

midifie

ANR-22-CE51-0001

DAMPING PROPERTIES OF PLANT FIBRE COMPOSITES

Pauline BUTAUD – ESBBC 2023 Tarbes

F. Pelisson, V. Placet, M. Ouisse, T. Liu, Y. Gaillard, G. Bourbon, F. Amiot

midifie

DAMPING BASICS – VIBRATION TESTS

DAMPING BASICS – HARMONIC TEST

midifie

- Context and challenges
- Micro-scale properties of bio-based composites: state-of-the-art
- In situ testing
- Single fibre testing
- Conclusions and outlooks

DAMPING BEHAVIOR OF PLANT FIBRE COMPOSITES

Ashby diagram Loss-modulus map from literature 10^{2} Plant fiber composite Polymer Conventional fiber 10 composite Loss factor (%) 10^{0} Composite 10 10^{-2} Meta 10^{-3} 10⁰ 10² 10³ 10^{1} 10 Modulus [GPa]

Damping behavior of plant fiber composites: A review

Taiqu Liu*, Pauline Butaud, Vincent Placet, Morvan Ouisse

FEMTO-ST Institute, CNRS/UFC/ENSMM/UTBM, Department of Applied Mechanics, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France

- Loss factor of PFCs is generally much higher than that of synthetic fibre composites
- Origin not clearly elucidated / contradictory reports are found in literature
- Knowledge on the damping behaviour of PFCs is sometimes deficient or ambiguous
- Hierarchical aspects have to be considered

IMPACT OF FIBRES REINFORCEMENT ON COMPOSITE PROPERTIES

Contrary to the modulus of rigidity which responds to a law of mixture, the **loss factor** is **more difficult to predict**

DAMPING APPLICATIONS

Musical instruments & acoustics Guitar (Blackbird) Violin soundboard

High-end loudspeakers (Wilson Benesch)

Even if their **origin are not yet fully understood** and elucidated, the **damping** properties of PFCs are already **exploited in various products**

midifie

ENERGY DISSIPATION SOURCES

	1	fibre	matrix	epidermis	bundles
		$\overline{\}$	and the second	0	2
		Ň	63.9%		and the
	Secondary Scolary Cell wall		Dogi St St		
			SA POR	Q. Part	
			2017	Contraction of the second	1.
	Cell wall				5.50
nettle	Yana2014		Hemp-base	d composite	100,0µm

Energy dissipation could come from :

- fibre properties: polymeric and hierarchical
- **interface** fibre/matrix

- interface in fibre bundles (**friction**)
- damage
- matrix properties

midifie

- Context and challenges
- Micro-scale properties of bio-based composites: state-of-the-art
- In situ testing
- Single fibre testing
- Conclusions and outlooks

MODULUS AT THE FIBRE-SCALE

midifie

MODULUS AT THE FIBRE-SCALE

midifie

DAMPING AT THE FIBRE-SCALE

midifie

- Context and challenges
- Micro-scale properties of bio-based composites: state-of-the-art
- In situ testing
- Single fibre testing
- Conclusions and outlooks

DYNAMIC NANOINDENTATION (DNI) – TESTING FIBRE WALL PROPERTIES IN COMPOSITE

midifie

Liu et al. 2022

DYNAMIC NANOINDENTATION (DNI) – TESTING FIBRE WALL PROPERTIES IN COMPOSITE

midifie

- Context and challenges
- Micro-scale properties of bio-based composites: state-of-the-art
- In situ testing
- Single fibre testing
- Conclusions and outlooks

F. Pelisson

DYNAMIC MECHANICAL TEST AT FIBRE SCALE

midifie

DYNAMIC MECHANICAL TEST AT FIBRE SCALE

midifie

F. Pelisson

DYNAMIC MECHANICAL TEST AT FIBRE SCALE

Vibration test on single fibre – limitations:
Density and geometry of natural fibres
difficult to evaluate
High sensitivity to moisture/temperature
variations and aerodynamic effects!?

midifie

- Context and challenges
- Micro-scale properties of bio-based composites: state-of-the-art
- In situ testing
- Single fibre testing
- Conclusions and outlooks

CONCLUSIONS & OUTLOOKS

- Better knowledge and **understanding of plant fibres damping capacity is cruci**al to design and **optimise** the new generation of PFC structures and implement new functionnalities in PFC products
- Determination of damping properties of (plant) fibres is challenging
- The classical techniques have drawbacks and the **uncertainty** of the identified properties is sometimes high
- The development of **innovative and reliable experimental techniques** is ongoing in our team

PERSPECTIVES

MIcroscale characterization and modelling of energy DIssipation mechanisms to optimize damping of plant Flbres Composite structures

WPO: management					
WP1: microscale dynamic characterization and identification	WP2: composite damping multiscale optimization	tion,			
Task 1.1: dynamic experimental development at fiber scale	Task 1.1: damping stochastic multiscale modeling development	oublica			
Task 1.2: dynamic properties of elementary fibers and bundles	Task 1.2: characterization and model validation	ation: J			
Task 1.3: dynamic properties of the matrix/fiber interphase	Task 1.3: composite multi-objective optimization	semina			
WP3: proofs of concept, demonstrators with low environmental impact					

WP1: Fanny Pelisson PhD 2022-25

WP2: Tsilat Shiferaw PhD 2023-26

molifi

midific

ANR-22-CE51-0001

DAMPING PROPERTIES OF PLANT FIBRE COMPOSITES

Pauline BUTAUD – ESBBC 2023 Tarbes

F. Pelisson, V. Placet, M. Ouisse, T. Liu, Y. Gaillard, G. Bourbon, F. Amiot

