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Abstract –Re-configurable materials and meta-materials can jump between space symmetry
classes during their deformations. Here, we introduce the concept of singular symmetry enhance-
ment, which refers to an abrupt jump to a higher symmetry class accompanied by an un-avoidable
reduction in the number of dispersion bands of the excitations of the material. Such phenomenon
prompts closings of some of the spectral resonant gaps along singular manifolds in a parameter
space. In this work, we demonstrate that these singular manifolds can carry topological charges.
As a concrete example, we show that a deformation of an acoustic crystal that encircles a p11g-
symmetric configuration of an array of cavity resonators results in an adiabatic cycle that carries a
Chern number in the bulk and displays Thouless pumping at the edges. This points to a very gen-
eral guiding principle for recognizing cyclic adiabatic processes with high potential for topological
pumping in complex materials and meta-materials, which rests entirely on symmetry arguments.

It has been recently recognized that the space symme-
try of materials can be a rich source of topological ef-
fects. For example, in topological quantum chemistry, the
materials are divided in homotopy classes such that two
systems from two different classes cannot be continuously
deformed into each other without closing a bulk spectral
gap or breaking the space symmetries associated with the
classes [1–4]. It has also been recognized that robust topo-
logical bulk-boundary correspondences can be induced by
space symmetries under adiabatic pumping conditions [5].
Space symmetries also play a central role in the topologi-
cal effects observed in higher order topological insulators
[6] and in other manifestations of bulk-boundary corre-
spondences, such as in topological corner modes [7] and
topological screw dislocations [8].

Our present work opens another perspective on space
symmetries, specifically, on cyclic deformations of mate-
rials in the presence of symmetries. As it is well known
[9], an adiabatic cycle can generate non-trivial topology in
the bulk of a material and a topological spectral flow at
its boundaries. The prototypical source of such phenom-
ena is the Rice-Mele model [10] of polyacetylene [C2H2]n.
It has two parameters that quantify the fluctuations of
the hopping coefficients and an ensuing staggered poten-
tial under possible dimerizations of the ideal chain. The
model displays a gapless energy spectrum at a singular
point, where the two parameters are zero, and a gapped
spectrum otherwise. A closed loop encircling this singular
point of the parameter space supports a non-trivial Chern
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Fig. 1: Ball-and-stick model of un-dimerized polyacetylene.

number [9]. This is often invoked as an example where the
symmetry is irrelevant and where the principles at work
are entirely topological. We argue here that this is a very
narrow point of view, which misses a wider picture that
can be very revealing when it comes to identifying mate-
rials that support similar topological effects.

To open the discussion, we point out the glide-reflection
symmetry of the un-dimerized polyacetylene chain, which
is quite evident from its structure reproduced in fig. 1. The
singular point in the parameter space of the Rice-Mele
model, which carries the topological charge, exists pre-
cisely because of this symmetry. Away from this singular
point, the glide-reflection symmetry of the polyacetylene
chain is removed, so that only discrete translations re-
main (p1 symmetry) and the energy spectrum is gapped.
Thus, we are dealing with a parameter space with predom-
inantly p1 symmetry and with one singular point where
the symmetry is enhanced. The main point we want to
communicate is that, even without a tight-binding model
for a material or metamaterial, we can still identify cyclic
adiabatic processes with potential for topological pump-
ing, based entirely on symmetry principles. Indeed, we
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Fig. 2: (a) Symmetric pattern generated by acting with p1-
group on the two seeding shapes shown in color, i.e. using
only discrete lattice translations. a is the lattice constant. (b)
Same as (a), but with the seeding shapes being glide-reflection
images of each other. (c) Pattern (b) is reproduced by acting
with p11g-group on a single seeding shape, i.e. by repeatedly
applying a half-shift followed by a glide-reflection.

will show in this work that the topological adiabatic cycle
in polyacetylene is not an isolated occurrence and that, in
fact, topological cycles are prone to occur and very easy to
identify around the sub-manifolds of the parameter space
that carry enhanced symmetries.

