome–environment interac-
tions [3], the immune response [4], post-transcriptional regulatory mecha-
nisms [5] and oncohistones [6] represent aspects of a research field connecting
the heritable genetic code to other biological codes.

The aforementioned genetic code is defined precisely as a non-injective
map from the 64 codons to the 20 amino acids. Both finite groups [7, 8, 9]
and quantum groups [10] play a leading role in modeling this code. More
explicitly, in our paper [8], complete quantum information is encoded in
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the 22 irreducible characters of the small group (240, 105) ∼= Z5 ⋊ 2O, with
2O the binary octahedral group. The characters are put in correspondence
with the DNA multiplets encoding the proteinogenic amino acids and the
multiplicity is reflected in the dimension of the character representation.
Further developments are explored in [11] showing that the small group
(336, 118) ∼= Z7 ⋊ 2O is another model of the genetic code reflecting the
symmetry of Lsm1 − 7 complex in the spliceosome. The 8-fold symmet-
ric histone complex is investigated in [12] with the character table of the
group (384, 5589) ∼= Z8 ⋊ 2O. The latest papers inaugurate the role played
by a specific algebraic surface called the Kummer surface in the quantum
modeling of the genetic code.

From now, we refer to the “epigenetic code” as all processes that reveal
and execute gene expression. This includes DNA methylation processes [13],
mRNA translation preparation, the poly(A) tail, the RNA-induced silencing
complex (RISC) — a vital tool in gene regulation comprising single strands
of RNA (ssRNA) and double strands of small interfering RNA (siRNA) —
and other regulatory nucleotide sequence fragments that are discarded after
splicing. For a relation between the epigenetic code and morphogenesis, see
[14].

Chemical modifications in RNA also drive the metabolism of transcription
of the genetic information. Post-transcriptional regulation in gene expres-
sion is a hot topic known as epitranscriptomics. There are more than 170
known types of RNA methylation processes but the most common in eu-
karyotes is the possible methylation of A = m6A on sites with a specific
short sequence RRACH (R = A or G, H = A, U or C), see e.g. [15, 16, 17].

For studying the epigenetic code (hereinafter referred to as the e-code),
we employ infinite (finitely generated) groups denoted by fp, and their rep-
resentations over the (2 × 2) matrix group SL2(C), where the entries are
complex numbers [19]. The significance of this group extends across all
fields of physics as it represents a space-time-spin group. In this study, we
apply a mathematical field known as algebraic geometry to define the e-code.
This has never been done before.

Our crucial observation is that an fp group associated with a ”healthy”
sequence usually approximates a free group Fr, where the rank r equals the
number of distinct nucleotides (nt) minus one. A sequence deviating from
this may suggest a potential e-code deregulation leading to a disease. How-
ever, an fp group closely resembling a free group does not provide sufficient
assurance against a disease. Additional examination of the SL2(C) repre-
sentations of fp — termed the character variety— specifically, its basis —
called a Groebner basis G — is necessary.

The Groebner basis comprises a set of surfaces. A surface within G con-
taining isolated singularities indicates another potential disease that can be
identified specifically, e.g., relating to an oncogene or a neurological disorder
[19, Figure 6, Tables 2 to 4]. The e-code we define comprises such algebraic
geometric characteristics.

An additional attribute of “healthy” sequences, which leads to a group fp
approximating the free group Fr and not mentioned in [19], is their connec-
tion to aperiodicity. Schrödinger’s book [20] proposes aperiodicity of living
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“crystals”. Our paper [21] characterizes aperiodic DNA sequences. We fur-

ther this concept by introducing the so-called profinite completion F̂r of the

free group Fr. A sequence f
(l)
p of finitely generated groups approaching Fr

emerges by applying l repeated substitutions to the generators of fp. How-

ever, all distinct groups f
(l)
p should possess the same profinite completion

F̂r. Profinite groups F̂1 (corresponding to sequences containing two distinct

nt) and F̂2 (corresponding to sequences containing three distinct nt) have
been examined in a prominent algebraic geometry treatise [22]. We present
the details below in a manner that is accessible to a non-specialist reader.

In Section 2, we illustrate our mathematical concepts through a few simple
pedagogical examples. In Section 3, we apply these concepts to the cases
of mRNA translation, microRNAs and m6A methylation. In Section 4, we
provide additional comments, a summary diagram and perspectives.

2. Methods and preliminary results

2.1. Infinite finitely generated groups fp and free groups Fr.

The TATA box. We’ll start with a simple example of an infinitely finitely
generated group taken from the context of introns. The DNA sequence lo-
cated in the core promoter region of many eukaryotic genes is the Goldberg-
Hogness sequence, also known as the TATA box. This sequence contains
a non-coding segment with repeated T and A base pairs. The TATA box
serves as the binding site for the TATA-binding protein and other tran-
scription factors in some eukaryotic genes. Its consensus sequence takes
the form rel=TATAAAA. Variations in this consensus sequence, resulting
from genetic polymorphism, can lead to diseases like Gilbert’s syndrome and
immune suppression [23].

