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ABSTRACT
This study applies machine learning (ML) feature analysis to an
array of multi-functional neurocognitive symptoms specific to in-
dividuals with Parkinson’s Disease (PD). We provide a framework
that can assist with modernizing and objectively individualizing the
staging of PD. For that purpose, a hybrid feature score technique is
proposed to compute a weighted vector for neurocognitive func-
tions. The methodology is based on Principal Component Analysis
and Random Forest for feature selection and extraction purposes.
The study enrolled 37 participants who completed various tablet-
based functional neurocognitive assessments for motor, memory,
speech, executive function, and single versus multi-functional tasks.
The study concludes that current assessment and staging schemes
exhibit a significant bias toward fine-motor functionalities. Thus,
the inclusion of other neurocognitive functions is essential for accu-
rately identifying disease stages. This could be achieved through the
integration of multiple functions into a unified score or by adopting
function-specific staging. By incorporating ML into disease staging,
a more comprehensive understanding of neurocognitive disorders
can be obtained, revealing novel insights that affect the design and
implementation of staging schemes.

CCS CONCEPTS
• Computing Methodologies→Machine Learning; • Applied
Computing→ Health informatics; Bioinformatics.
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1 INTRODUCTION
Machine learning (ML) techniques have demonstrated superior
performance in various healthcare applications, such as disease
staging [12] and diagnosis of conditions such as Alzheimer’s and
Parkinson’s [11]. In order to cover a more comprehensive spectrum
of disease disorders and symptoms, ML algorithms employ data
from patient records, neuroimaging, and sensor-based monitor-
ing. This enables a more exhaustive evaluation, enhanced prognos-
tic capabilities, and personalized treatment strategies, facilitating
more efficient treatment planning and disease management. More-
over, personalized models can account for personal discrepancies
in disease progression profiles, which provide a more objective and
patient-centered approach to disease staging [4].

Parkinson’s Disease (PD), the second most prevalent chronic and
progressive neurodegenerative disorder, impacts over 10 million
individuals worldwide [8]. In the last couple of years, there has been
a substantial increase in demand to modernize and objectify the
scaling scheme for movement disorders, such as PD. The existing
well-known clinical scaling methods, including the MDS-Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) and the Hoehn
and Yahr (H&Y) scale, classify the severity of motor symptoms and
impairments according to clinical observation. In this study, our
focus was specifically on the H&Y scale explained below [1]:

• Stage 1: Symptoms manifest on one side only (unilateral).
• Stage 2: Symptoms present bilaterally without balance impairment.
• Stage 3: Balance impairment and moderate disease progression.
• Stage 4: Severe disability, but still able to walk or stand unassisted.
• Stage 5: Wheelchair-bound or bedridden without assistance.

Although the H&Y and MDS-UPDRS scales are globally known
and extensively used, their capability to objectively capture impor-
tant neurocognitive symptoms is limited, as they heavily focus on
motor functionalities. This can potentially result in misclassifica-
tion and difficulties in tracking disease progression over time. As
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a result, there is a need to develop a more objective and accurate
scaling system for PD that considers other neurocognitive func-
tions of individuals. The integration of ML into disease staging
holds great significance, as it allows for a deeper comprehension of
neurocognitive disorders. This, in turn, can lead to novel findings
that shape the development of scaling systems.

This study was to acknowledge the motor-centric approach of
existing clinical staging scales and to emphasize the need of updat-
ing current PD staging methods to include objective measures of
other neurocognitive functions. To achieve this, we utilized Ran-
dom Forest (RF) learning to select significant features and Principal
Component Analysis (PCA) to assign a weight to selected features.
Subsequently, we introduced a hybrid feature vector score to deter-
mine a weighted vector score for each neurocognitive function. Fur-
ther, by initially examining the effects of PD on different functional
areas of neurocognition, this research aims to lay a foundation for
future investigations into a wider range of neurological disorders.

