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Abstract

Purpose The Oncotype DX (ODX) test is a commercially available molecular test for
breast cancer assay that provides prognostic and predictive breast cancer recurrence
information for hormone positive, HER2-negative patients. The aim of this study is to
propose a novel methodology to assist physicians in their decision-making.

Methods A retrospective study between 2012 and 2020 with 333 cases that underwent
an ODX assay from three hospitals in the Bourgogne Franche-Comté region (France) was
conducted. Clinical and pathological reports were used to collect the data. A method-
ology based on distributional random forest was developed to predict the ODX score
classes (ODX < 25 and ODX > 25) using 9 clinico-pathological characteristics. This
methodology can be used particularly to identify the patients of the training cohort
that share similarities with the new patient and to predict an estimate of the distribu-
tion of the ODX score.

Results The mean age of participants is 56.9 years old. We have correctly classified
92% of patients in low risk and 40.2% of patients in high risk. The overall accuracy is
79.3%. The proportion of low risk correct predicted value (PPV) is 82%. The percentage
of high risk correct predicted value (NPV) is approximately 62.3%. The Fl-score and
the Area Under Curve (AUC) are of 0.87 and 0.759, respectively.

Conclusion The proposed methodology makes it possible to predict the distribution
of the ODX score for a patient. This prediction is reinforced by the determination of a
family of known patients with follow-up of identical scores. The use of this methodology
with the pathologist’s expertise on the different histological and immunohistochemical
characteristics has a clinical impact to help oncologist in decision-making regarding
breast cancer therapy.

Keywords Breast Cancer - Oncotype DX - Clinico-pathological data - Machine
Learning - Distributional Random Forest

Zeina Al Masry
E-mail: zeina.almasry@femto-st.fr

1 SUPMICROTECH, CNRS, institut FEMTO-ST, 24 rue Alain Savary, Besancon, F-25000, France.

2 Université de Franche-Comté, CNRS, LmB, F-25000 Besancon, France.

3 Service d’anatomie et cytologie pathologiques, Hépital Nord Franche-Comté, 100 Route de Moval,
90400 Trévenans, France.



2 Zeina Al Masry?! et al.

1 Introduction

The Oncotype DX (ODX) test is a commercially available molecular test for breast
cancer assay (Genomic Health) that provides prognostic and predictive breast cancer
recurrence information for hormone positive, HER2-negative patients. The ODX test is
based on 1A-level evidence and it is included in the main international clinical guidelines
recommendations such as those of the American Society of Clinical Oncology (ASCO
[B]) or the National Comprehensive Cancer Network (NCCN) as well as in the last
staging guidelines of AJCC 8th edition [I2]. The ODX test is the most widely available
molecular test used in the world. This assay analyzes 21 genes by RT-qPCR, (16 cancer-
related genes and 5 housekeeping genes) and aims to predict the risk of recurrence at
10 years by providing a recurrence score ranging from 0 to 100 and to estimate the
benefit of adjuvant chemotherapy. Several retrospective and prospective studies have
validated this test and its clinical utility. Paik et al. [23] have shown a correlation between
ODX score and disease-free survival in patients with ER-positive/HER2-negative, node
negative, tamoxifen-treated breast cancer, based on the NSABP B-14 trial. As for the
chemotherapy benefits, Paik et al. [24] and Albain et al. [I] have evaluated the test
using the studies related to NSABP-B20 and SWOG 8814. The prospective phase 111
trial TAILORx study [27] has modified the ODX score’s cutoff values (low risk <11,
intermediate risk 11-25 and high risk >25) in order to avoid under-treatments of cancer.
To be more precise, in the low group, the risk of recurrence at 5 years is very low (<
10%) with hormonal therapy, which confirms the uselessness of adding a chemotherapy
[26]. For the intermediate group, chemotherapy has a benefit only for women younger
than 50 years old. For the high-risk group, the chemotherapy is highly recommended.
Nevertheless, one third of women with hormone-receptor positive breast cancer have a
lymph node disease. Thus, the prospective trial RxPONDER trial study analyzes the
capacity of the ODX test to predict the benefit of chemotherapy for women with positive
lymph node disease [16]. RxPONDER showed that postmenopausal patients with node
involvement and an ODX score between 0 and 25 did not benefit from chemotherapy,
whereas premenopausal patients with node involvement with 1-3 nodes and ODX scores
between 0 and 25 benefited significantly from chemotherapy.