In our methodology, we define the group fp = 〈A, T |rel〉, which con-
tains infinitely many elements. There are numerous ways to investigate this
group, but we opted for a specific one. This method involves calculating
the number of conjugacy classes of subgroups of index d of fp (a sequence
we’ll refer to as the card seq of fp). The card seq of fp for the selected
TATA sequence is [1, 1, 2, 3, 2, 8, 7, 10, 18, 28 · · · ]. Interestingly, the group
H3 =

〈

A, T |A2 = T 3
〉

shows a similar card seq (at least up to the highest
index we can reach with the calculations). The group H3, as defined, is
isomorphic to the so-called modular group PSL(2,Z) – the group of (2× 2)
matrices of determinant 1 with integer entries. This group has an intrigu-
ing topological interpretation as the fundamental group of the trefoil knot
manifold. Thus, we find that the group fp is ’close’ to H3 since the card seq
of both groups is the same, but we can easily verify that fp and H3 are not
isomorphic.

In paper [25, Section 3.1 and Table 2], we discovered that Hecke groups
Hq =

〈

A, T |A2 = T q
〉

, with q = 3 or 4, have a card seq corresponding to
’healthy’ TATA box sequences. The fp group for a TATA box with a card
seq resembling that of Hecke groups, with q 6= 3 or q 6= 4, or even that of
groups slightly different from H3 and H4, signifies Gilbert’s syndrome.
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Polyadenylation signals. For our second example, we select a sequence from
the context of eukaryotic polyadenylation [24]. Polyadenylation involves the
addition of a poly(A) tail to an RNA transcript, usually a messenger RNA
(mRNA). A consensus poly(A) sequence takes the form rel1=AAUAAA.
This corresponds to a two-generator group of the form fp = 〈AU |rel1〉. The
card seq of such a group is found to be [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, · · · ], implying
a single conjugacy class for each index. It appears that the free group
F1 = 〈A,U |AU〉, of rank 1, has the same card seq as the fp group with
relation rel1, even though both groups are not isomorphic.

Another consensus poly(A) sequence takes the form rel2=UGUAA. This
corresponds to a three-generator group of the form fp = 〈A,U,G|rel2〉. The
card seq of such a group is found to be [1, 3, 7, 26, 97, 624, 4163, · · · ]. Intrigu-
ingly, the free group F2 = 〈A,U,G|AUG〉, of rank 2, has the same card seq
as the fp group with relation rel2, despite both groups not being isomorphic.

From our perspective, DNA/RNA sequences that lead to fp groups closely
resembling a free group are considered ’healthy’ sequences [19, 21, 25]. The
standard poly(A) sequences mentioned earlier play a regulatory role in pro-
ducing mature mRNA during translation. Sequences that generate an fp
group diverging from a free group Fr may be indicative of a disease.

2.2. Aperiodic sequences, their attached groups fp and free groups.

In this subsection, we’ll elucidate how a group fp, with a card seq identified
to be close to a free group Fr, can be linked to an aperiodic sequence and
the profinite completion F̂r. We introduced the concept of aperiodic groups
and sequences in our earlier papers [25, Section 4] and [21, Section 2].

Consider the motif rel = TTTATTA, which serves as a consensus se-
quence for the transcription factor of the DBX gene in Drosophila melanogaster
(fruit flies). This gene is involved in neuronal specification and differenti-
ation. The group fp = 〈A, T |rel〉 has the same card seq as the free group
F1 of rank 1. Furthermore, by splitting rel into two segments rel = relArelT
and applying the substitution maps A → relA = TTTA, T → relT = TTA,
we generate the substitution sequence

SDBX = A, T,AT, TTTATTA, TTATTATTATTTATTATTATTTA, · · · .
Upon inspection, it’s straightforward to observe that all finitely generated

groups f
(l)
p , with their generators being

AT, TTTATTA, TTATTATTATTTATTATTATTTA, · · · , respectively,
possess the card seq of F1.

As per Reference [25, Section 4], a substitution rule to be considered
aperiodic must satisfy two conditions: (1) the substitution matrix M must
be primitive, meaning it should be a strictly positive matrix (all entries > 0),
irreducible, and Mk should be strictly positive for some k. This condition
is denoted as M >> 0, and (2) the Perron-Frobenius λPF eigenvalue must
be irrational. It’s worth noting that the Perron-Frobenius eigenvector of an
irreducible non-negative matrix is the only one whose entries are all positive.

