ARTICLE TEMPLATE

TSCAPE: Time Series Clustering with Curve Analysis and
Projection on an Euclidean space

Jeremy RENAUD?P | Raphaél Couturier?, Christophe Guyeux?®, and Benoit Courjal®

aniversite de Franche-Comte, CNRS, institut FEMTO-ST, Belfort, France; PCaduciel,
Voray sur I’Ognon, France

ARTICLE HISTORY
Compiled January 26, 2024

ABSTRACT

The ever-growing use of digital systems has led to the accumulation of vast
datasets, particularly time series, depicting the temporal evolution of variables and
systems. Analyzing these time series, essential for predictions, anomaly detection,
and behavioral studies, presents a tremendous challenge due to their inherent com-
plexity and heterogeneity. Addressing an industrial need in the pharmaceutical
wholesale sector, this paper introduces a new clustering method for time series:
TSCAPE. The TSCAPE method uses a distance matrix calculated using dynamic
time warping, followed by multidimensional scaling to project time series into a 2D
Euclidean space, where similar patterns are nearby, thus improving the last clus-
tering stage by K-Means. Unlike conventional techniques, this approach, based on
clustering of representation of distances in a euclidean plane rather than on the
curve shape, directly enhances the efficiency of the clustering process. The method-
ology exhibits significant potential for diverse applications, beyond pharmaceutical
sales, accommodating varied data types and irregular time series shapes. The re-
search compares multiple variants and proposes metrics to assess their effectiveness
on two open-access datasets. The results demonstrate the method’s superiority over
”only distance comparison clustering techniques”, like dynamic time warping and
K-Means, with future prospects aimed at predictive applications and refinement of
the clustering process by exploring alternative, more powerful clustering algorithms.
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1. Introduction

Nowadays, the use of digital systems has become ubiquitous, resulting in the generation
of vast datasets that can be stored and analyzed to extract pertinent information.
Within this pool of data lie time series, delineating the evolution of a system or
variable over time, including trajectories, sales curves, or temperature fluctuations.
The exploration of such time series offers substantial insights beneficial for predictive
analytics, behavioral studies, and anomaly detection within the systems producing
and using these data.

However, the analysis of time series data, given its complex and heterogeneous na-
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ture, is an intricate task, which complicates its analysis. For instance, companies may
aim to identify anomalies in store performance, categorize products based on their
sales behavior, or detect failures in a production line. As a result, researchers are
in constant pursuit of methodologies to cluster these time series, thereby simplifying
their analysis. Similar endeavors were initiated, for instance to address the industrial
requirements of pharmaceutical wholesale distributors. Specifically, in the pharmaceu-
tical domain, predictions concerning coherent product groupings, indicating clusters
of products displaying similar sales behaviors, lack adequate classifications beyond the
pre-established Anatomical Therapeutic Chemical (ATC) classification by the World
Health Organization for medications. This gap gave rise to the notion of clustering
products with similar sales trends as a potential solution, aiming to generalize predic-
tions across entire product groups by ensuring homogeneous sales behaviors across all
members of a same group.

This paper introduces a new clustering method designed to enhance predictions
without requiring comprehensive product usage context. The approach involves com-
puting a distance matrix among products that have been grouped together, by using a
dynamic time-warping algorithm to analyze time series. Subsequently, the representa-
tion of each time series is projected onto a 2D Euclidean space using a multidimensional
scaling algorithm. The proximity of points on the plane indicates a similar time series,
thereby facilitating the clustering process. To sum up the approach, we propose (1)
to compute a time series distance matrix by using dynamic time warping, then (2) to
transform the time series data into a set of points by applying multidimensional scaling
on these pairwise distances, and finally (3) to apply a K-Means clustering algorithm
on this cloud of points.