Despite its proven value, the ODX test is not routinely used due to its high cost.
For this reason, less than 20% of patients in Europe have access to the ODX test.
Health-related economic studies are performed to understand for which patients the
assay is the most useful [2]. From this economic point of view, many alternative tools
have been developed to predict this score. These tools are based on clinico-pathological
data such as Magee equations [I8] 28] and the THC4 score [30]. Indeed, many studies
have shown the correlation between the results of the latter tools and the ODX score
[I1]. Few works used features with machine learning techniques in order to provide an
ODX-based methodology to divide the patients into categories corresponding to low or
high risk of cancer [17, 22] 5] 25].

The aim of this paper is to propose a novel methodology to assist physicians in their
decision-making. It is based on random forests for distributional regression as presented
in Meinshausen [2I] and Athey et al. [4]. This methodology creates links between a new
patient and the cohort used for training based on clinico-pathological characteristics.
These links can be used particularly to identify the patients of the training cohort that
share similarities with the new patient and to predict an estimate of the distribution of
the ODX score (ODX < 25 and ODX > 25). This information is available to clinicians
to help them better understand the probable clinical evolution of the tumor in order
to optimize the treatment. Moreover, it enables knowledge capitalization by feedback
and analysis of patient history. One of the consequences of this study is to weigh the
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variability of the anatomo-pathological data, so this new methodology can adapt to the
specificities of a cohort.

2 Materials and methods
2.1 Dataset description

The cohort is a retrospective study between 2012 and 2020 with 333 cases that underwent
an ODX assay from three hospitals in the Bourgogne Franche-Comté region (France):
Besangon, Belfort and Dijon. All patients have ER-positive and HER2-negative early
breast cancer. Clinical and pathological reports were used to collect the data such as the
age at diagnosis, the menopausal status, the treatment, the recurrence, the tumor size,
the lymph node status, the histological type, the Nottingham grade, hormone receptors
for estrogen (ER) expression, hormone receptors for progesterone (PR) expression, the
human epidermal growth factor receptor 2 (HER2) status and the protein p53 and Ki67
proliferation index. Immunohistochemical staining was performed (Ventana Benchmark
XT system®, Roche™) on the tumor block of ODX testing with UltraView Universal
DAB detection with ER antibody (clone SP1; Roche/Ventana Medical Systems, Tucson,
USA), PR antibody (clone 1E2; Roche/Ventana Medical Systems, Tucson, USA), HER2
antibody (clone 4B5; Roche/Ventana Medical Systems, Tucson, USA), Ki67 antibody
(clone Mib-1, Dako, Glostrup, Denmark) and p53 antibody (clone DO-7, Dako, Glostrup,
Denmark). The HER2 immunostaining was interpreted using the 2018 ASCO/College
of American Pathologists guidelines [29]. The Ki67 proliferation index was evaluated by
manual counting with counter on at least 200 tumor cells. The protein p53 was assessed
by immunohistochemistry. The positive threshold is greater than 10% of the tumor cells’
nuclei. The ODX test was realized by Genomic Health (Redwood City, CA, USA) and
analyzed 21 genes by RT-qPCR from paraffin-embedded blocks of tumor tissue. The
ODX score was obtained from the clinical reports. The three ODX categories were the
same as the ones defined in the ODX assays using TAILORx and RxPONDER: low risk
(< 16), intermediate risk (16-25) and high risk (> 25). The institution review board
approved this study.

The cohort contains more than 50 features, from which we selected the most critical
ones using feature importance in random forest and physicians’ assessments. Table
describes the tumor characteristics using the features selected for our study.