The aforementioned sequence has a substitution matrix M =

(

1 3
1 2

)

.

One can verify that M is primitive since M2 >> 0 and λPF = (3+
√
13)/2.

Conditions (1) and (2) are satisfied, implying that the substitution SDBX is
aperiodic.
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Numerous other genes have transcription factors with a motif rel gener-
ating an aperiodic sequence [21, Table 2].

2.3. Aperiodic sequences and the profinite groups F̂r. This section
can be skipped without affecting the comprehension of the rest of the paper.
It endeavors to answer the following question: why do the aforementioned

groups f
(l)
p produce the same card seq as that of the free group F1? The ten-

tative answer to this question is that the profinite completion of all groups

f
(l)
p is the profinite group F̂1. By making this observation, we align the
aperiodicity of sequences with profinite groups. Profinite groups were in-
troduced by Grothendieck in the context of algebraic geometry [22]. Here,

we describe the necessary ingredients for the layperson, focusing first on F̂1

and then on F̂2, and their relevance to our present work.
A group G can be considered a ’topological group’ by applying the ’dis-

crete topology’, in which the elements of G are points of a ’discrete space’,
form a ’discontinuous sequence’ and are isolated from each other. Every
subset is ’open’ in the discrete topology. A profinite group is a topological
group that, in a certain sense, is assembled from a system of finite groups. A
profinite group requires a system of finite groups and group homomorphisms
between them.

Given a group G, there is a related profinite group Ĝ defined as the
inverse limit Ĝ = lim←G/N, of the groups G/N , where N runs through the
normal subgroups of G of finite index [a normal subgroup is a subgroup that
remains invariant under conjugation by members of the group]. Each finite
quotient group corresponds to a normal subgroup N of G and the profinite
completion Ĝ can be perceived as containing an analogue of each of these
normal subgroups.

The profinite group Ĝ exhibits several properties: it is non-abelian, resid-
ually finite [meaning that for any non-identity element g in Ĝ, there exists a

finite quotient of Ĝ in which g is not the identity], and totally disconnected

[meaning that the only connected subsets of Ĝ are singletons, sets containing
only one element].

In general, an explicit construction of profinite groups Ĝ cannot be ob-
tained. However, F̂1 and F̂2 are not overly complex to handle.

About the profinite group F̂1. Let’s begin with F̂1. The free group F1 on a
single generator can be described as a group with one generator, say a, and
no relations. It consists of all possible finite strings that can be formed by
combining the generator and its inverse. It is the infinite cyclic group Z =
{1, a, a−1, a2, a−2, a3, a−3, · · · }. Now, let’s discuss the profinite completion

of F1. The profinite group F̂1 is isomorphic to the group of all units of
the commutative ring of p-adic integers Zp, across all primes p. It is often
denoted as Z∗p since it corresponds to the elements of Zp with a valuation of
zero. The p-adic integers are a special class of numbers utilized in number
theory and algebraic geometry.

About the profinite group F̂2. Let’s briefly discuss F̂2. This topic was initi-
ated in [22]. The subject is complex. It’s connected to the so-called Belyi
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theorem, a fundamental result that establishes a connection between alge-
braic curves defined over the algebraic closure of the rationals, Q̄, and certain
rational functions called Belyi functions.

An algebraic curve defined over Q̄ can be represented as a branched cov-
ering of the Riemann sphere (the complex projective line P1(C)) branched
only over three points (usually taken as 0, 1, and ∞) if and only if the curve
itself is defined over a number field, which is a finite extension of the field
of rational numbers Q.

In other words, the Belyi theorem implies that an algebraic curve defined
over a number field can be mapped to the Riemann sphere in such a way
that the ramification (branching) is restricted to just three points. The
rational functions that provide these branched coverings are known as Belyi
functions.

The significance of the Belyi theorem lies in the fact that it provides
a method to study algebraic curves defined over number fields by analyz-
ing their ramified coverings and the associated dessins d’enfants, which are
combinatorial objects encoding the ramification data.

Specifically, we have the crucial result that

π̂1(P
1(C) \ {0, 1,∞}) ∼= F̂2,

i.e., the so-called étale fundamental group for the triply branched projective
line is the profinite group F̂2.

2.4. SL2(C) representations of groups fp and a Groebner basis G.
While the previous section about profinite groups showcases the importance
of algebraic geometry in the context of DNA/RNA sequences, it remains
somewhat abstract. To address this, we can consider the representations of
an fp group over the space-time-spin group SL2(C), as we did in [18, 19, 21].

Representations of fp in SL2(C) are homomorphisms ρ : fp → SL2(C)
with character κρ(g) = tr(ρ(g)), g ∈ fp. The notation tr(ρ(g)) signifies the
trace of the matrix ρ(g). The set of characters is employed to determine an
algebraic set by taking the quotient of the set of representations ρ by the
group SL2(C), which acts by conjugation on representations[26, 27].