Our primary goal is to cluster time series sharing the most comparable patterns and
relying on an examination of curve shape similarities within the time series. Directly
applying a clustering method to time series is intricate, considering the need to cluster
data in dimensions equivalent to the size of the studied time series. Thus, our approach
entails clustering based on a representation of the similarities between these time
series, modeled by distances between points projected onto an Euclidean plane. With
this approach, each entity within a cluster should exhibit the closest proximity to
other members within the same cluster while maintaining a substantial distance from
individuals in other clusters. This clustering strategy necessitates creating clusters
centered around their centroids. The method’s advantages lie in conducting clustering
in a reduced-dimensional space, then grouping time series displaying low similarity
distances, and in its intrinsic explicability.

One of the method’s merits is its divergence from direct clustering based on curve
shape; instead, clustering through a representation of distances on a Euclidean plane
is performed. By clustering points in close proximity, assurance is gained regarding
the similarity of the represented curves, thereby streamlining the clustering process.
This innovative methodology enables one to efficiently manage a large volume of time
series without a predetermined classification, holding significant potential for industrial
and data science applications. Additionally, the adaptability of our method spans
various data types, encompassing sensor data, financial data, and meteorological data.
It accommodates time series exhibiting diverse shapes, whether regular or irregular.
Moreover, our approach provides a clear graphical depiction of time series groups,
making it easier to understand results.

Following the review of the existing body of knowledge, the subsequent sections of
the article will detail the developed clustering method, outlining each step and com-
paring multiple potential variations. The article will introduce the used datasets, will



describe the data processing methods, and will also present the metrics need to com-
pare the different methods. Additionally, comparative elements will be suggested, and
the article will conclude by addressing future works and potential areas for enhance-
ment.

2. Related Works

2.1. Comparison Techniques for Time Series

The paper addresses the analysis of time series curves’ shapes to group them based on
similarities. The literature presents various techniques to compare time series, exem-
plified in the work of Liao (2005). The authors categorize three main clustering types
for time series: "raw-data-based” in Golay et al. (1998), using fuzzy logic clustering on
functional magnetic resonance imaging data; ” feature-based” in Shaw and King (1992),
employing cluster analysis to identify local oscillators; and ”model-based” in Kalpakis
et al. (2001), comparing Linear Predictive Coding cepstrum of ARIMA time series.
Techniques leveraging Euclidean distances (e.g., Elmore and Richman (2001)) involve
creating a similarity matrix through Euclidean distance for Principal Component Anal-
ysis (PCA). However, the investigation into more efficient techniques, like the so-called
Dynamic Time Warping (DTW) proposed by Sakoe and Chiba (1978), remains less
explored.

2.2. Distance Comparison Techniques in Time Series Analysis

Dynamic Time Warping (DTW) is a well-known method for calculating the smallest
distance between two time-series, allowing flexibility in aligning points to account
for variations in speed and time. DTW has found major applications in time series
clustering tasks and beyond.

DTW’s efficiency in time series clustering is relevant in various studies, showcas-
ing its adaptability and usefulness in pattern recognition, as illustrated in Petitjean
et al. (2011). DTW’s application extended to avian studies where it identified pat-
terns in bird songs, offering insights into bird communication and behavior in the
work of Jancovi¢ et al. (2013).

Additionally, Longest Common SubSequence (LCSS), as used in Vlachos et al.
(2002), operates by identifying the longest subsequence common to two timeseries,
providing a robust measure of similarity. Edit distance with Real Penalty (ERP),
see Chen and Ng (2004), offers a technique computing distance between time series
while accounting for their alignment and amplitude difference. Complexity-Invariant
Distance (CID), proposed by Batista et al. (2014), focuses on capturing the complexity
pattern of time series, rendering it robust against length and scaling variations.

Furthermore, Shape-Based Measures like Slope Distance (cf. Kamalzadeh et al.
(2020)) and Procrustes Shape Analysis, like in the work of Andreella et al. (2023), was
used to align matrices. These techniques provide different methodologies to compare
time series and are used in various fields, contributing significantly to pattern recog-
nition in An et al. (2023), signal processing in Liu et al. (2023), data analysis (Ejegwa
and Agbetayo (2023)), and identification (Hittmeir et al. (2022)).



2.3. Embedding and Dimensionality Reduction Techniques

Embedding and dimensionality reduction techniques play a pivotal role in visualizing
high-dimensional data into lower dimensions while preserving crucial information.