2.2 Distributional Random Forest

Random Forest [7] is a powerful machine learning algorithm that can be used for pre-
diction in various settings and has been successfully applied in the field of medicine
[9, 10}, B1]. Our goal here is to predict the result of the expensive ODX test based on
clinico-pathological features. We propose the use of Distributional Random Forest that
provides a predictive distribution for the ODX score based on the clinico-pathological
features. We shall expose the methodology for Random Forest (RF) and Distributional
Random Forest (DRF).

Standard regression links the mean of the response variable Y to a set of features X
based on observations from a training sample of feature-response pairs, say (X;,Y;) for
t=1,...,n. RF is an ensemble method that consists in the bootstrap aggregation [6]
of randomized classification and regression trees (CART, [8]). The predictive mean can
be written as the average

1 &
V=23 n(X), (1)
b—1
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Table 1 ODX score distribution by patient and tumor characteristics.

Percentage of patient by category
<16 16 — 25 > 25 Total
Population 113 138 82 333
Age < 50 yr 14.41 10.51 5.71 30.63
> 50 yr 19.52 30.92 18.92 69.37
< 1lcm 3.90 4.51 3.00 11.41
Tumor size 1-2 cm 15.62 22.52 15.62 53.76
> 2 cm 14.41 14.41 6.01 34.83
p53 < 10% 18.62 23.12 12.01 53.75
> 10% 15.32 18.32 12.61 46.25
1 5.41 3.30 0.00 8.71
SBR grade 2 21.02 24.03 10.81 55.86
3 7.51 14.11 13.81 35.43
1 12.61 14.42 4.50 31.53
Mitotic grade 2 17.12 20.12 12.01 49.25
3 4.20 6.91 8.11 19.22
Negative 0.00 0.00 0.00 0.00
ER status Positive (> 10%) 33.93 41.44 24.63 100
Negative 2.10 7.51 8.11 17.72
PR status Positive (> 10%) 31.83 33.93 16.52 82.28
< 10% 0.00 0.30 0.00 0.30
Ki67-positive cells 10 — 20% 16.22 15.92 4.80 36.94
> 20% 17.72 25.22 19.82 62.76
0 15.02 15.52 13.81 45.35
1 10.81 14.11 4.20 29.13
Lymph node status 2 3.61 3.30 0.90 7.81
3 1.80 2.10 2.10 6.00
NA 2.70 5.41 3.60 11.71

where T1(X),...,Tg(X) corresponds to the prediction of the different trees built on
different bootstrap samples. Each single tree prediction takes the form of an average
across a neighborhood of X in the tree, i.e.

1
Ty(X) = [Ro(X)] Y o,

XiERb(X)

where Ry(X) denotes the neighborhood of X in the tree T; and |Rp(X)| the numbers
of observations that fall into this region. Consequently, the RF prediction has the
equivalent form

V=) wi(X)Y;, (2)
i=1
with the RF weights defined by
wi( Z Lxiercoy GR(X . 1<i<n. (3)
B |Rp(X -

These weights are non-negative with sum 1 (probability weights).

The main idea of DRF relies on Equation : the prediction Y is the sample mean of
the weighted sample Y; with weights w;(X) which can be seen as an approximation of the
conditional distribution of Y given X. The cumulative distribution function F'(y|X) =
P(Y < y|X) is thus approximated by

F(y|X) = sz Myi<yy- (4)
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This idea was first suggested by Meinshausen [21I] who proposed the construction of
quantile regression forest by approximating the conditional quantile of Y given X by
the quantiles of the weighted empirical distribution .

Figure|l| presents a synthetic representation of the DRF procedure with the different
steps: subsampling of the original sample, tree construction on each subsample, compu-
tation of the neighborhood/weights at the point to predict, averaging of weights given
by the different trees that finally provide the predictive distribution.

The RF weights are interesting in themselves and provide relevant information
in terms of similar/influential observations. Given a new feature X, the weight w;(X) is
interpreted as the proportion in which the observation Y; contributes to the prediction
of Y given X. Observations with the largest weights are interpreted as the nearest
neighbors of X in terms of an implicit metric on the predictor space that is tailored
for predicting the response, see [19]. The RF weights make it possible to identify the
most similar/influential individuals in the training data. Comparing a new individual
with clinico-pathological features X to observations with similar clinico-pathological
features help us to predict the ODX score and understand the relationship between
clinico-pathological features and the ODX score.