To formulate the latter more precisely, let us place
the discussion in the context of the seven frieze groups,
which are the discrete space-groups of planar strips [11],
hence appropriate for the investigation of periodic quasi 1-
dimensional physical systems. We also switch from molec-
ular systems to meta-materials, for which we generate
symmetric patterns where the positions, orientations and
shapes of the resonators all influence the dynamics of the
collective resonant modes [12]. Specifically, starting from
one or more seeding shapes, later regarded as seeding res-
onators, we apply all plane transformations contained in
a particular frieze group and generate patterns displaying
a desired symmetry. In regards to the complexity of their
symmetries, at one end stands the p1 group, which in-
cludes only the discrete translations of the primitive cell.
At the opposite end stands the p2mm group, which incor-
porates the maximal set of allowed discrete symmetries,
that is, horizontal translations and horizontal/vertical re-
flections. Regardless of their complexity, all symmetric
patterns can be generated with the p1 group, when the
latter acts on an appropriate set of seeding resonators
forming the primitive cell, as illustrated in fig. 2(a). How-
ever, if the seeding resonators have particular shapes, lo-
cations and orientations as in fig. 2(b), the symmetry of
the pattern can be enhanced to other frieze groups and a
smaller set of seeding resonators is needed, as illustrated
in fig. 2(c) for the case of the glide-reflection symmetry
(frieze group p11g). Under the slightest generic perturba-
tion of the position, shape or orientation of resonators, the
pattern falls back to the p1 symmetry. The point we want
to make is that the patterns with symmetries other than
p1 form isolated manifolds in the space of symmetric pat-
terns, and these manifolds are surrounded and connected
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Fig. 3: Adiabatic deformations of the materials described in
this work can be generated by modifications of position (hence
x, y coordinates) and size (hence scaling by a parameter s)
of a seed resonator. When going around the reference p11g-
symmetric configuration, shown in gray and corresponding to
the origin of the parameter space ∆x = ∆y = ∆s = 0: (a) An
adiabatic cycle generated only with displacements inherently
intersects the singular manifold shown in green; (b) whereas
an adiabatic cycle generated with displacements plus scalings
can encircle the critical manifold. The shapes in these diagrams
represent self-coupling resonators. In blue, we show a contin-
uous sequence of configurations indexed by the adiabatic pa-
rameter Ψ. The diagrams on the right depict the corresponding
loops in parameter space. Configurations drawn with starred
yellow centers are p11g-symmetric. Note that, in (b), the adi-
abatic loop goes behind at the top and in front at the bottom
of the singular manifold, hence avoiding these p11g-symmetric
configurations.

by the space of p1 symmetric patterns. We demonstrate
here that some of these isolated manifolds carry topologi-
cal charges.

A decisive factor that must be taken into account is the
number of distinct energy bands that can be produced
with a given number of seeding resonators. If each res-
onator carries one resonant mode, then the p1-symmetric
pattern seen in fig. 2(a) produces two gapped resonant en-
ergy bands, generically. In contrast, the p11g-symmetric
pattern seen in fig. 2(c) can produce only a single reso-
nant energy band, regardless of the couplings [13]. Thus,
the spectrum will be ungapped along a manifold of pa-
rameters carrying the p11g-symmetry. However, not every
enhancement/reduction of symmetry leads to the phenom-
ena advertised here. If we start with four arbitrary seed-
ing resonators, we can generate a p1-symmetric pattern
with four resonators in the primitive cell. By continu-
ously changing the shape, orientation and locations of the
seeding resonators, we can achieve the p2mm symmetry,
in which case the pattern can be generated from a sin-
gle seeding resonator. Yet, both cases can display four
separated energy bands, a counting that is based on the
K-theories of these space groups (see e.g. fig. 7.3 in [12]).
In this case, the symmetry enhancement does not display
a singular character. In contradistinction, the enhance-
ment from frieze group p1m1 (vertical reflection) to p2mg
(vertical reflection and glide-reflection) does, because the

p-2



Pumping with symmetry

p11g
symmetric    
configuration

p11g
symmetric  

  configuration

Y

Y

(a)