2 RELATEDWORK
Regarding present staging schemes, Zhao et al. [16] studied the
H&Y scale to assess the advancement of PD and analyze variables
related to H&Y transition times. The authors employed a large
PD database to analyze the time to progress through various H&Y
stages and examined the connection between progression to the
next stage and baseline variables. They concluded that H&Y tran-
sition time is a practical measure of disease progression in PD
and may be used in clinical studies. However, the H&Y scale is
predominantly motor-based, and further assessments and scaling
approaches are required to precisely determine the disease’s stage.
Moreover, Martinez-Martin et al. [5] investigated the MDS-UPDRS
clinical staging scheme, which is a more exhaustive assessment
of PD severity than the H&Y staging scale. The study aimed to
determine cut-off points for disease severity. It found that these val-
ues could be determined and proposed cut-off points to categorize
individuals with PD as mild, moderate, or severe according to their
MDS-UPDRS scores.

Concerning recent digital biomarkers, Wamelen et al. [14] eval-
uated non-motor fluctuations (NMF) and non-motor rating scales
in the PD population. In order to do so, they studied NMF us-
ing both the Movement Disorder Society Non-Motor Rating Scale
(MDS-NMS) and wearable sensors. The study revealed that NMF
prevalence in the PD population advances with disease duration;
however, in a different pattern from motor fluctuations. Ellis and
Earhart [2] provided an exhaustive review of digital therapeutics
as a means of delivering personalized and evidence-based interven-
tions for individuals with PD via remote platforms. The authors
emphasized the increasing need for such interventions and high-
light practical applications of digital therapeutic platforms targeting
both motor and non-motor symptoms of PD, as well as promoting
healthy lifestyle behaviors. In addition, they discuss the latest devel-
opments in this field and prospective future applications that could
revolutionize patient care and personalized self-management.

Furthermore, Martinez et al. [6] investigated the structural prop-
erties of the MDS-NMS using factor analysis and clustering. H&Y
staging, demographic and clinical data, and the NMF subscale were
also used in this study. They concluded that the majority of sub-
scales on the MDS-NMS are unidimensional. Templeton et al. [12]

applied ML to classify PD population data, using self-reported met-
rics and tablet-based assessments. The study identified significant
features, including acceleration, accuracy, and timing, and noted
differences between perceived and sensor-based functionality. They
concluded that ML in digital health systems can enhance our un-
derstanding of neurodegenerative diseases and inform the design
of digital health technology.

3 METHODOLOGY
Figure 1 provides an overview of the methodology with five main
steps (different colors) and seven detailed steps.

Missing Data Handling and  Data Aggregation 

Hybridized Functional Vector Score

Mapping the Correlation of Functions and Stages

Data Collection

Data Normalization

Weighting Approach

Feature Selection

Figure 1: Methodology at a Glance

3.1 Data Collection
A total of 37 individuals, comprising 22 males (59.46%) and 15 fe-
males (40.54%) between the ages of 56 and 85, participated in this
study. All participants had been diagnosed and staged by a quali-
fied neurologist or specialist in movement disorders. Multiple data
samples were collected from each individual, resulting in a total of
74 samples across four stages of the disease. More details regard-
ing the breakdown of the cohort for this research are presented in
Table 1. Collected data included various clinical features such as
motor and non-motor symptoms, demographic information, as well
as cognitive and functional assessments. Participants who didn’t
understand or speak English were excluded from the study to main-
tain informed consent. All guidelines from the Institutional Review
Board were followed to protect the subjects. All participants of this
study were administered a tablet-based neurocognitive assessment
designed specifically for individuals with PD [10]. The assessment

