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ABSTRACT 

Purpose – In this article, the authors present a semi-analytical model of a squirrel-cage induction 

machine (SCIM), considering local magnetic saturation and eddy-currents induced in the rotor bars. 

Design/methodology/approach – The regions of the rotor and stator are divided into elementary 

subdomains (E-SDs) characterized by general solutions at the first harmonic of the magneto-harmonic 

Maxwell's equations. These E-SDs are connected in both directions (i.e., along the r-and θ-edges). 

Findings – The calculation of the magnetic field has been validated for various values of slip and iron 

permeability. All electromagnetic quantities were compared to those obtained using a two-dimensional 

(2-D) finite-element method (FEM). The semi-analytical results are satisfactory compared to the 

numerical results, considering both the amplitude and waveform. 

Originality/value – Expansion of the recent analytical model (E-SD technique) for the full prediction of 

the magnetic field in SCIMs, considering the local saturation effect and the eddy-currents induced in the 

rotor bars. 

Keywords Magnetic field, Analytical methods, Induction machines, Eddy-currents, Elementary 

subdomain technique, Electromagnetic performances. 

Paper type Research paper. 
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1. INTRODUCTION:  

Induction machines (IM) find diverse applications in industrial and domestic sectors, emphasizing the 

importance of enhancing electric device performance and minimizing energy consumption. While the 

finite-element method (FEM) is commonly employed for studying electric machine design, its use in 

optimal design can be time-consuming. On the contrary, semi-analytical models offer a fast, accurate, 

and particularly suitable alternative for the early stages of optimal design. The subdomain (SD) 

technique stands out as an efficient semi-analytical method for computing the magnetic field in electrical 

machines. Several state-of-the-art studies on this technique in electric machines can be found in 

(Devillers, et al., 2016), (Tiegna, et al., 2013) and (Dubas & Boughrara, 2017a). The application of this 

modeling to squirrel-cage induction machines (SCIMs) can be found in (Roubache, et al., 2016), 

(Boughrara, et al., 2014), (Lubin, et al., 2011) and (Sprangers, et al., 2014). However, these research 

studies neglect the saturation effect in iron parts. Magnetic circuit saturation significantly influences 

machine inductance, torque ripple, power factor, and efficiency. Therefore, the consideration of 

saturation is crucial for accurately predicting machine performance. Various approaches have been 

proposed to model the magnetic saturation effect in IMs. In (Moulahoum, et al., 2007) and (Aller, et al., 

2013), defined coefficients based on the flux linkage of the machine were added to the equivalent circuit 

approach to modulate magnetic saturation. The air-gap saturation flux harmonics are used in (Tu, et al., 

2008) to predict the magnetization level. In (Mollaeian, et al., 2021), the authors used Fourier-based 

modeling considering finite permeability to model magnetic saturation in IM. Recent work has focused 

on the calculation of the magnetic field inside the machine considering the magnetic saturation effects 

(Roshandel, et al., 2020) and (Roshandel, et al., 2022). The authors proposed a coupled model based on 

electric equivalent circuit (EEC) and SD technique with magnetostatic formulation. The EEC parameters 

were calculated using magnetic vector potentials obtained from the SD model. A similar approach has 

been proposed in (Sapmaz & Oner, 2022). The model combines the magnetic equivalent circuit and SD 

technique to calculate electromagnetic performance of IMs considering steel permeability. In this paper, 

we proposed a direct consideration of the local saturation effect in the calculation of the magnetic field 

using the SD technique. 

A new scientific contribution to the SD technique is proposed in (Dubas & Boughrara, 2017a) and (Dubas 

& Boughrara, 2017b) by incorporating ferromagnetic regions. The general solution of the 2-D magneto 

static field equations is decomposed into a Fourier series based on two solutions in both directions. The 

interface conditions (ICs) on different edges are then satisfied through the application of the principle of 

superposition. This methodology was implemented on radial flux electric machines with permanent-
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magnets in (Roubache, et al., 2018). In (Roubache, et al., 2019), the authors developed a semi-analytical 

model with local magnetic saturation using the iterative Newton-Raphson (NR) algorithm. The main idea 

of this innovative model is to mesh the rotor and stator regions into elementary subdomains (E-SDs). 