(b)

D𝜑

Dx

Dy
singular
manifold

Dx

Dy singular
manifold

D𝜑

Y

Y

Fig. 4: Same as fig. 3 but with scalings replaced by rotations.
(a) An adiabatic cycle generated only with displacements in-
herently intersects the singular manifold shown in green; (b)
whereas an adiabatic cycle generated with displacements plus
rotations (by parameter ∆φ) can encircle the critical mani-
fold. The shapes in these diagrams represent self-coupling
resonators. The configuration shown in gray is the p11g-
symmetric configuration at the origin of parameter space, or
∆x = ∆y = ∆φ = 0. In blue, we show a continuous sequence
of configurations indexed by the adiabatic parameter Ψ. The
diagrams on the right depict the corresponding loops in param-
eter space. Configurations drawn with starred yellow centers
are p11g-symmetric.

analysis here is very similar to the one for p1 → p11g
enhancement: p1m1 and p2mg belong to the same iso-
morphism class, hence they have identical K-theories, but
the number of needed seeding resonators drops by one for
p2mg. Hence, the number of energy bands that can be pro-
duced by a p2mg-symmetric pattern is necessarily lower
than that produced by a p1m1-symmetric one. While a
more thorough analysis will be reported elsewhere, we can
already state the general guiding principle at work here,
namely, the reduction in the number of energy bands that
can be produced with a given pattern when the symmetry
enhancement occurs.

Once we identified a symmetry enhancement that leads
to a singular manifold in the space of parameters, the
next step is to construct adiabatic cycles that encircle
this manifold. They can all be obtained by deforming
the seeding resonators. In general, a seeding resonator
has an infinite dimensional configuration space, so there
are many opportunities to engineer deformation spaces of
different topologies and dimensions. In the present study,
however, we restrict ourselves to lower dimensional defor-
mation spaces, by only allowing specific actions on the
resonators. In fig. 3, for example, we consider a pair
of spherical seeding resonators, the first one with con-
stant radius r0 and the second one initially of same ra-
dius r0 and fixed to the glide-reflection symmetric po-
sition (see the gray configuration in fig. 3). From this
p11g-symmetric reference configuration, we allow displace-
ments and scalings (by parameter s) of the second seed-
ing resonator. Thus, the configuration space (∆x,∆y,∆s)
is 3-dimensional. We then see that the space of p11g-
symmetric patterns is 1-dimensional and is represented

n n+1 (b) (c)

(d) (e)

unit cell

(a)

Fig. 5: (a) The vectors of the Hilbert space C2 ⊗ ℓ2(Z) cor-
responding to the resonant modes carried by the two res-
onators; (b-e) The dominant coupling matrices for a generic
p1-symmetric pattern with two resonators per primitive cell.
a and a′ are intra- and inter-cell cross-couplings, respectively.
E0±b are the on-site self energies. c±d are inter-cell couplings
for each site.

by (0,∆y, 0), or the vertical dashed line in fig. 3(a).
Any closed loop (∆x(Ψ),∆y(Ψ), 0) around the reference
point (0, 0, 0), composed of displacements only, will in-
tersect the singular manifold at least twice. As shown
in fig. 3(b), however, we can encircle the p11g-symmetric
phase by using displacements and scalings with a closed
loop (∆x(Ψ),∆y(Ψ),∆s(Ψ)) that never crosses the singu-
lar manifold and actually encircles it. Note that parameter
space is represented in fig. 3 as (∆x,∆y,∆s) so that the
reference configuration (∆x = 0,∆y = 0,∆s = 0 sits at
the origin.

Another example is shown in fig. 4, where the shapes
and sizes of the seeding resonators are matched and fixed,
but we allow displacements and rotations ∆φ of the sec-
ond seeding resonator. This produces again a closed loop
(∆x(Ψ),∆y(Ψ),∆φ(Ψ)) in the 3-dimensional configura-
tion space that encircles the critical manifold without
crossing it. Again, the origin of parameter space repre-
sents the p11g-symmetric reference phase.