Table 1: Cohort Breakdown

Group Population
Total Individuals with Confirmed PD Diagnosis 37
Number of Confirmed Male PD Cases 22
Number of Confirmed Female PD Cases 15
Total Sample Count from All Individuals 74
Total Number of Samples in Stage 1 28
Total Number of Samples in Stage 2 28
Total Number of Samples in Stage 3/4 18
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concentrated on user-device interactions for collecting objective fea-
tures. A total of 14 neurocognitive functional tests were completed
by each participant, encompassing the areas of motor, memory,
speech, and executive function. These assessments resulted in 158
digital features pertaining to these areas. The assessment included
both single- and multi-functional tests, as individuals with PD ex-
hibit difficulty in performing both task types [13]. Therefore, the
analysis of features from both configurations are necessary for un-
derstanding how neurocognitive symptoms of PD manifest. All test
descriptions are presented in Table 2.

3.2 Data Processing
3.2.1 Data Aggregation and Missing Data Handling. To address this
problem, missing data handling and data aggregation techniques,
were employed in this study. As the percentage of missing data was
moderately low, we opted for the removal of the data method to
ensure the completeness of our pilot dataset.

3.2.2 Data Normalization. In order to account for varying scales
of data and enhance the comparability of results, the data were
normalized. Normalization can help reduce the impact of outliers
or extreme values, which may skew the analysis [9]. It scales the
data range between -1 and 1 to facilitate comparison and analysis.

3.2.3 Feature Selection. Multiple feature selection methods, includ-
ing Random Forest, Chi-Squared, Shapley, ANOVA, ReliefF, and
Kruskal Wallis were employed to identify significant features. Com-
paring the outcomes of each technique revealed that RF produced
the most meaningful and applicable outcomes. Furthermore, Pear-
son correlation was used for feature selection in the database. How-
ever, the RF method was found to be more accurate and practical
for analysis. The RF algorithm’s robustness to noisy and correlated
features and its ability to handle missing data and outliers are addi-
tional benefits that make it a popular choice for feature selection.
Thus, the use of RF for feature selection was not only statistically
sound but also highly practical and reliable.

3.3 Weighting Approach
PCA is commonly used to extract relevant features and reduce the
dimensionality of a dataset. The method works by finding the di-
rections in which the data varies the most, known as the principal
components, and representing the data in terms of these compo-
nents. In this study, PCA was employed to provide the principal
components and their corresponding eigenvalues, which can be
used to weigh and identify the most important features in our pilot
dataset. The first principal component corresponds to the eigenvec-
tor with the largest eigenvalue and explains the most variance in the
data. Subsequent components explain progressively less variance,
with the 𝑘-th principal component corresponding to the eigenvec-
tor with the 𝑘-th largest eigenvalue. By examining the eigenvalues
associated with each feature, we were able to assign weights to the
most significant features in our dataset and to analyze the mapping
between functions and stages.

3.4 Hybrid Functional Vector Score
After selecting the most prominent features using RF and conduct-
ing PCA to assign a weight to the selected features, we developed a
hybrid RF/PCA score to calculate the weighted sum of each function

or sub-function feature for the five neurocognitive functions. RF
was chosen for feature selection due to its higher accuracy and prac-
ticality, and the eigenvalues produced by PCA were used to create
the feature vector score. These scores were then used to generate
boxplots for each function, represented in the Results section. To
obtain a matrix 𝐹 containing selected features for a specific cogni-
tive function, this study utilized the RF feature selection approach.
Additionally, a vector of eigenvalues 𝐸𝑖𝑔𝑣𝑎𝑙𝑃𝐶𝐴 was obtained from
PCA. Equation 1 was employed to calculate the weighted sum of
each function or sub-function features, denoted as 𝐹𝑛𝑛𝑒𝑢𝑟𝑜𝑐𝑜𝑔 :

𝐹𝑛𝑛𝑒𝑢𝑟𝑜𝑐𝑜𝑔 =

∑𝑛
𝑚=1 𝐹:,𝑚 × 𝐸𝑖𝑔𝑣𝑎𝑙𝑃𝐶𝐴 (𝑚)∑𝑛

𝑚=1 𝐸𝑖𝑔𝑣𝑎𝑙𝑃𝐶𝐴 (𝑚)
(1)