Finally, let us mention that the weights — depend on the specific structure of
the trees that are used for prediction. Trees are grown by recursive binary splitting,
maximising a homogeneity criterion; the goal is to partition the feature space into dif-
ferent regions that are as homogeneous as possible. In the standard CART algorithm,
the variance is used as the homogeneity criterion, resulting in a partition adapted to
the prediction of the mean. Several different splitting rules have been considered in the
statistical literature that put the emphasis on the prediction of quantiles [4, Generalized
Random Forest] or on the overall distribution [32, Distributional Random Forest].

For implementation to our data set, we use the software R with package grf (Gener-
alized Random Forest; [4]) to compute the Random Forest and the associated weights.

2.3 Applications of Distributional Random Forest

DRF is a fully non-parametric and model-free method that performs probabilistic fore-
cast and distributional regression. For a set of features X, it provides the full predictive
distribution of the response variable Y, that is to say exhaustive information for its pos-
sible fluctuations knowing the features. The method is very informative and powerful
(see Figure [2) as it provides:

— (distributional regression) a predictive distribution for each new case that can be
represented by a histogram;

— (mean or median prediction) a predictive mean or median when a point estimate is
needed - the mean is commonly used while the median is more robust to outliers;

— (uncertainty assessment) a graphical assessment of the uncertainty with the shape of
the histogram (either peaked or flat) or numerical statistics such as standard error
or confidence interval for the prediction;

— (classification) the probability of classes of particular interest can be instantly com-
puted - for the ODX score, the classes ODX < 25 and ODX > 25 are considered;

— (similar/influential patients) the patients in the cohort (training set) that are the
most similar to a new case can be easily identified through the RF that are inter-
preted as a measure of proximity - this proximity is meant in the sense of an implicit
distance that is learnt by the model and that gives more importance to the rele-
vant features; this information can allow the practitioner to make meaningful and
informative comparisons between the new case and the patients from the cohort.
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(Training Data of 333 observations and 9 features)
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Fig. 1 Flowchart of Distributional Random Forest. Starting from the training data, a large number of
subsamples are randomly chosen and binary trees are constructed on each subsamples; the neighbor-
hood/weights at the point to predict are computed in each tree and then averaged so as to give the
forest weights; the predictive distribution corresponds to the weighted sample of the original training

data with these forest weights.
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Fig. 2 Applications of Distributional Random Forest. Once the DRF is trained, prediction of classes
(classification) or of conditional mean or median (regression) together with an uncertainty estimate is
straightforward. Furthermore, the weights at the point to predict make it possible to identify the most
similar neighbors in the training data, with an adaptive notion of similarity tailored for the purpose of
prediction.

2.4 Evaluation of predictive performance

In order to evaluate the DRF algorithm and compare it with concurrent methods, the
theory of a proper scoring rule [I4] is used. In probabilistic forecasting, a scoring rule
compares a predictive distribution F' and the outcomes y. It plays the role of a measure
of error similar to the mean squared error in regression or the misclassification rate in
classification. A scoring rule is strictly proper if the expected score is minimal when the
predictive distribution F' matches the outcome distribution. A strictly proper scoring
rule can be used for the evaluation of probabilistic forecast and distributional regression
[13].

The most popular scoring rule is the Continuous Ranked Probability Score (CRPS)
[20] and is defined by

CRPS(F,y) = /R(F(z) — Lyy<zy)’da.

In a case where the predictive distribution F' corresponds to a weighted sample (y;)1<i<n
with weights (w;)1<i<n, the CRPS is easily computed by

n
CRPS(F,y) = > wilyi—yl— Y wiw;ly; —y;-
i=1 1<i<j<n
The first term compares the predictive distribution F' and observation y (calibration)
while the second term assesses the precision of the prediction (sharpness). This expres-
sion also shows that CRPS(F,y) is reported in the same unit as the observation y and
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Fig. 3 Evaluation with regression. Mean-regression (left figure - a) plots the ODX observation versus
their predictive mean; the grey ribbon represents the standard errors. Median-regression (right figure -
b) plots the ODX score versus their predictive median; the grey ribbon represents the 90%-confidence
interval.

that it generalizes the absolute error to which it is reduced if F' is a deterministic forecast,
that is to say a point measure.