The big claim of our work is that, at least in the
case when the seed resonators carry a single mode each,
the topologically non-trivial cycles described above auto-
matically translate into Thouless pumpings provided the
system displays a gap in its resonant spectrum, and no
tight-binding models are needed to understand this phe-
nomenon. Indeed, in the proposed scenario, the coupling
matrices between the resonators are functions of only the
three specified parameters, but their functional depen-
dence can be arbitrary. Now, during an adiabatic cycle,
the collective resonant states can be resolved over the adi-
abatic variable Ψ and quasi-momentum k, which both live
on circles. Thus, the collective resonant states with fre-
quencies below the spectral gap supply a vector bundle
over the 2-torus. Such bundles are generated by acting
with a 2× 2 projection matrix P (Ψ, k) on the fixed space
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C2 (see e.g. Eq. (2) for an explicit expression). Every
projection obeys the constraints P = P † = P 2 and, as a
result, they take the form

P =

(
α

√
α(1− α)eiϕ√

α(1− α)e−iϕ 1− α

)
(1)

where α is a real parameter from the interval [0, 1] and ϕ is
also a real parameter from the interval [0, 2π). Key here is
that, with our 3-dimensional deformation space and with
the freedom to choose the functional dependence of the
coupling matrices, we can sample any desired projection,
which requires only two parameters, as seen in Eq. (1).
Now, consider one configuration with gapped spectrum,
which can be always expanded into a small adiabatic loop
of configurations without closing the gap. The resulting
bundle over the 2-torus is obviously trivial, hence it carries
a Chern number zero. Consider now an adiabatic loop that
encircles the singular manifold carrying the p11g symme-
try. We claim that the resulted bundle over the 2-torus is
topologically distinct from first bundle we previously con-
structed. Indeed, if we can modify the functional depen-
dence of the couplings between the resonators such that
the second bundle is deformed into the first one, then we
should be able to contract the second adiabatic loop to
a point, without closing the gap. But this is impossible
because, in the process, we will necessarily touch the sin-
gular manifold where there is only one spectral band in
the spectrum. Thus, the second bundle must carry a non-
trivial Chern number.

Once we established that the vector bundle supported
by the loop encircling the p11g-singular manifold carries
a non-trivial Chern number, given the robustness of the
latter, we can consider additional deformations of the res-
onators as well as turning on additional degrees of free-
dom. As long as the spectral gap remains open for the en-
tire adiabatic cycle, none of the above actions can destroy
the topological character of the loop. This conclusion is
definitely aided by the particular setting we started with.
If the resonators would have carried more than one degree
of freedom, then it is very likely that some of the bands
or composite bands will not carry a Chern number un-
der the proposed scheme. Therefore, we want to be clear
that we are not announcing a theorem here, but rather a
guiding principle for detecting cyclic adiabatic processes
with high potential for implementing topological pumps.
In general, a check will still be necessary to confirm the
sought properties.

We will confirm the topological nature of the cycle from
fig. 4 using both tight-binding and continuum media sim-
ulations. The pattern of resonators discussed so far have
two modes per repeating cell, hence the Hilbert space of
the resonating modes is spanned by the vectors ξ ⊗ |n⟩,
with ξ a column vector with two complex entries and
n ∈ Z. This particular Hilbert space is usually denoted
as C2 ⊗ ℓ2(Z). The precise distribution of these vectors
on the resonators is shown in fig. 5(a). In figs. 5(b-e), we
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Fig. 6: Resonant spectrum (a) and Berry curvature (b) for
the loop a = 1.0 + 0.4 cos(Ψ), a′ = 1.0 + 0.4 sin(Ψ), b = 0,
c = 0.4 + 0.1 cos(Ψ − π/4) and d = −0.1 cos(Ψ − π/4). The
expressions of parameters are consistent with the loop in fig. 4,
where b = 0 because the resonators are identical and c+ d is a
constant because the top row is not modified. The π/4 phase
is an arbitrary choice that makes no difference.