Where𝑚 iterated through all 𝑛 features of each neurocognitive
function. This equation is used for calculating feature weights based
on the importance obtained from RF and the contribution to the
overall variance obtained from PCA. The sum of these weighted
features is then divided by the sum of all eigenvalues to obtain the
final weighted score for each neurocognitive function. 𝐹:,𝑚 also
refers to the features selected by RF. It is important to note that 𝑛
is a positive integer greater than𝑚, where𝑚 could be any number
from 1 to 𝑛 − 1. Step-by-step details are shown in Algorithm 1.

Algorithm 1 Feature Selection, Weighting Approach, and Hybrid
Vector Score
1: Input:𝑀𝑒𝑡𝑟𝑖𝑐𝑠𝑖 , 𝑖 = 1, ..., 𝑁 , 𝑁 = 158; 𝑆𝑡𝑎𝑔𝑒 𝑗 , 𝑗 = 1, ..., 4; M: Number

of Observations
2: 𝑑 ← load(data)
3: for 𝑖 = 1 to 𝑁 do
4: 𝐹 (𝑖 ) ← 𝐸𝑖𝑔𝑣𝑎𝑙 (𝑑𝑖 ) Vector of Eigenvalues Obtained from

PCA
5: end for
6: 𝐹 ′ ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡 (𝐹 ) Feature Selection
7: for 𝑖 = 1 to 𝑁 do
8: 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑉𝑒𝑐𝑡𝑜𝑟 𝑆𝑐𝑜𝑟𝑒 (𝐹 ′

𝑖
, 𝑅𝐹 + 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 ) Functional

Vector Calculation
9: end for
10: Weighting Approach
11: Output: Hybrid Functional Vector Score

4 RESULTS AND DISCUSSION
Figure 2 depicts the ranking of 158 objective digital features across
five cognitive functions, i.e. motor, memory, speech, executive, and
multi-functional features. The ranking is sorted within each cate-
gory and ordered by significance. The presented figure indicates
that motor-centric features hold the highest significance among the
five cognitive functions and multi-functional features, speech, ex-
ecutive function, and memory features follow in descending order.

4.1 Function Specific Results
We proceeded with the following steps to analyze the features of
each function. First, using the tests described in Section 3.1 we
selected features using the RF ranking algorithm (explained in
Section 3.2). These selected features were then weighted using PCA
eigenvalues. The purpose of this approach was to assign weights to
each feature based on their significance in the model. Finally, these
weighted features were applied to Equation 1 to obtain the final
results and representations outlined in the following subsections.
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Table 2: Each Test and its Description

Test Description
Fine-motor tracing test Using the index finger to trace a depicted shape (circle or square).
Gross-motor emulation "Air-tracing" a depicted shape by manipulating the device in space.
Reaction test Interacting with targets by tapping on the screen.
Card-matching test Matching depicted cards by tapping them in pairs until completion.
Trail-making test Connecting shapes in increasing numerical order using index fingers.
Speech-based test Participants prompted to read aloud (a sentence and paragraph) and name objects.
Multi-functional test Combination of a motor and non-automatic speech test.
Executive function/multi-functional The Stroop Word Color Test requires users to identify color-word matches verbally.
Expanded multi-functional Participants were instructed to verbally express (through speech), while simultaneously

transcribing each word (writing the word being spoken aloud) within the designated area.
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Figure 2: Motor Features (1-30) [Orange] and Non-Motor Features, including Memory (31-72) [Dark Blue], Speech (73-96) [Pale
Blue], Executive-Function (97-129) [Yellow], and Multi-Functional Features (97-129, 130-158) [Yellow &Woven Mat Texture]
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Figure 3: Motor Function and Its Sub-functions Across Clinical Stages