In such papers, we elaborated that the character variety of fp is a set
comprised of a sequence X of multivariate polynomials. A particular basis
related to X is the Groebner basis G(X), whose factors define hypersurfaces.

Our precursor paper [18] focused on a possible algebraic approach of topo-
logical quantum computing. Later, in [19, 21], we could investigate SL2(C)
representations of short DNA/RNA sequences (e.g. the consensus sequence
of a transcription factor or the seed of a microRNA) and relate them to a
potential disease.

For a two-generator group fp, the factors are three-dimensional surfaces.
In general, these surfaces can be classified by mapping them to a rational
surface across five categories [19, Section 3]. Often encountered surfaces are
degree p Del Pezzo surfaces where 1 ≤ p ≤ 9. A rational surface may either
be non-singular, ’almost non-singular’, having only isolated singularities, or
singular. Almost non-singular surfaces are crucial in our context. A simple
singularity is referred to as an A-D-E singularity and must be of the type
An, n ≥ 1, Dn, n ≥ 4, E6, E7 or E8.
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The A-D-E type is mirrored in the notation we employ. For instance,
S(lA1,mA2,nA3,··· ) denotes a surface containing l type A1 , m type A2, n type
A3 singularities, etc. A generic surface is the Cayley cubic we encountered
in our previous papers, defined as S(4A1) = xyz+x2+y2+z2−4 [19, Figure
5].

For a three-generator group fp, the factors of G(X) are seven-dimensional
surfaces of the form Sa,b,c,d(x, y, z). Some of them belong to the Fricke
family [19, Equation 3], which is associated with the four-punctured sphere.
But for a chosen set of parameters a, b, c, d, the hypersurface reduces to an
ordinary three-dimensional surface.

For a four-generator group fp, the factors of G(X) are 14-dimensional
surfaces containing 4 copies of the form S(x, y, z), S(x, u, v), S(y, u, v) and
S(z, v, w) for selected choices of 8 parameters.

Figure 1. Up: The degree 2 Del Pezzo surface within
GTATA. Down: The degree 3 Del Pezzo surface S(A1) within
Grel1.

Groebner basis for the TATA box. The Groebner basis for the character
variety associated with the fp group of generator rel=TATAAAA of the
TATA box, studied in subsection 2.1, is found to be:

GTATA = (z4 − xy2 − xyz + x2 + y2 + yz − 3z2 + x− 2)(x2z − xy − xz + y − z)

S(A2)S(A4)(x3 − z2 − 3x+ 2),



8MICHEL PLANAT†, MARCELO AMARAL‡, DAVID CHESTER‡, FANG FANG‡ RAYMONDASCHHEIM‡ANDKLEE IRWIN

where S(A2) = x2y− z3 − xz− y+3z and S(A4) = xz2 − x2 − yz− x+2 are
degree 3 Del Pezzo surfaces.

The Groebner basis GTATA comprises a degree 2 Del Pezzo surface (see
Fig. 1, up), and a rational scroll whole analytic expression is in the first
row. Both surfaces are singular. The second row consists of two surfaces
with simple singularities of type A2 and A4, respectively. The last term
represents a curve (not a surface).

Groebner basis for polyadenylation signals. For the first polyadenylation sig-
nal considered in subsection 2.1, the relation of the fp group is rel1=AAUAAA.
The corresponding Groebner basis is:

Grel1 = 3 rational scrolls× P 2 × S(4A1)S(A1) × curve.

The Groebner basis Grel1 contains three rational scrolls, a surface bira-

tionally equivalent to the projective plane P 2, the Cayley cubic S(4A1), the
degree 3 Del Pezzo surface S(A1) = x2y − xz2 − xz + yz + x− y (see Fig. 1,
down) and a curve.

For the second polyadenylation signal considered in subsection 2.1, the
relation of the fp group is rel2=UGUAA. The factors of G(X) are seven-
dimensional hypersurfaces Sa,b,c,d(x, y, z). However, choosing specific pa-
rameters, such as S0,0,0,0(x, y, z) or S1,1,1,1(x, y, z), we obtain three-dimensional
surfaces. These are found to be degree 3 Del Pezzo surfaces with simple sin-
gularities of the form SlA2 , with l=1, 2 or 3, quadrics, or curves.

Groebner basis for the transcription factor of DBX gene. For the DBX gene
studied in Section 2.2, the Groebner basis takes the form

GDBX = scroll×P 2 × S(A4) × S(A2) × S(4A1) × curve, where scroll=y2z −
xy − yz + x − z and P 2 = z4 − x2y + xz − 4z2 + y + 2 are singular. The
other factors are DP 3 surfaces with isolated singularities that are S(A4) =
yz2 − y2 − xz − y2, S(A2) = z3 − xy2 + yz + x− 3z, the Cayley cubic S(4A1)

and curve = y3 − z2 − 3y + 2.