MultiDimensional Scaling (MDS) is a fundamental technique used to transform dis-
tance matrices into point clouds on predefined Euclidean planes, as proposed in Cox
and Cox (2008). Its applications span various fields, showcasing its versatility and
efficiency. For instance, MDS was applied in profiling analysis, unveiling distinct pat-
terns in individuals’ profiles, such as in Ding (2000). Additionally, MDS was used
for predicting bankruptcy, providing a succinct visualization of companies’ financial
statuses, like in the work of Neophytou and Molinero (2004). MDS was also used to
analyze the financial health of banks, offering insights into the banking sector’s dy-
namics, see, e.g., Mar-Molinero and Serrano-Cinca (2001). Furthermore, MDS found
application in virus behavior analysis providing a structured understanding of virus
behavior patterns, cf. Lopes et al. (2016). The technique often collaborates with clus-
tering algorithms, as evident in the study analyzing killer whale songs in Brown et al.
(2006), employing MDS as part of an unsupervised grouping methodology leveraging
a sequence of algorithms.

In addition to MDS, several other dimensionality reduction algorithms exist with
distinct features and applications. t-SNE (t-Distributed Stochastic Neighbor Embed-
ding) specializes in visualizing high-dimensional data by minimizing the divergence
between data points in different dimensions, see Van der Maaten and Hinton (2008).
Isomap (Isometric Mapping, Tenenbaum et al. (2000)) maintains geometric relation-
ships in the high-dimensional space, preserving local properties in the low-dimensional
representation. Locally Linear Embedding (LLE), as in Roweis and Saul (2000), fo-
cuses on local linearity, projecting data points in a way that maintains the relationships
between neighboring points. UMAP (Uniform Manifold Approximation and Projec-
tion) like in the work of Becht et al. (2019) is adept at preserving both local and global
structures in the data space. PCA (Principal Component Analysis, used for instance
in Jolliffe and Cadima (2016)) and KernelPCA are widely used linear techniques that
project data onto a new subspace to maximize variance, offering a simplified yet infor-
mative representation, and can be used before a clustering algorithm as in Mohammadi
et al. (2022).

These techniques provide diverse strategies for dimensionality reduction and are
applicable in a myriad of domains, contributing significantly to data visualization and
analysis.

2.4. Clustering Algorithms

Clustering encompasses various algorithms, each with distinct methodologies and ap-
plications in data analysis. K-means, as in Agarwal and Mustafa (2004), is a perva-
sive technique relying on centroids, involving iterative assignment and replacement of
cluster centroids. In contrast, HDBSCAN (Malzer and Baum (2020)) focuses on the
similarity between cluster members, prioritizing neighborhood association over cluster
center proximity. This leads to the creation of more precise yet unequal-sized clus-
ters, a feature particularly advantageous for non-uniformly distributed data. While
HDBSCAN excels in handling clusters based on similarity, it may encounter chal-
lenges with non-compact point clouds and data points that do not easily adhere to
traditional cluster formations.

Several other notable clustering algorithms deserve attention. DBSCAN (Density-



Based Spatial Clustering of Applications with Noise, Ester et al. (1996)) identifies
clusters based on dense regions separated by areas of lower density. OPTICS (Ordering
Points To Identify the Clustering Structure), proposed by Ankerst et al. (1999), is an
extension of DBSCAN, providing a hierarchical clustering representation. Mean Shift
(Derpanis (2005)) uses a non-parametric technique to identify clusters by locating
density maxima in the data space. This algorithm has recently been improved with
the use of GPUs like in You et al. (2022). Agglomerative Hierarchical Clustering (Day
and Edelsbrunner (1984)) operates by successively merging individual data points or
clusters based on their similarity, creating a dendrogram to illustrate the merging
process.

Finally, BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies,
Zhang et al. (1996)) uses a hierarchical clustering approach to handle large datasets,
producing a compact summary for subsequent analysis. Spectral Clustering, like in
Abbasimehr and Bahrini (2022); Lee and Park (2023); Ng et al. (2001), operates on
similarity graphs and spectral theory to partition data into clusters. Lastly, Affinity
Propagation (Frey and Dueck (2007)) uses message passing to find the most appropri-
ate examples of data points for clustering, balancing the quality of the example and
the number of clusters.