In order to evaluate the generalization capacity of the model, i.e. its predictive perfor-
mance on a new sample, different validation methods can be used to assess the prediction
error. Simple validation uses a training set to fit the model and an independent test set
to compute error (CRPS). K-fold cross validation is more involved and splits the data
into K groups that successively play the role of the test set. More precisely, K different
models are fitted on training sets consisting of all folds but one which is left-out during
training and used as a test set to compute the CRPS; this results in K different test
errors which are averaged so as to obtain the K-fold cross validation error. In the specific
case of bagging including DRF, the out-of-bag (OOB) method can be used instead. It
usually provides similar results as K-fold cross validation but is much more numerically
efficient since only one fit of the model is required.

3 Results

The DRF was applied to 333 patients to predict the ODX score using the 9 features pre-
sented in Table[I] In order to compare with the literature, we emphasize the classification
into two classes (ODX < 25 and ODX > 25).

Before presenting the results of the DRF, we shall first present the evaluation of
our model. Simple graph can be performed by considering the regression model deduced
from DRF. The results of the regression are presented in Figure |3} where the predictive
mean (Figure Bp) and predictive median (Figure [Bp) versus the real ODX score are
plotted. We can observe a rather good fit, and that an important proportion of the
observations are within in their confidence intervals. In Figure [3p, the grey ribbon has
a semi-amplitude equal to the standard error and accounting for uncertainty. The grey
ribbon in Figure |3b represents the credibility interval with a level of 90%.
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Fig. 4 Out-of-Bag evaluation of the prediction with the CRPS - a low CRPS corresponds to a precise
forecast. The subfigures b, ¢ and d correspond to three different patients chosen in different range of
the CRPS presented in the subfigure a. In the three lower subfigures, the gray histogram corresponds to
the predicted distribution of the ODX score obtained by the DRF. The red dashed line represents the
true ODX score of the patient. The two-classes (ODX < 25 and ODX > 25) are represented as areas of
different colors and the predicted probabilities of each class is given for each patient.

Additionally, in order to assess the prediction quality, we compared the OOB pre-
dictive distribution and the actual observation for the ODX, for each observation. The
prediction error is measured in terms of the CRPS introduced in Section[2.4] The differ-
ent scores are represented in Figure [fh. The smaller the CRPS, the more accurate the
forecast. We can observe that most of the predictions have a small or medium CRPS,
which indicates the overall good quality of prediction. A smaller number of observations
have a large CRPS, indicating individuals for whom the ODX score notably differs from
what we might expect in comparison with the overall population. Together with the
CRPS, the figure provides the results for the binary classification task (ODX < 25 or
ODX > 25): classification errors are indicated with the color orange while the color
blue corresponds to correctly classified observations. We can observe a good match be-
tween classification errors and a large CRPS, which confirms the ability of the CRPS to
assess forecast quality. Then, for each patient, the DRF provides a predictive distribu-
tion represented by a histogram that can be compared with the actual ODX score. We
also indicate the two class probabilities corresponding to the light-green/left or dark-
green/right classes.

We have selected three patients respectively with a low (Figure , Patient A),
medium (Figure [d, Patient B) and large CRPS (Figure [4{d, Patient C). The predictions