list the nearest-neighbor couplings and their contributions
to the dynamical matrix. According to those couplings,
the dynamical matrix H which determines the resonant
pulsations H|ψ⟩ = ω2|ψ⟩ of the resonator pattern can be
approximated as

H =E0 + aσ1 ⊗ I + a′ (σ− ⊗ S + σ+ ⊗ S†) + b σ3 ⊗ I

+ c
2σ0 ⊗ (S + S†) + d

2σ3 ⊗ (S + S†),

where S|n⟩ = |n + 1⟩ is the shift operator, E0 is the av-
erage resonant energy of the two seeding resonators, σ0 is
the 2×2 identity matrix and the other σ’s are Pauli’s ma-
trices. The terms included encompass intra-cell couplings
as well as inter-cell couplings up to the nearest neighbor.
The terms left out involve second and higher nearest neigh-
bor couplings, which are relatively small. We pass to the
momentum space using the substitution S±1 → e±ık, to
find two energy bands

E±(k) = E0 + c cos(k)±
√
(b+ d cos(k))2 + |a+ a′eık|2

separated by a gap. When the symmetry of the pattern is
enhanced to p11g, then necessarily a = a′ and b = d = 0;
E±(k) = E0 + (c ± 2a) cos(k) and the band spectrum is
gapless. We recall that this closing of the energy gap is
un-avoidable and that it does not depend on the simplified
Hamiltonian we used. Under an adiabatic cycle parame-
terized by Ψ ∈ S1, the Bloch Hamiltonian depends on
two parameters (Ψ, k) that live on torus T2, hence we can
evaluate a Chern number as

Ch(P ) =

∫
T2

dΨ dk F (Ψ, k),

where P is the spectral projector onto the lower dispersion
band, which can be conveniently computed as

P (Ψ, k) =
H(Ψ, k)− E+(Ψ, k) I2×2

E−(Ψ, k)− E+(Ψ, k)
, (2)
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and F (Ψ, k) is the Berry curvature,

F (Ψ, k) = ı
2π Tr

(
P (Ψ, k)

[
∂ΨP (Ψ, k), ∂kP (Ψ, k)

])
.

Note that parameter c does not enter in any of the last
three equations because its corresponding contribution to
H(Ψ, k) just shifts E±(Ψ, k) by the same amount. Thus,
we are effectively dealing with a 4-dimensional parameter
space and, as such, the critical manifold a−a′ = b = d = 0
has dimension 1. Now, with these tools, we can verify that
any loop that encircles the 1-dimensional critical manifold
carries a non-trivial Chern number. Due to the topological
character of the statement, it is enough to check this state-
ment for one loop and this is confirmed in fig. 6, where a
parametrization consistent with the process illustrated in
fig. 4 is considered.

We now demonstrate how our guiding principle unfolds
for an actual acoustic crystal. Its building elements are the
C-shaped Helmholtz resonators with the unit cell shown
in fig. 7(a) and full crystal shown in fig. 8(b-e). The out of
page dimension of the resonators is small such that the low
frequency resonant modes are all uniform in the direction
perpendicular to the page. We hope the reader will agree
with us that, a priori, it is not clear what cyclic actions
on such acoustic crystal will result in Thouless pumping.
According to our guidelines, the first task is to optimize
its p11g-symmetric configuration such that a breaking of
the p11g-symmetry produces a complete gap in the disper-
sion spectrum. In fig. 7(b), we show the evolution of the
dispersion bands as a function of the orientation of res-
onators in p11g-symmetric configurations and, from that
data, we chose the angle φ = 54◦ giving the dispersion
shown in fig. 7(c). The touching of the dispersion bands
marked there is protected by the p11g-symmetry and the
loss of this protection will open a local spectral gap. The
particular geometry of the dispersion bands then assures
us that this local band splitting develops into a complete
spectral gap.

Next we define the deformation path as

g = a/2− a/5 sin(Ψ), φ = 54◦ + 20◦ cos(Ψ).