These algorithms demonstrate diverse approaches and have applications in various
domains, catering to different types of datasets and structures.

3. TSCAPE description

The idea of our solution is decomposed into 3 steps, see below (Figure 1). In the first
step, the distance is computed by pairwise comparison of time series curves to create
a similarity matrix. Subsequently, this distance matrix is input to multidimensional
scaling, which projects a representation of the time series onto a 2D space while pre-
serving the distances described by the matrix. It is on this 2D representation that a
clustering algorithm is applied to achieve the grouping of similar time series.

In the following subsections, we will detail each step of the methodology and the
algorithms used in these steps.

3.1. Distance comparison with Dynamic Time Warping (DTW)

Initiating the comparison process involves a pairwise assessment of all the time
series representing sales curves. It is possible that certain sales curves exhibit similar
behavior but are slightly time-shifted. To address this issue, employing the dynamic
time-warping algorithm enables the comparison of curves without being impeded by
minor variations in their shapes. Dynamic Time Warping (DTW) is relevant in this
context as it accommodates temporal shifts between sequences. It aligns the sequences
by warping them in the time dimension, allowing for a flexible matching process, ideal
to compare time series with inherent temporal distortions. The dynamic time warping
calculates the smallest distance between two time series. Unlike a simple Euclidean
distance calculation, it does not compare point to point the two time series and offers
a degree of flexibility to align the points. This algorithm (DTW (z,y)) is applied to the
data (P) compared two by two, to create a matrix M of size N-N, N corresponding to
the number of time series to be clustered. M is defined as follows: M (i, j) = DTW (i, j)
with ,j belonging to P. The DTW (X,Y) algorithm is defined as follows. For two time
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Figure 1. The different steps of our solution. The pairwise comparison of time series is performed to derive
their similarity distances, subsequently transforming the resultant similarity matrix into a point projection
representing the time series. This representation is then used in the formation of clusters comprising the closest
points through the application of a clustering algorithm.

series X, Y of respective size N1 and N2, the first step is to create a distance matrix
D of size N1 - N2 with:

The next step is to recreate the path between D(N1—1, N2 —1) and D(0,0) with
the smallest distance value. For this purpose, one adds the value of the cells that
were crossed, using as a rule of displacement : Forcurrentcell = D(k,p) Nextcell =
min{D(k —1,p), D(k,p—1),D(k —1,p—1)}.

Once the matrix M was created and filled, it was passed as input to the multidi-
mensional scaling algorithm.

Tests have also been performed by replacing the classical dynamic time warping
algorithm by a soft_ DTW as in Cuturi and Blondel (2017), which is a variant of the
DTW algorithm with an additional ”gamma” parameter (Table 1).

3.2. Embedding: MultiDimensional Scaling (MDS)

MDS is an algorithm used in data science to visualize dissimilarities between objects
in a dataset by mapping them to a lower-dimensional space while preserving as much
as possible their original pairwise distances. The primary goal of MDS is to represent
high-dimensional data in a reduced number of dimensions, typically two or three, to
facilitate visualization and interpretation.

3.2.1. Mathematical Formulation

Consider a dataset of n objects, where the dissimilarities between each pair of objects
are represented by a symmetric n x n dissimilarity matrix D. MDS aims to embed



these objects into a lower-dimensional space, typically p dimensions.

The objective of MDS is to find a configuration of points X = {z1,x9,...,2,} in
a p-dimensional space such that the Euclidean distances between these points best
approximate the dissimilarities in the original matrix D.

The stress function in classical MDS, also known as Kruskal’s stress, is designed to
minimize the difference between the original dissimilarities D;; and the reconstructed
dissimilarities using the embedded points x; and z; in the reduced space.

The stress function is given by:

n n
2
E(X) =YY wij(di — |lzi — z]])
i=1 j=i+1
where:

e F(X) is the stress function to be minimized,
e w;; is a weight associated with the dissimilarity between objects i and j,
e d;; is the original dissimilarity between objects 7 and j,
e ||x; — z;|| represents the Euclidean distance between points z; and x; in the

lower-dimensional space.