4.1.1 Motor Function. Given the importance of motor features
obtained in the feature selection stage, we selected fourteen fine-
motor and six gross-motor features. Fine motor features for both
subtasks include time, average distance, total distance drawn, cross-
ings, first point distance to the outline, and first point to the last

point drawn distance. Additional fine-motor features for square sub-
task include average and minimum acceleration. For gross-motor
emulation included features are time (circle and square), average ac-
celeration, minimum acceleration, maximum acceleration, and total
time. These features were subsequently applied to the weighting ap-
proach and Equation 1. Figure 3a presents the comparison of motor
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Figure 4: Other Functional Areas of Neurocognition: Memory, Speech, Executive Function, and Multi-Function

function to confirmed clinical stages. As the stage of PD increases,
there is a clear trend of decreased motor function overall, where
median values for each stage show a step-wise decrease in function.
The interquartile range (IQR) also decreases with the increasing
stage, indicating that the variability in motor function within each
stage becomes smaller. Furthermore, the boxplot shows a greater
number of outliers in higher stages (stages 2 and 3/4) compared to
stage 1, suggesting that motor impairment becomes more severe
as the disease progresses. The importance of the motor function’s
mapping into the current clinical stages prompted a more in-depth
analysis of motor function and sub-functions (e.g., fine and gross).

4.1.2 Fine-Motor. Upon evaluating and comparing results, we per-
ceived that fourteen fine-motor features (mentioned in 4.1.1) created
meaningful trends. A depiction of this approach is presented in Fig-
ure 3b. As such, it can be observed that as the stage of PD increases,
the fine-motor function decreases. The median of the fine-motor
tracing function in stage 1 is the highest among the three stages,
followed by stage 2 and stage 3/4. This implies that individuals in
stage 1 exhibit better fine-motor function compared to those in
stage 2 and stage 3/4. Moreover, the IQR of the fine-motor tracing
function sharply decreases as the stage of PD increases, indicating
less variability of the fine-motor function in individuals with ad-
vanced PD. The whiskers of the boxplot also suggest that there are
fewer outliers compared to stage 1 and stage 2, further confirming
the reduced variability of the fine-motor function in advanced PD.
Hence, these findings indicate that there is a substantial association
between the stage of PD and fine-motor function, with decreasing
fine-motor function as the stage of PD progresses.

4.1.3 Gross-Motor. When it comes to gross-motor, we have ob-
served that incorporating the top six gross-motor features (men-
tioned in 4.1.1) yielded more meaningful patterns. Figure 3c shows
that gross-motor function decreases as the stage of PD increases.
The boxplot shows a trend of decreasing median values from stage
1 to stage 3/4, demonstrating that individuals with more advanced
stages of PD tend to have poorer gross-motor function. Addition-
ally, IQR appears to widen as the stage increases, suggesting that
there is more variability in the advanced stages of PD. The boxplot
also shows a number of outliers in each stage, indicating that some
individuals with a given stage of PDmay have better or worse gross-
motor function than expected based on their stage alone. However,

the majority of individuals appear to fall within the expected range
of gross-motor function for their respective stages.

4.1.4 Memory. For the memory function, the top 4 features se-
lected by RF (including the average time of matched pair, minimum
acceleration, card interaction, and minimum acceleration) were
applied to Equation 1, resulting in Figure 4a. It indicates a decreas-
ing trend in function scores as the disease progresses from stage
1 to stage 3/4. The median memory function score for stage 1 is
around 0.44, while for stage 3/4, it is around 0.5. This highlights
the importance of assessing memory, as memory impairment may
significantly impact an individual’s quality of life. However, it is
worth noting that the correlation between memory and current
clinical stages of PD is not as robust as the correlation between
combined motor and fine-motor functions.