3. Further results

In this section, we produce further results related to mRNA metabolism
and miRNA.

3.1. Algebraic geometry of mRNA translation.

The Shine-Dalgarno box. Ribosomal RNA (rRNA) – a type of non cod-
ing RNA– is the main component of a macromolecular machine, called the
ribosome, whose role is to ensure mRNA translation. The initiation of trans-
lation needs the recognition of the appropriate sequences on the m-RNA by
the ribosome. A major factor in this recognition is an mRNA-rRNA in-
teraction first proposed by Shine and Dalgarno [28]. They proposed that
the ribosomal nucleotides recognize the complementary purine-rich sequence
rel3=AGGAGGU, which is found around 8 bases upstream of the start codon
AUG in a number of mRNAs found in viruses that affect Escherichia coli.

Let us study the group fp = 〈A,G,U |rel3〉 . The card seq of fp is found
to be the same than that of the free group F2.
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The SL2(C) chararacter variety is a scheme X whose a Groebner basis
G(X) is made of of 7-dimensional surfaces Sa,b,c,d(x, y, z). By projecting to
3 dimensions, one gets surfaces like S0,0,0,0(x, y, z) and S1,1,1,1(x, y, z) as in
Section 2.4. We find degree 3 Del Pezzo surfaces with isolated singularities
S(A1) = x2y + yz2 + 4xz + 4y and x2y + yz2 + x2 + z2 + 6xz + 5y − 6z − 7,
S(A2) = xyz + 2x2 + z2 + 4 and S(A4) = xyz + 3x2 + z2 − 5z, quadrics and
curves.

Figure 2. A diagram illustrating the main results discussed
in the text. For example, for the transcription factor of the
gene EGR1, rel=GCGTGGGCG [25, Section 4.1.2], the path
is 1 → 2 → 4 → 5 → 6 showing no risk of disease. But for the
transcription factor of gene DBX (see Section 2.2 and 2.4),
rel= TTTATTA, the path is 1 → 2 → 4 → 5 → 8 meaning a
potential disease (see Table 1).

Kozak consensus sequence. The Kozak consensus sequence is a nucleotide
motif that functions as the protein translation initiation site in most eu-
karyotic mRNA transcripts [29]. The small (40S) subunit of eukaryotic
ribosomes bind, initially at the capped 5′-end of messenger RNA and then
migrate, stopping at the first AUG codon in a favorable context for initiat-
ing translation. In eukaryotes, the Kozak sequence ensures that a protein is
correctly translated from the genetic message, mediating ribosome assem-
bly and translation initiation. A sequence logo of the most conserved bases
around the initiation codon AUG for human mRNAs may be found in the
first caption of [30] as rel4 = ACCAUGGC.

Let us study the group fp = 〈A,C,G,U |rel4〉 . The card seq of fp is found
to be the same than that of the free group F3 of rank 3. This group can be
linked to an aperiodic sequence by following the steps given in Section 2.2.
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By splitting rel4 into four segments rel4 = relArelCrelGrelU and applying
the substitution maps C → relC = A, A → relA = CCAUG, U → relU = G,
G → relG = C, we generate the substitution sequence

SKozak = C,A,U,G,CAUG,ACCAUGGC,CCAUGA2CCAUGGC2A, · · · .
Upon inspection, it’s straightforward to observe that all finitely generated

groups f
(l)
p , with their generators being

CAUG,ACCAUGGC,CCAUGA2CCAUGGC2A, · · · , respectively, pos-
sess the card seq of F3.

The aforementioned sequence has a substitution matrixM =









0 2 0 1
1 1 0 0
0 1 0 0
0 1 1 0









.

One can verify that M is primitive since M4 >> 0 and λPF ≈ 2.2055694 is
the only real (and irrational) solution of the equation x3 − 2x2 − 1. Condi-
tions (1) and (2) of Section 2.2 are satisfied, implying that the substitution
SKozak is aperiodic. See [31] for a connection of the later Perron-Frobenius
eigenvalue to random Fibonacci sequences.

Mutation of a purine at position −3 with respect to the AUG codon is
kwown to be associated to a disease such as a type of thalassemia due to a
bad initiation of α-globin [29]. In our approach the mutation from rel4 to
rel4’=CCCAUGGC leads to a substitution M ′ that is no longer primitive
so that the property of aperiodicity of the sequence is lost. However the
cardseq of the associated fp group is still that of the free group F3. No other
substitution in the sequence rel4’ can be found to restore the aperiodicity.