The minimization problem is solved using optimization techniques such as gradient
descent, eigendecomposition, or nonlinear optimization methods.

3.2.2. Operational Details

1. Input: The input to MDS is a dissimilarity matrix representing the pairwise dis-
similarities between objects.

2. Computing Distances: Calculate the pairwise Euclidean distances from the
dissimilarity matrix.

3. Optimization: Minimize the stress function by finding the optimal configuration
of points in the lower-dimensional space.

4. Visualization: Visualize the embedded points in 2D or 3D space to explore the
relationships between objects.

Multidimensional Scaling serves several essential purposes in the preprocessing of
time series data for clustering analysis. Primarily, MDS endeavors to maintain the
original relationships between time series by conserving pairwise distances or dissim-
ilarities as closely as possible during dimensionality reduction. This preservation of
proximity ensures the retention of critical information crucial for subsequent cluster-
ing. Additionally, MDS helps to reduce noise by filtering out extraneous details in the
time series data, highlighting the more substantial patterns and structures, thereby
enhancing the efficiency of subsequent clustering algorithms. Moreover, by represent-
ing time series data in a reduced-dimensional space, MDS allows for a more effective
application of clustering algorithms, generating more insightful and accurate clusters
as it reflects the original relationships between the data points. Finally, MDS con-
tributes to computational efficiency by reducing the complexity of subsequent cluster-
ing algorithms through dimensionality reduction, making the clustering process more
computationally manageable and facilitating the application of algorithms struggling
with higher dimensions.



3.2.83. Use in TSCAPE

The second step of TSCAPE is to apply a multidimensional scaling algorithm on the
distance matrix generated by the DTW. This algorithm allows, by using a distance
matrix, to create points in an Euclidean space of dimension d. Each point represents
a time series contained in the matrix M. If d < 3, visualization of the positions of
the points is possible graphically. But this is not a limiting bound. The last step is to
perform a clustering on these points.

3.3. Clustering with K-means

For the clustering step, a few algorithms have been applied on the points represent-
ing the time series.

The K-Means algorithm is a widely used clustering method in data analysis to
partition a dataset into K distinct clusters. It operates by minimizing the sum of
squared distances between data points and their assigned cluster centers, thus forming
K clusters around centers called centroids.

3.83.1. Mathematical Formulas

Let X = {x1,z2,...,z,} be a set of n data points and K the number of clusters to be
formed.

1. Initialization of Centroids: Randomly select K points as initial centroids
C={cy,co,....cx }.

2. Assignment of Points to Clusters: For each point z;, calculate the distance
to each centroid c; and assign z; to the cluster whith the nearest centroid. This can
be formulated as:

Cluster(x;) = arg min||z; — ¢;||?
J

3. Updating the Centroids: Recalculate the centroids of each cluster as the mean
of all points assigned to that cluster:

1
1551 5%

where S is the set of points assigned to cluster j.
4. Repeat steps 2 and 3 until convergence, i.e., until there is no change in the
allocation of points to clusters or until a predefined tolerance is reached.

3.3.2. Use in TSCAPE

The clustering is therefore not applied on the curve shapes but on a representation on
a Euclidean plane of their dissimilarities. Applying K-means on the MDS-transformed
data helps to form distinct clusters by leveraging the reduced, structured representa-
tions provided by MDS. The combination allows K-means to operate on the reduced
dimensions while aiming to form clusters based on the derived spatial relationships



among the time series data points. This integration enables K-means to capture mean-
ingful patterns and similarities in the reduced space created by MDS, potentially lead-
ing to more insightful and accurate clustering results for time series data.

The primary advantage of the K-means algorithm compared to other clustering
methods, particularly when aiming for highly concentrated clusters, lies in its ability
to minimize intra-cluster variance. K-means seeks to minimize the sum of squared dis-
tances of points to their respective centroids, efficiently grouping points around centers
(centroids) to minimize dispersion within each cluster. In comparison to other cluster-
ing algorithms, K-means is effective in forming compact clusters as it explicitly targets
the reduction of intra-cluster variance using an iterative approach of reassigning points
to clusters based on their proximity to centroids, thus promoting the concentration of
data within each cluster. This is particularly relevant for our work as we aim to create
clusters with the smallest intra-cluster distances, which would correspond to groups
of products with the most similar curves.