4.1.5 Speech. After doing comparative trials and analysis, it was
found that the incorporation of the top four significant features
produced the most meaningful, significant trend. These features are
the average time for a correct response, total correct, total generated,
and number of missed words. The result of the hybrid approach for
speech function is demonstrated in Figure 4b. It shows a trend of
very moderate decreasing function scores as the disease progresses
from stage 1 to stage 2 and very slightly to stage 3/4. The median
speech function score for stage 1 is around 0.36 for stage 2 is around
0.37, while for stage 3/4, it is around 0.36. This indicates a slight
decline in speech function as the disease progresses, suggesting
that the correlation between speech function and clinical stages is
not as significant as that of motor function.

4.1.6 Executive Function. Through comparative analysis and eval-
uation, it was observed that incorporating the top four RF signifi-
cant features yielded the most notable trend for executive function.
These top 4 features are total time, total time acceleration, total cor-
rect, and maximum response time. Subsequently, selected features
were applied in Equation 1, resulting in Figure 4c. The figure illus-
trates a declining trend in function scores as the disease progresses,
except for stage 2. The median score for stage 1 is approximately
0.18, whereas, for stage 3/4, it is around 2.8. This signifies a signifi-
cant impairment in executive function during the advanced stage
3/4 of PD. However, the results deviate for stage 2, highlighting
the bias of the current clinical staging system towards motor skills,
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specifically fine-motor functionalities, and its inability to depict a
clear trend in executive functions.

4.1.7 Multi-Function. Finally, it was noted that including the top
four RF selected features generated the most meaningful trend
pertaining to multi-functional tasks. These four features are average
acceleration, total elapsed writing time, average distance, and total
distance. Subsequently, these particular features were utilized in
Equation 1, resulting in Figure 4d. It displays a similar trend of
decreasing function scores as the disease progresses, with a median
score of around 0.40 for stage 1 and around 0.46 for stage 3/4. This
suggests a slight, fluctuating decline with the progression of PD,
indicating the current clinical scheme’s inability to provide a clear
pattern for the multi-functional abilities of individuals.

4.2 Discussion
Figures 4a – 4d demonstrate that the current clinical staging of
PD fails to accurately align with the diverse functions of memory,
speech, executive function, and multi-function. Also, Figures 3a
and 3b indicate that the current PD scale is biased towards motor
functionalities, especially fine-motor. These findings underscore the
importance of incorporating other functions beyond motor abilities
into PD staging. In line with this, van Wamelen et al. [15] discussed
the digital health technology for non-motor symptoms in PD while
also highlighting the ongoing digital revolution that sought to
objectively measure motor aspects. Thus, a major focus is to now
expand this objective assessment toward the "hidden" spectrum
of non-motor symptoms. While mobile sensors are increasingly
utilized in PD management, their use in addressing non-motor
symptoms has been inadequately explored [7]. UPDRS effectively
covers motor symptoms, but it lacks detailed scales for non-motor
aspects, underscoring the need for incorporating other non-motor
features [3]. These findings align with our results and affirm that a
comprehensive PD assessment necessitates the inclusion of both
motor and non-motor symptoms.

5 CONCLUSION AND FUTUREWORK
This study aimed to address the limitations of the current PD staging
systems and highlight the need for updated methods that consider a
broader range of neurocognitive functions. To this end, ML feature
analysis was applied to various neurocognitive symptoms of the
PD population. Specifically, the RF ranking algorithm was used to
analyze and assess the significance of features in each function.
Moreover, PCA was used to assign a weight to the selected features.
we proposed a hybrid feature vector score, which was employed
to calculate a weighted vector score for each of the five neurocog-
nitive functions. The results demonstrated a substantial bias on
fine-motor abilities in the existing staging system, highlighting the
necessity of modernization and inclusion of other functions. The
expansion of analysis to include additional sub-functional areas of
current neurocognitive areas (e.g., working, skill, and long-term
memory) and the development of the proposed approach to other
neurodegenerative conditions (e.g., ALS or Alzheimer’s disease)
would be a perfect path for future work.
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