3.2. Algebraic geometry of miRNAs. AmicroRNA (miRNA) is a small,
single-stranded, non-coding RNA molecule containing approximately 22 nu-
cleotides. miRNAs play crucial roles in RNA silencing and post-transcriptional
regulation of gene expression by specifically targeting certain mRNAs for
degradation and translational repression [32, 33]. miRNA genes are typically
transcribed by RNA polymerase II (Pol II), which binds to a promoter lo-
cated near the DNA sequence, encoding what will become the hairpin loop of
a pre-miRNA (for precursor-miRNA). The pre-miRNAs are approximately
70 nucleotides in length and fold into imperfect stem-loop structures.

A miRNA consists of a duplex comprising two strands (-5p and -3p).
However, a single strand is selected into the RNA-induced silencing complex
to serve as a template during the transcript of a complementary mRNA
[34, 35]. For details about the miRNA sequences, we use the Mir database
[36, 37, 38].

It should be emphasized that a given miRNA may have hundreds of dif-
ferent mRNA targets, and a single target might be regulated by multiple
miRNAs.

For previous results about how to define a fp group from the seed of a
miRNA, the reader may consult [19, Section 4.3].

Below, we focus on other examples.

miRNA hsa-mir-122. Mir-122 is a tissue specific miRNA which is highly
expressed in liver [39, Figure 5]. It is involved in cholesterol accumulation
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and fathy acid metabolism. It has a leading role in controlling hapatitis C
virus (HCV) [40, 41].

The seed region for mir-122-5p is seed0=GGAGUGU. The corresponding
group fp = 〈C,G,U |seed0〉 has the card seq of the free group F2.

Let us first check if the seed sequence is aperiodic. By splitting seed0
into three segments seed0= seedAseedGseedU and applying the substitution
maps A → seedA = GG, G → seedG = AGU , U → seedU = GU , one can

check that the finitely generated groups f
(l)
p with generators

GGAGUGU, AGUAGUGGAGUGUAGUGU, · · ·
possess the card seq of the free group F2. Following the method described

in Section 2.2, one gets the (primitive) substitution matrix M =





0 1 0
2 1 1
0 1 1





whose characteristic polynomial λ3 − 2λ2 − 2λ+2 has three real roots. The
largest one is the (irrational) Perron-Frobenius eigenvalue λPF ≈ 2.481194.
One concludes the sequence seed0 is aperiodic.

Let us now look at the Groebner basis for the SL2(C) representation of fp
with the method described in Section 2.4. One obtains Gmir−122−5p(0, 0, 0, 0) =
8yz(2−z2) and Gmir−122−5p(1, 1, 1, 1) = −4z2(x−z2+z+1)(y+z3−z2−2z).
One can check that for all values of the parameters Ga,b,c,d(x, y, z) only con-
tains factors which are curves (not surfaces).

miRNA hsa-mir-503. The slowest evolving miRNA gene in the human species
(hsa) is hsa-mir-503 [37]. It regulates gene expression in various pathological
processes of diseases, including carcinogenesis, angiogenesis, tissue fibrosis,
and oxidative stress [42].

The seed region for mir-503-5p is seed1=AGCAGCGG. The correspond-
ing group fp = 〈A,C,G|seed1〉 has the card seq of the free group F2. For
this group, the Groebner basis with parameters (a, b, c, d) = (0, 0, 0, 0) is

quite simple: Gmir−503−5p(0, 0, 0, 0) = S(4A1)(x, y, z), which is the already
mentioned Cayley cubic.

For (a, b, c, d) = (1, 1, 0, 0), Gmir−503−5p(1, 1, 0, 0) = −3xyzκ3(x, y, z), where
κ3(x, y, z) is the Fricke surface found in [43, Section 3.3]. For (a, b, c, d) =
(1, 1, 1, 1), there are several more polynomials. One of them defines the
Fricke surface xyz + x2 + y2 + z2 − 2x− y − 2.

The considered seed region for mir-503-3p is GGGUAUU. The surfaces in
the Groebner basis are very simple in this case, and no simple singularities
exist within them.

miRNA hsa-mir-146a. Mir-146 is primarily involved in the regulation of
inflammation and other processes functioning in the innate immune system.
It plays a role in neuropathogenesis.

The considered seed region for hsa-mir-146a-5p is seed2=GAGAAC [37].
Again the corresponding group fp = 〈A,C,G|seed2〉 has the card seq of the
free group F2.