60
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associated to these patients can be considered ”good”, ”average” and "bad”, respec-
tively. We now provide a description for the patients A and C. Patient A is 50 years
old and peri-menopausal. The tumor size and SBR grade are respectively 13 mm and 2.
She has macro metastases and is ER and PR positive. The Ki67, p53 and ODX score
are respectively 15, 8 and 15. Patient A did not undergo chemotherapy. The patients
listed as neighbors of Patient A ranged in age from 46 to 55, with an average age of 50.
Six patients were non-menopausal, three menopausal and one peri-menopausal. Tumor
size ranged from 11 to 20 mm. Seven patients had grade 2 SBR, two patients grade 1
and one patient grade 3. Five patients have macro metastases, one patient micro metas-
tases and four patients with no metastases. Tumors were non-specific carcinomas and
ER positive, PR positive in 7 HER2-negative patients. Ki67 ranged from 8 to 20%. p53
was unmutated. Oncotype ranged from 7 to 30, with no ODX over 30 and a recurrence
risk of 8 to 23% at 10 years. In terms of treatment, all had surgery, radiotherapy and
hormone therapy. One patient underwent chemotherapy. None of the patients had a
recurrence. As for Patient C, she is 62 years old and menopausal. The tumor size and
SBR grade are respectively 15 mm and 3. She has no metastases and is ER and PR
positive. The Ki67, p53 and ODX score are respectively 24, 0 and 34. Patient C had
chemotherapy. The patients listed as neighbors of Patient C are ranged in age from 60
to 78, with an average age of 68. All of them are menopausal. Tumor size ranged from
9 to 44 mm. Seven patients had grade 3 SBR and three patient grade 2. All patients
have no metastases. Tumors were non-specific carcinomas and ER positive, PR positive
in 8 HER2-negative patients. Ki67 ranged from 20 to 28%. p53 was unmutated for four
patients. Oncotype ranged from 6 to 36 and a recurrence risk of 5 to 24% at 10 years. In
terms of treatment, all had surgery, radiotherapy and hormone therapy. Two patients
underwent chemotherapy. None of the patients had a recurrence. In Figure [dp we can
observe a sharp predictive distribution (peaked histogram) and an ODX score close to
the peak. In Figure[dk, the histogram is flatter, indicating more uncertainty, and the true
ODX score is contained in a high probability region. In Figure [, the predictive distri-
bution has also a large dispersion and the ODX score is contained in a low probability
region, which means that the match between the two is poor. We insist on the fact that
a large CRPS does not necessary mean a misclassification of a patient as it can be seen
for some of the higher CRPS values in Figure [dh. The CRPS considers the distributional
regression and is not explicitly related to the binary classification presented here.

Due to the impact of the classification of ODX in the two classes ODX < 25 and
ODX > 25, we shall present the detailed evaluation of the classification model deduced
from DRF (see Table [2). This evaluation is based on the standard classification metrics
such as confusion matrix and standard metrics. The standard metrics are as follows:

Accuracy = TP+TN ) (5)
TP+ FP+FN+TN

Sensitivity = TP}—;—*PFN’ (6)

Specificity = %, (7

Positive Predictive Value = TPJj|—7PFP7 (8)

Negative Predictive Value = %, (9)

2 * Positive Predictive Value*Sensitivity

F1-score =
Positive Predictive Value+Sensitivity
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Table 2 Evaluation with classification. Confusion matrix (left) together with standard metrics (right).

Accuracy 79.3%
Predicted zensi.tévligy Zgggj
ODX < 25 ODX > 25 . Ppecticlty o
Positive Predictive Value | 82.5%

g ODX <25 231 20 ) oo
e ODX S 75 19 33 Negative Predictive Value | 62.3%
S F1l-score 0.870
Area Under Curve 0.759

where TP is the number of patients correctly classified as ODX < 25, FP is the number of
patients incorrectly classified as ODX < 25, TN is the number of patients correctly clas-
sified as ODX > 25 and FN is the number of patients incorrectly classified as ODX > 25.