While the general solution remains consistent with that in (Roubache, et al., 2018), the E-SDs are assumed 

to be small enough for the variation of the magnetic vector potential to be considered insignificant. Thus, 

only the first harmonics in the r and θ directions are considered in the general solution. 

In this paper, the authors proposed semi-analytical modeling of a SCIM in magneto-harmonic 

formulation using the E-SDs technique. The model accounts for the effect of local magnetic saturation 

and considers the eddy-currents induced in the rotor bars. By assuming sufficiently small E-SDs, the 

estimation of eddy-currents in the rotor bars becomes feasible. The proposed model is utilized to 

simulate SCIM for various values of relative permeability and slip. The 2-D semi-analytical results are 

then compared with those obtained using FEMM (Meeker, 2009). 

2. MATHEMATICAL FORMULATION IN E-SDs 

2.1. Assumptions  

The proposed model is formulated in magnetic vector potential A with the following assumptions: 

• the end-effects are neglected (i.e., that the magnetic variables are independent of z); 

• the stator slots/teeth and the rotor slots/teeth have radial sides; 

• the current density has only one component along the z-axis; 

• except rotor bars, the electrical conductivities of materials are assumed to be null; 

• the E-SDs are considered as isotropic regions; 

• the iron reluctivity is a function of the mean value of the magnetic field B in each E-SD. 

2.2. Mesh generation and magnetic field solution  

The main concept of the proposed model involves partitioning the regions of the machine into E-SDs. 

The general solution of Maxwell's equations is then employed, following the approach in (Roubache, et 

al., 2019), where only the first radial and tangential components are considered. However, the solutions 

within the E-SDs corresponding to the rotor bars are modified to account for the eddy-currents. 

Figure 1 illustrates a SCIM with the identification of various regions, while Figure 2 shows the 

meshing of the rotor and stator regions using E-SDs. 
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Figure 1: Squirrel-cage induction machine 
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Figure 2: Mesh in E-SDs of: (a) stator and (b) rotor 

In the magneto-harmonic model, the magnetic vector potential is expressed as follows: 

( ) ( ) , , , t
z zA r t e A r e   =  j

 in the air-gap & the stator (1) 
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( ) ( ) , , , rm t
z zA r t e A r e

  
= 

j
 with rm rs p   = = −  in the rotor (2) 

where 1= −j , rm  is the electrical pulsation at the rotor, s is the slip,   is the electrical pulsation at 

the stator, p is the number of pole pairs, and r  is the angular speed of the rotor. 

The partial differential equation derived from Maxwell's equations for each subdomain Ω is expressed as 

follows: 

0 rz zmA A  = j  for 
j
rb  (3) 

0
i

z szA J = −   for 
i
se  (4) 

0zA =  for rf sf si ri I      (5) 

where 
i
szJ  is the current density in the ith stator slot,   is the conductivity of the rotor bars, 

i
se  & 

j
rb  

are respectively the ith stator slot and the jth rotor bar, rf  & sf  are the regions of iron, ri  & si  are 

respectively the slot-openings in the rotor and in the stator, and I  is the air-gap region (Region I). 

The solution of the Helmholtz equation (3) in the rotor bars results in Bessel functions in the radial 

direction (Roubache, et al., 2016). However, these functions are non-periodic and unsuitable for 

connecting the E-SDs at the r-edges. Since the E-SDs are sufficiently small, the variation of rb
zA


can be 

considered insignificant. This consideration leads to only considering the first harmonics according in 

the r and θ direction. Furthermore, we can assume that the eddy-currents induced in each E-SD, which 

belong to the rotor bars, are constant. Therefore, (3) can be simplified to: 

0
j

z rzA J = −   for 
j
Rb  (6) 

( ),j j
rz rz rm zJ r J A  = − j  (7) 

where zA  is the mean value of zA  in 
j
Rb . 