The Groebner basis with parameters (a, b, c, d) = (0, 0, 0, 0) is

Ghsa−146a−5p(1, 1, 1, 1) = (xz+ y+2)(y− z2+2)2(x2+ z2− 2y− 4)S(3A2),

where S(3A2) = z3 − xy − 2yz − 2x− 4z.
The Groebner basis with parameters (a, b, c, d) = (1, 1, 1, 1) is of the form
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Ghsa−146a−5p(1, 1, 1, 1) = DP 4 ×f (2A2)× quadric × curves, where DP 4 is
a degree 4 del Pezzo surface.

miRNAs and disease. As we announced earlier (see also [19]), a potential
disease is associated with fp groups which fail to satisfy at least one of three
requirements (1) the card seq of fp should be that of a free group Fr, (2) the
generating sequence should be aperiodic, (3) the SL2(C) character variety
of fp should have a Groebner basis devoid of isolated singularities (even
though the fp group may have the card seq of a free group [19, Figure 6]).

Following this criteria, the sequence hsa-mir-122-5p is healthy while the
sequences hsa-mir-503-5p and hsa-mir-146a-5p are not since the criterion
(3) is not satisfied. Additional examples can be found in [19, Table 3].

Besides isolated singularities, the Groebner basis may contain singular
surfaces that are not simply singular. TheDP 4 surface in Ghsa−146a−5p(1, 1, 1, 1)
is an example of a singular surface. Further mathematical techniques are re-
quired to investigate these surfaces [44]. However, we will not discuss these
methods in this paper.

Table 1. A few possible paths in the diagram of Figure 2
terminating at 6 (healthy) or (3)-(7)-(8) (potential disease).
The set {6, 8} denotes a lack of a clear conclusion about the
existence of an isolated singularity. The selected examples
are taken in three parts that are transcription factors (group
1), regulating elements in introns (group 2) and miRNAs
(group 3). Details are given in the text. Otherwise a refer-
ence is provided.

Sequence rel path
EGR1 [25] GCGTGGGCG 1 → 2 → 4 → 5 → 6
FOS [25] TGAGTCA 1 → 2 → 4 → 5 → {6, 8}
Nanog [25] TAATGG 1 → 2 → 4 → {7, 8}

DBX TTTATTA 1 → 2 → 4 → 5 → 8
TATA TATAAAA 1 → 2 → 3 → (7, 8)

poly(A) (rel1) AAUAAA 1 → 2 → 4 → {7, 8}
poly(A) (rel2) UGUAA 1 → 2 → 4 → {7, 8}

Shine-Dalgarno (rel3) AGGAGGU 1 → 2 → 4 → 5 → 8
Kozak (rel4) ACCAUGGC 1 → 2 → 4 → 5 → {6, 8}
Kozak (rel4’) CCCAUGGC 1 → 2 → 4 → 7

hsa-mir-122-5p [41] (seed0) GGAGUGU 1 → 2 → 4 → 5 → 6
hsa-mir-132-5p [45] CCGUGGC 1 → 2 → 4 → 5 → 6

hsa-mir-503-5p (seed1) [42] AGCAGCGG 1 → 2 → 5 → 8
hsa-mir-146a-5p (seed2) [46] GAGAAC 1 → 2 → {7, 8}

hsa-mir-7-5p [47] GGAAGA 1 → 2 → {3, 7, 8}
hsa-mir-7-5p GGAAGAC 1 → 2 → 4 → 5 → 6
hsa-mir-7-3p AACAAAU 1 → 2 → 4 → 7

hsa-mir-155-3p [35, 46] UCCUAC 1 → 2 → 4 → {7, 8}
hsa-mir-155-3p UCCUACA 1 → 2 → 3
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Table 2. A detailed group theoretical analysis of m6A mod-
ifications for bacteria (the sequence GCCAG) and eukaryotes
(sequence RRACH (R = A or G, H = A, U or C) ). Col-
umn 2 is the group closer to the fp group generated by the
sequence in column 1 (Fr is for the free group of rank r, H3

is for the modular group PSL(2,Z). If the sequence is aperi-
odic, the Perron-Frobenius eigenvalue λPF is given in column
3. The type of isolated singularity, if any, is in column 4. The
path in the diagram of Figure 2 is shown in column 5.

Sequence group aperiodic Groebner basis path
bacterial
GCCAG F2 1.83928 no 1 → 2 → 4 → 5 → 6
eukaryote
AAACA F1 no S(A2), S(A1A2) 1 → 2 → 4 → {7, 8}
AAACC H3 no no 1 → 2 → {3, 7}
AAACU F2 no no 1 → 2 → 4 → 7
GGACA F2 1.83928 S(A2), S(A2A2) 1 → 2 → 4 → 5 → 8
GGACC F2 no no 1 → 2 → 4 → 7
GGACU F3 no unknown 1 → 2 → 4 → 7