This encloses the singular p11g-manifold and it leads to
the gapped bulk dispersion spectrum shown in the inset
of fig. 8(a). According to our prediction, this loop supports
a Chern number +1 and, as such, the bulk-boundary cor-
respondence principle [14] assures us of the emergence of
topological edge states in a finite geometry, which display
a topological spectral flow with the pumping parameter Ψ.
This is confirmed in the COMSOL simulations reported in
fig. 8(a), where two chiral edge bands located at the oppo-
site ends of finite crystal are clearly visible. Furthermore,
samples of the modes as well as a computation of their
center of mass confirm their expected localization. In con-
trast, if the pumping cycle does not encircle the singular
p11g-manifold, as fig. 9 exemplifies, then the topological
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Fig. 7: Tuning the resonating structure: (a) Unit cell of the
p11g-symmetric configuration of a chain of C-shaped acoustic
resonators. The gray region indicate the domain of the acoustic
wave propagation. Hard-wall boundary conditions are applied
at the top and bottom of the cell, as well as on the walls of the
C-shape. In units of a, the values of the marked parameters
are b = 0.85a, d = 0.15a, r = 0.3a, and R = 0.4a. The glide
parameter g is fixed at a/2. (b) Bulk dispersion as function
of the resonator orientations. (c) Bulk dispersion of the tuned
structure, with a mark showing the targeted band splitting.
The simulations were generated with COMSOL MultiPhysics
software.

edge state inside the band gap always remains localized
on one of the sides of the finite chain of resonators and
never crosses the band gap.

In conclusion, we announced a guiding principle that
enables one to identify adiabatic cycles with high poten-
tial for Thouless pumping, without making appeal to any
analytic tight-binding model. Indeed, the topological cy-
cles described in Figs. 3 and 4 were produced using only
geometric considerations. Shunting the need of analytic
calculation can have great practical implications. For ex-
ample, our extremely simple topological adiabatic cycle for
the C-shaped resonators (see [15] for an animation) would
have been hard to guess from an analytic model, yet we
discover it without much effort using the new geometric
principles. We anticipate that our guiding principle will be
fruitful as well for wallpaper groups and crystallographic
groups in 3-dimensions, and even for finite highly symmet-
ric molecules. The principle may be also relevant to the
electron-phonon coupling in quantum materials. For ex-
ample, deformations of the crystalline or molecular struc-
tures that encircle manifolds of enhanced symmetries may
supply mechanisms for quantized charge transfers across
extended systems.

∗ ∗ ∗

EP acknowledges financial support from US National
Science Foundation through the grants CMMI-2131760
and DMR-1823800, and US Army Research Office through
contract W911NF2310127. Support from the EIPHI
Graduate School [Contract No. ANR-17-EURE-0002] and
from ANR PNanoBot [Contract No. ANR-21-CE33-0015]
is also acknowledged.

COMSOL simulations are available from the authors

p-5



J. A. Iglesias Mart́ınez et al.

ѱ = 21.6°                     ωa/2π = 58.57 m/s

ѱ = 0°                         ωa/2π = 57.20 m/s

ѱ = 100.8°                    ωa/2π = 56.56 m/s

ѱ = 298.8°                    ωa/2π = 56.46 m/s

L

R

⟨X⟩

ω
a/

2π
 (

m
/s

)

ω
a/

2π
 (

m
/s

)
ѱ (deg.)

(a)

(b)

b
c

d e

(c)

(d)

(e) -1

1

p

 

ѱ (deg)

k (2π/a)
0

0 300

60

1

Fig. 8: (a) Spectral flow of the resonant spectrum against the
pumping parameter Ψ for a finite acoustic crystal with 31 unit
cells. The cycle parametrized by pumping parameter Ψ encir-
cles the glide symmetric point in parameter space (g, ϕ), as the
left inset depicts. Topological edge modes are seen crossing
the bulk gap of the dispersion diagram. Their localization, as
measured by the center of mass ⟨X⟩ of the modes, is encoded
in color. (Right inset) Resonant spectrum of the infinite acous-
tic crystal (compare with fig. 6(a)). (b-e) Samples of spatial
profiles of modes, reported as the pressure field p̂, collected at
the arrows indicated in panel (a).
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