The formulation presented in this paper necessitates defining the mesh elements illustrated in Figure 2 

  1
1

Lr
l Lr    =   (8) 

  1
1

Lr
l Lra a a a =   (9) 

  1
1

Ls
l Ls    =   (10) 

  1
1

Ls
l Lsb b b b =   (11) 

  ( 1) 1
int 1

Kr
k KrRr R Rr Rr + 

+=   (12) 
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  ( 1) 1
1

Ks
s k KsRs R Rs Rs + 

+=   (13) 

 ,k l Ks Ls
II II  =   (14) 

 ,k l Ks Ls
z II IIJ J =   (15) 

 ,k l Kr Lr
III III  =   (16) 

 ,k l Kr Lr
III III  =   (17) 

with 

,
0,

,
0

1
if  

1
if  

II
k l sf si

k l
II

II
k l sf

r




 


  


= 
  


 (18) 

,,

,

0 if  

if  

II
k l sf sik l

II i II i
sz k l se

J
J

   
= 

 

 (19) 

,
0,

,
0

1
if  

1
if  

III
k l rb ri

k l
III

III
k l rf

r




 


  


= 
  


 (20) 

,,

,

0 if  

if  

III
k l rf rik l

III III
k l rb




   
= 

 

 (21) 

The solution of (4) ~ (6) are defined for each region as follows (Dubas & Boughrara, 2017b): 

• In the air-gap (Region I): 

0 0

=1

=1

( , ) = 1 2 ln( ) 1 2 ( )

3 4 ( )

n n

z I n n
s rn

n n

n n
s rn

r r
A r A A r A A sin n

R R

r r
A A cos n

R R

 



−

−

    
 + + +   
    

    
 + +   
    





 (22) 

where  0 01 ; 2 ; 1 4n nA A A A  are the integration constants in the air-gap, and n the spatial harmonics. 
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• In the stator (Region II) 

( ), , , , 2 , ,
1 2 0 3 4

, ,
5 6

1
= ln( ) cos

4 2

sinh sinh sin ln
2 2

sl slk l k l k l k l k l k l l
z II II sl l

k l k ll l
sk l sk l sk

k

b
A C C r J r C r C r

b b r
C C

Rs

    

      

−   
+ − + + − +  

  

          
+ − + + − −          

          

 (23) 

with 

( )1ln
sk

k kRs Rs




+

=  & sl
lb


 =  (24) 

where  , ,
1 6
k l k lC C  are the integration constants in the stator. 

• In the rotor (Region III) 

According to (6), the general solution in the rotor can be defined by 

( ), , , , 2 , ,
1 2 0 3 4

, ,
5 6

1
= ln( ) cos

4 2

sinh sinh sin ln
2 2

rl rlk l k l k l k l k l k l l
z III z III rl l

k l k ll l
rk l rk l rk

k

a
A B B r J r B r B r

a b r
B B

Rr

    

      

−   
+ − + + − +  

  

          
+ − + + − −          

          

 (25) 

with  

( )1ln
rk

k kRr Rr




+

=  & rl
la


 =  (26) 

yet, , ,,k l k l
z III III

k l
z IIrm IJ A  = − j  which give 

( ), , , , , ,
1 2 2 , 5 5 6

, , ,k l k l k lk l k l k l
m

k l k l k l
kz III III r IIIl zJ B BJB B    + − += − −

 
j  (27) 

with 

( )2
0

2
, 1 8k l k kRr Rr  += +  (28) 

( ) ( )

,

2 2
1 1,

2

ln ln 1

2 2III
k l

l k k k kk l
a Rr Rr Rr Rr

S


+ +



 −
 

= −  (29) 

( ) ( )

( )

1

,

2ln

, 2
5 2

cosh 1 1

4

k k

III
k l

Rr Rr
rk l

k l
k

rk

a e
Rr

S






+



  − +   =
+

 (30) 

and ( )
,

2 2
1 2III

k l
l k kS a Rr Rr+

= −  represents the area of ,
III
k l  
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Finally, by using (27) ~ (30), (25) becomes 

( )( )

( )