We have correctly classified 231 out of 251 patients (92%) in low risk and 33 out
of 75 patients (40.2%) in high risk. The overall accuracy is 79.3% and the p-value is
less than 0.05. The proportion of low risk correct predicted value (PPV) is 82%. The
percentage of high risk correct predicted value (NPV) is approximately 62.3%. The
Fl-score and the Area Under Curve (AUC) are of 0.87 and 0.759, respectively. The
DRF will provide additional information such as the nearest neighbor patients, the
distribution of the ODX score and the uncertainty prediction (see Figure [2]). We now
consider the 69 misclassified patients with low and high risks. First of all, we notice that
the majority of these patients have predictions that are close to the decision border (i.e.
close to ODX = 25). These patients are misclassified because of the binary decision and
additional information available with the DRF method shows either that the patient’s
ODX score is close to the decision border or that the neighborhood of the patient is not
realistic because of limitations of the training cohort. This first part of the misclassified
patients might have a small CRPS as the CRPS accounts for both the dispersion of
the prediction and its bias. The second part of the misclassified patients correspond
to extremal values of the ODX score within our cohort. The nearest patients provided
by the DRF for these misclassified patients are thus less informative as they are taken
within the cohort that is not representative of these outlier patients. In order to give
more quantitative results, we compared the mean absolute difference for the ODX score,
Ki67 and p53 between the 69 misclassified patients and the weighted average value of
their neighborhoods. The misclassified patients have a mean absolute difference of ODX
score compared to their neighborhood of 9.84 where the correctly classified patients have
an average absolute difference of 6.29. In terms of Ki67 and p53, the average absolute
difference is 24.56% and 5.77% respectively when the average absolute difference for the
correctly classified patient is 16.77% for Ki67 and 5.84% for the p53 respectively.

These classification results are then compared with state-of-the-art techniques [I8],
151 17, 221 [5, 25]. A detailed comparison is given in Table

4 Discussion

The ODX test is the most commonly availabe breast genomic test used in early stage ER
postive/ HER2-negative breast cancer. It makes it possible to define patients who are
unlikely to benefit from chemotherapy. The ODX score is based on 6 gene groups. These
groups correspond to the markers analysis in pathological reports. Some have compared
the ODX score to this immuno-histological data and proved the predictive relationship
with the ODX score. Several studies were published using this clinico-pathological data
to predict the ODX score with different methods (see Table . The present study
was realised to predict the ODX score from a specific regional cohort of 333 patients
with clinical and immuno-histological data using Distributional Random Forest. This
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prediction is associated with a predictive error on the one hand, and the ability to
determine the similar patients on the other hand. The proposed DRF model detected
82% of lower risk patients (ODX < 25) and 62.3% of high risk patients (ODX > 25).

A few studies have proposed some prediction tools for the ODX score [18|, 15, 17, 22
9, 25]. Each study is based on the specific categorization of patients according to the
original ODX categories and TAILORx (see ODX Prediction Threshold in Table|3). The
prediction results of the different studies are similar and based on clinico-pathological
data. The tumor size, tumor grade and PR are used in all the six selected published
studies as well as for our current study. The Ki67 is not used in [22] and [25]. In our
study, we integrated the p53. The threshold used for the ODX score is different from
one study to another. Our DRF model performs as well as the other prediction tools.
The novelty is in providing additional information to the prediction (see Figure [2|) such
as the probability of classes (low and high risk), the similar profiles and the uncertainty
prediction.

The correct predicted values are 82.5% and 62.3% for low and high risk, respec-
tively. We used the CRPS score to distinguish the best and worst prediction. A negative
correlation between ODX and PR for the best and worst results can be observed. The
best results were obtained for ODX profiles below 16. The average Ki67, for the first
best ten results, is under 14%, which corresponds to the low-risk profile of our previous
study [B]. The average percentages of ER and PR are 93% and 77%, respectively, which
fits into the same low risk profiles. When looking at the RF weights and the profile of
closest patients, we observe that similar profiles vary between 0 and 25 for ODX. The
similarities fall in the low risk profile. The Ki67 scores of similar profiles for the first ten
results are below 25%. We can point out from the description of the results of Patient
A in Section [3| that the prediction of our model is coherent with the listed neighbors.

Most cases that were misclassified by our model lie in the high risk class. The averages
of the ODX score, Ki67 and PR for the last worst ten results are respectively 40, 28%
and 26%. Patient C, described in Section [3] was misclassified by our model. This patient
has a high ODX score and probability of lying in the high class of 22%. The real ODX
score is 34 and the predicted ODX score is near to the cut-off. The similar profiles are
very dispersed, which is difficult to analyze. Most of the nearest neighbors have an SBR
grade of 3. The prediction is bad, but nevertheless, the similar profiles have a low ODX
score and a high SBR grade. This is due to the small number of cases in the high risk
category.