4. Discussion

In this section, we summarize our paper by referring to the diagram in
Figure 2. Given a short DNA/RNA sequence, rel, which represents a con-
sensus sequence in a transcription factor, the seed of a miRNA, or a relevant
sequence in mRNA recognition and processing, we construct a finitely gener-
ated group, fp. The architecture of subgroups, card seq, within this group is
computed (see Section 2.1). If the fp card seq matches that of the free group
Fr (of rank r equal to nt-1), we proceed to path 4; otherwise, a potential dis-
ease could be in sight (path 3). After reaching path 4, the next step involves
checking the aperiodicity of rel and the corresponding fp group, as described
in Section 2.2. The final step is to examine the presence (or absence) of iso-
lated singularities in the Groebner basis G for the SL2(C) character variety
associated with fp, as outlined in Section 2.4. For a healthy sequence, the
path concludes at 6, while a potential disease may be indicated if the path
ends at 3, 7 or 8.

In Table 1, we provide several examples of paths. All three checks can
be performed, even if paths 4 or 5 are not followed. For instance, the
termination {7, 8} signifies that the sequence fails both in being aperiodic
and in being devoid of simple singularities.

For sequences with 4 distinct nucleotides (like the sequence of transcrip-
tion factor FOX or the Kozak sequence rel4), it is difficult to conclude about
the risk of a disease. The generic Groebner basis G(x,y,z) always contains

surfaces with isolated singularities such as S(4A1) and S(3A1) and there are
four copies of them. The termination {6, 8} applies for this case.

Algebraic geometry of m6A modifications. As mentioned in the in-
troduction, a subfield of epigenetics deals about post-transcriptional mRNA
modifications. N6-methyladenosine (m6A) is the most frequent modification



14MICHEL PLANAT†, MARCELO AMARAL‡, DAVID CHESTER‡, FANG FANG‡ RAYMONDASCHHEIM‡ANDKLEE IRWIN

in most eukaryotes. But m6A is also present in bacteria with the consensus
motif GCCAG [48, 49]. An interesting aspect is that the mRNA m6A motif
in bacteria is distinct from the consensus motif in eukaryotes (RRACH). This
features the evolutionary machinery present in the last eukaryotic common
ancestor (LECA) compared to the last universal common ancestor (LUCA)
[50, Fig. 2].

In Table 2, we provide details about the group generated by these se-
quences, when the sequence is aperiodic and/or has a Groebner basis of its
character variety containing an isolated singularity. As in Table 1, the path
in the diagram of Figure 2 is shown.

We clearly read that only the bacterial sequence leads to a path termi-
nating at the edge 6 of the diagram of Figure 2. In the closest eukaryotic
sequence GGACA (from the viewpoint of group analysis), isolated singulari-

ties are found, such as the degree 3 Del Pezzo surface S(A2A2) = y3−2xz−4y.
The other sequences are not aperiodic. On the biological point of view, it is
known that an appropriate level of m6A methylation is beneficial but it may
be a risk to drive it in an artificial way because it may destroy the delicate
balance of regulations performed within the messenger RNA.

Our approach is quite comprehensive and can be applied in numerous
contexts beyond those we have considered thus far. It has the potential to
impact the search for underlying causes of diseases and aid in the discovery
of therapeutic strategies. The e-code, the processes that reveal and exe-
cute gene expression, has a sophisticated structure, which our mathematical
approach aims to elucidate.

Author contributions

Conceptualization, M.P., F.F. and K.I.; methodology, M.P., D.C. and R.A.;
software, M.P.; validation, R.A., F.F., D.C. and M. M.A..; formal analysis, M.P.
and M. M.A.; investigation, M.P., D.C., F.F. and M. M.A.; writing–original draft
preparation, M.P.; writing–review and editing, M.P.; visualization, F.F. and R.A.;
supervision, M.P. and K.I.; project administration, K.I..; funding acquisition, K.I.
All authors have read and agreed to the published version of the manuscript.

Funding

Funding was obtained from Quantum Gravity Research in Los Angeles, CA.

Data Availability

Computational data are available from the authors.

Acknowledgments

The first author would like to acknowledge the contribution of the COST Action
CA21169, supported by COST (European Cooperation in Science and Technology).

Conflicts of Interest

The authors declare no conflict of interest.



GROUP THEORY OF MESSENGER RNA METABOLISM AND DISEASE 15

References

[1] Gu, C.; Kim G. B.; Kim, W. J.;Kim, H. U.; Lee, S. Y. Current status and applications
of genome-scale metabolic models. Genome Biology 2019, 20, 121.

[2] Romão, L. mRNA metabolism in health and disease. Biomedicines 2022, 10, 2262.
[3] Peedicayil, J. Genome–environment interactions and psychiatric disorders.

Biomedicines 2023, 11, 1209.
[4] Scharf, S.; Ackerman, J.; Bender, L.; Wurzel, P.; Schäfer, H.; Hansmann, M. L.; Koch,
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