, , , , , , , , , , 2
1 2 1 2 2 5 5 6

, ,
3 4

, ,
5 6

= ln( )

cos
2

sinh sinh sin ln
2 2

rl rl

k l k l k l k l k l k l k l k l k l k l
z III

k l k l l
rl l

k l k ll l
rk l rk l rk

k

A B B r B B B B r

a
B r B r

a a r
B B

Rr

 

  

  

      

−

+ + + + −

  
+ + − +  

  

        
+ − + + − −       

        

 
  

 

 
(31) 

with  

( )

,
,

,
,

0

4 1

k l

k l

k l
II rm

k l
II rm

 









=

−

j

j
 (32) 

where  , ,
1 6
k l k lB B  are the integration constants in the rotor. 

 

2.3. Performing of the interface conditions (ICs) 

By considering the ICs between the various domains and regions, it becomes possible to determine the 

integration constants in (22), (23) and (31) through the solution of the following system of linear 

equations: 

M X Y =  (33) 

with 

( ) ( )

( )

( )

11 12 13

22

33

41 42 , 43 ,

52 ,

63 ,

0 0

0 0

0 0

0 0

k l k l
III II

k l
III

k l
II

M  





   
 

 
 

 
 =
  
 
 

 
 

  

 (34) 

a
T

air rotor statorX b c =
 

 (35) 

1 2 3 4 5 6Y  =      
 

 (36) 

  ( )4 2 1
0 0 1 1a 1 1 2 2 3 3 4 4

Nair
N N N NA A A A A A A A

+ 
=   (37) 

( )6 1, ,1,1 1,1 1,2 1,2
1 6 1 6 1 6

r rr r r r K LK L K Lrotorb B B B B B B
 = 

 
 (38) 
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( )6 1, ,1,1 1,1 1,2 1,2
1 6 1 6 1 6

s ss s s s K LK L K Lstatorc C C C C C C
 = 

 
 (39) 

The development of these ICs and submatrices can be referenced in (Roubache, et al., 2019). 

 

2.4. Newton Raphson’s (NR’s) Iterative Algorithm 

The integration constants in (33) (i.e., vector X) can be determined by solving the following system of 

nonlinear equations obtained from the ICs between the various regions. 

 ( ) ( ) 0f X M X X Y= + =  (40) 

It is important to note that  11 12 13 22 33; ; ; ;     , corresponding to the ICs of zA , remains 

unaffected by the reluctivity of the materials. On the other hand, the remaining submatrices correspond 

to the ICs of / /H , which depend on the reluctivity of the materials and are also related to the unknowns’ 

vector X. 

The Jacobian matrix of ( )f X  can be written for the kth iteration as 

 ( ) ( )k k k kJ X M X X = + 
   (41) 

where 

  42 43

52

63

0 0 0

0 0 0

0 0 0

0

0 0

0 0

rotor stator

rotor

stator

b c

b

b

 
 
 
 
  =

    
 

 
 
   

 (42) 

The solutions of magnetic vector potential in iron regions (i.e., rf  & sf ) have the same form as in 

the case of magnetostatic study. Moreover, the Jacobian matrix is independent of the integration 

constants of the other regions. Therefore, the description of    and the NR’s iterative formula can be 

found in (Roubache, et al., 2019). Figure 3 shows the flowchart for calculating electromagnetic 

performance. 

 



 

10 

 

 

Figure 3 : Flowchart for calculating electromagnetic performance 

 

3. RESULTS AND VALIDATIONS 

3.1. Electromagnetic performances 

The developed semi-analytical model is used to determine the magnetic field in all regions of the SCIM, 

as well as the surface density of eddy-currents induced in the rotor bars and the electromagnetic torque. 

The geometric and physical parameters of the machine are detailed in Table 1 . 

Figures 4~6 illustrate the various components of magnetic flux density in the middle of the air-gap for 

different values of the relative permeability of iron and slip (i.e.,       ; 100; 0.1 , 600; 0.1 , 600;1r s = ). 

The semi-analytical results exhibit a strong agreement with the numerical results concerning both 

amplitude and waveform. The amplitude gradient of the magnetic flux density and magnetic vector 

potential inside the SCIM for    ; 600; 0.1r s =  are respectively illustrated in Figures 7-8. 