The size of the cohort and the training and testing phase could impact the prediction
results. In addition, we have an unbalanced cohort in our study, since we have less
patients in the high risk class. In that case, the factors of the similar profiles that
influences ODX score such as PR, Ki67 and p53 should be considered. The size of
the cohort and the training and testing phase could impact the prediction results. In
addition, we have an unbalanced cohort in our study, since we have less patients in
the high risk class. In that case, the factors of the similar profiles that influences ODX
score such as PR, Ki67 and p53 should be considered. The strengths of our proposed
model include the distribution of identical profiles which can allow to the clinician to
retrieve similar historical cases in terms of evolution. Moreover, the proposed model can
be applied even when there is missing data. It makes it possible to predict the low risk
class with high certitude, which means no chemotherapy to plan. Our study is related
to the dataset and it is therefore difficult to generalize to a different cohort because of
known inter-cohort variability, especially on some biomarkers such as Ki67.
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5 Conclusion

This paper proposes a new methodology for ODX score prediction. This methodology is
based on 9 clinico-pathological features and uses Distributional Random Forest to per-
form prediction. It makes it possible to predict the distribution of the ODX score for a
patient and provides an explanation of the predicted score by computing the probability
of belonging to the low or high risk category and identifying the nearest similar profiles.
The proposed Distributional Random Forest model detects 82% of lower risk patients
(< 25) and 62.3% of patients with high risk (> 25). However, DRF presents certain limi-
tations. The use of DRF with the pathologist’s expertise on the different histological and
immunohistochemical characteristics has a clinical impact to help oncologist in decision-
making regarding breast cancer therapy. Thanks to the family of patients with identical
profiles determined by the proposed methodology, with knowledge of their evolution and
prognosis, the oncologists can support their therapeutic decision. The medico-economic
interest of this strategy is obvious. Additional studies are needed to further validate the
DRF method and improve knowledge extraction from pathological data.



Table 3 Comparison of our study with six selected published studies [18][15] [17]22] 5] 25] to predict the ODX score. For three classes only the sensitivity and specificity

of the lower class are given.

Pawloski et al.

Current study

Klein et _al. Hou et .al. Kim ot al.|(2019) Orucevic et al. Baltres ep al. -
(2013) (2017) : . (2019) (2020) (2022) (DRF)
Patients (Mtrain, Ntest) (817, 255) (-, 163) (208,76) (1685’5;554)’ (152, 168) (2,587, 1,293) | (333, OOB)
Mean - 58.6 - - - - 56.9
Age Median - - 44.0 58 57.5 62 58.0
Range - 34-82 - 19-90 30-84 56-69 30-84
Tumor size v’ v’ v’ v’ v’ v’ v’
Tumor grade v’ v’ v’ v’ v’ v’ v~
Clinico- Lymphovascular v Nz
pathologic invasion
features Lymph node v v v
used for status
modelling ER v’ v’ v’ v~ v~ v’
PR v~ v’ v~ v~ v’ v v~
Ki67 v’ v’ v’ v’ v’
p53 v~
ODX Type Continuous Continuous Classification Classification Classification Classification Distributional
Prediction <18 <18 < <18 < <
Hhreshold 1830 1830 S S 1830 S S
> 30 > 30 > 30
Ml.lltlple Ml.ﬂtlple Neural Network Blno'rnl.al D.e °P Distributional
Method Linear Linear .. Logistic Multi-Layer Random Forest
. . Decision Jungle . Random Forest
Regression Regression Regression Perceptron
Precision Low risk 62.5-69.4% 72.6% 100% 87.5% 58.3% 92.9% 82.5%
High risk 68.8-77.8% — 25.0% 79.6% 63.0% 65.1% 62.3%
Sensitivity 58.6-59.1% 85.7% 11.0% 99.2% 55% 96.3% 92.0%
Specificity 70.5-77.4% 41.4% 100% 18.3% 78% 48.3% 40.2%
AUC - - 0.744 0.81 0.63 - 0.759
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