Figures 9-10 represent the eddy-currents induced in the rotor bars obtained analytically and numerically 

for      ; 600; 0.1 , 600;1r s = . The semi-analytical results demonstrate a high level of agreement with 

the numerical results. 
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Table 1 : Geometrical and physical parameters of the SCIM 

Symbol Parameters Value 

mI  Peak phase current 18 A 

mV  Peak phase voltage 220 V 

nP  Nominal power 3 kW 

nN  Nominal speed 1,425 rpm 

ns  Nominal slip 5% 

cN
 

Number of conductors per stator slot 60 

  Electrical conductivity of rotor bars 35 MS/m 

sQ  Number of stator slots 24 

c  Stator slot-opening 7.5 deg. 

rc  Stator isthmus-opening 2.5 deg. 

a  Rotor slot-opening 5.45 deg. 

ra  Rotor isthmus-opening 1.9 deg. 
p  Number of pole pairs 2 

extR  Radius of the external stator surface 95 mm 

4r  External radius of stator slot 83 mm 

3r  Internal radius of stator slot 63 mm 

sR  Radius of the internal stator surface 61 mm 

rR  Radius of the external rotor surface 60 mm 

2r  External radius of rotor bars 58 mm 

1r  Internal radius of rotor bars 48 mm 

intR t Radius of the rotor inner surface 20 mm 

G  Air-gap thickness 1 mm 

uL  Axial length 63 mm 

 
 

 
Figure 4 : Waveform of r- and θ-component of B in the middle of the air-gap for µr = 100 and s = 0.1 
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Figure 5 : Waveform of r- and θ-component of B in the middle of the air-gap for µr = 600 and s = 0.1 

 
Figure 6 : Waveform of r- and θ-component of B in the middle of the air-gap for µr = 600 and s = 1 

 

  

(a) (b) 

Figure 7 : Magnetic flux density inside the SCIM for µr = 600 and s = 0.1 : (a) analytic and (b) FEM 
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(a) (b) 

Figure 8 : Magnetic vector potential inside the SCIM for µr = 600 and s = 0.1 : (a) analytic and (b) FEM 

 

  

(a) (b) 

Figure 9 : Resultant eddy-current in the rotor bars for µr = 600 and s = 0.1 : (a) analytic and (b) FEM 

 

  

(a) (b) 

Figure 10 : Resultant eddy-current in the rotor bars for µr = 600 and s = 1: (a) analytic and (b) FEM 
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3.2. Nonlinear simulation results 

In this section, the iron parts are considered to have nonlinear characteristic (i.e., 455 stainless steel). 

This characteristic is represented using the analytical model given in (Cale, et al., 2006). The B(H) curve 

and its parameters are provided in Figure 11. To determine the fundamental of the stator current, 

including its amplitude and phase shift, for the voltage supply, an EEC can be used (Roubache, et al., 

2016). 

Figure 12 shows the magnetic flux density in the middle of the air-gap with and without considering the 

magnetic saturation. The simulation is performed for s = 1 and Im = 70 A to illustrate the impact of the 

magnetic saturation on the waveform of magnetic flux density. The relative permeability issued from the 

developed semi-analytical model is compared to that obtained by FEM (see Figure 13), showing good 

agreement. 

Figure 14 illustrates the electromagnetic characteristics of the SCIM as a function of slip. It is observed 

that the results are consistent with those obtained by FEM for slip values below 0.1. However, at high 

slip values, the model gives an error of 5% to 10% between the analytical and numerical obtained 

currents. This error also extends to the electromagnetic torque results and is attributed to considering the 

eddy-currents induced in the rotor bars as constants. 

The difference between the results obtained with and without considering the magnetic saturation is 

significant for high slip values. The explanation is that the increase in active current due to an increased 

load (or slip) saturates the magnetic circuit of the SCIM. This saturation results in a reduction of the 

machine's equivalent reactance, ultimately causing an increase in reactive current. 

 
 

 
Figure 11 : Parameters of B(H) curve according to the analytic model in (Cale et al., 2006) 
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(a) (b) 

Figure 12 : Waveform of r- and θ-component of B in the middle of the air-gap with and without saturation for s=1 and 

I = 70 A 

 

  
(a) (b) 

Figure 13: Waveform of relative permeability at the radius: (a) (r2+Rr)/2 and (b) (r3+r4)/2 for s=1 and I = 70 A 

 

  

(a) (b) 

Figure 14 : Electromagnetic characteristics of the SCIM with and without saturation as a function of slip: (a) Stator 

current and (b) Electromagnetic torque 
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Table 2 : Computation time, accuracy and size of the system 

 Size of M 12,522 9,882 7,378 5,746 5,170 

r  s  Time (min) 3.1 1.56 0.62 0.31 0.23 

100 

0,1 
EB (%) 4.15 4.2 4.18 4.23 4.28 

EΓ (%) 0.9 0.93 1.69 2.02 1.98 

1 
EB (%) 5.17 5.94 6.51 9.9 10.04 

EΓ (%) 1.87 2.13 4.02 7.11 7.21 

1000 

0,1 
EB (%) 4.19 4.18 4.5 6.72 6.68 

EΓ (%) 1.1 1.17 2.01 4.9 4.77 

1 
EB (%) 6.2 6.42 7.33 10.9 10.92 

EΓ (%) 0.63 0.69 2.04 6.73 6.64 

 

3.3. Model limitation – Size, accuracy and computation time 

One essential aspect that needs addressing is the limitation of the semi-analytical model compared to the 

numerical model in terms of accuracy and computation time. It is evident that considering the harmonics 

of the eddy-currents induced in the rotor bars (Devillers, et al., 2018) for studying steady-state behavior 

at a given slip provides a significant advantage over the numerical model in terms of computation time, 

as the numerical model consumes considerable time in transient regime computations. However, a 

comparison between the proposed model and the magneto-harmonic numerical model has been 

conducted. 

The accuracy of the developed model is directly related to the size of the E-SDs. This parameter can be 

evaluated in terms of the dimension of the linear system matrix M in (33). Table 2 represents the 

relative error between the semi-analytical and numerical models as a function of the size of matrix M 

and the computation time. The relative error is presented concerning the magnetic field in the middle of 

the air-gap and the electromagnetic torque. These errors are calculated as follows: 

( )
( )

( )
%

Num Ana
I I

Num
I

RMS
E

RMS

−
=B

B B

B
 (43) 

( )%

Num Ana

Num
E 

 − 
=


 (44) 

The numerical results of the magnetic field are calculated with 185,341 nodes and 369,262 elements, 

with a computation time of 2.26 minutes. Table 2 demonstrates that the semi-analytical model provides 

good results for a high size of matrix M, but with a computation time comparable to that of FEM. 

However, for low values of slip (e.g., 0,1s = ), where the magnetic vector potential exhibits minimal 
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distortion, it becomes possible to approximate by considering only one harmonic in the SDs-E without 

meshing the rotor and stator into very fine elements. In this case, the obtained error is approximately 6% 

for the magnetic field and 4% for the electromagnetic torque, with a significantly reduced computation 

time of less than 0.3 minutes. 

 

4. CONCLUSION 

In this paper, a semi-analytical model of SCIMs considering the local magnetic saturation effect and the 

eddy-currents induced in the rotor bars is presented. The developed modeling is based on the E-SDs 

technique, with the main assumption that the variation of the magnetic vector potential is not significant 

within the E-SDs. As a result, the eddy-currents in each E-SD belonging to the rotor bars are considered 

constant. These E-SDs are connected in both radial and tangential directions. The semi-analytical model 

has been validated for various values of slip and iron permeability with and without considering the 

magnetic saturation. The results are in good agreement with those obtained by FEM. 

In cases where the magnetic vector potential is highly distorted, obtaining acceptable results requires 

meshing the rotor and stator into very fine E-SDs, which increases the computation time. Therefore, 

there is a need to optimize the implementation of this model, either by focusing on the optimal size of 

the E-SDs or by proposing solutions within the E-SDs that minimize the number of integration 

constants. 
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