4. Experiments

4.1. Data used

The data used for the initial project being proprietary, for this paper we used open-
source datasets available on the internet to simulate our sales time series.

e The first one is an open dataset Szrlee (2018) corresponding to data from com-
pany exchanges, between 2006 and 2018. For this paper, the column ” Volume”
(corresponding to the number of shares traded) was used.

e The second dataset corresponds to data of house sales prices according to
their district and their number of rooms: Holdings (2019). The data has been
grouped by district number, property type, and number of bedrooms: for exam-
ple, 72603_5_house” will contain all the 5-bedroom houses in district 2603.

Each dataset is transformed to obtain three columns: date, product name, and
quantitative values simulating the sales quantity. The data are aggregated by month
and by product. This gives us for each product a time series of monthly sales. The
missing values over the period are replaced by zero. Before being inputted in Dynamic
Time Warning algorithms, the data are also normalized between 0 and 1, to avoid that
the volume of sales influences the distance scale of the dissimilarity matrix.

4.2. Metrics
To compare the solutions between them, three metrics were used.

e The silhouette score (SilScore in this paper) checks the density of clusters and
their separations. The solution interval for the silhouette score is between 1 (best
solution) and -1 (worst one).

e The Calinski-Harabasz score (CHScore in this paper) is somewhat similar: it is
a ratio between the sum of inter-cluster variances and the sum of intra-cluster
ones. It ranges from 0 (worst) to +infinity (best), and its range is related to the
data set.

e The Davies-Bouldin index (DbScore in this paper) measures how similar it is to
the closest cluster. It is the average of the maximum ratio between the distance of
a point to the center of its cluster and the distance between two cluster centers.



It is between 0 (best) and + infinity (worst).

4.8. Clustering by K-means with DTW metric (tslearn)

In the first step, the data were clusterized with the TimeSeriesKmeans function of
the TSlearn Tavenard et al. (2020) Python library. This library is specialized on the
treatment of time series. The TimeSeriesKmeans function has an option in its metric
parameter that directly uses dynamic time warning. The number of clusters has been
chosen by an Elbow method (Figures 2 and 3). The elbow method is a technique used
in clustering algorithms, such as K-means, to determine the optimal number of clusters
in a dataset. It involves plotting the variance or distortion (inertia) against the number
of clusters. As the number of clusters increases, the variance typically decreases. The
”elbow” point on the graph signifies the number of clusters where the rate of decline
changes abruptly, indicating the point of diminishing returns, helping to select an
appropriate number of clusters for the data. The number of clusters was set to 8 for
the house datasets and to 10 for the control Market dataset. The parameters of the
K-means are the same as those described in Section ”4.4.3 K-Means configuration”
of this paper, except for the specific parameter of this solution: metric, which was
initialized to dtw.

Optimal Number of Clusters using Elbow Method (Market Dataset)

Inertia

25 5.0 7.5 10.0 125 15.0 17.5 20.0
Number of clusters

Figure 2. Elbow method for Market dataset

Optimal Number of Clusters using Elbow Method (House Dataset)

800

600

Inertia

400

200

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of clusters

Figure 3. Elbow method for House dataset

The results show that this first solution is not very efficient for our data. The
silhouette score is low, which indicates poor cluster coherence (poor cluster separation,
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or too large distances between individuals in a cluster). Indeed, the sales curves are
quite different from each other and therefore the pattern detection does not seem to
work very well (Tables 4 and 5).

4.4. Principal Component Analysis (PCA) for Time Series Clustering

Principal Component Analysis (PCA) is a crucial dimensionality reduction tech-
nique widely used in time series clustering. In this context, PCA enhances the ef-
ficiency of subsequent clustering algorithms, such as K-means. The process involves
mean-centering the time series data and extracting principal components that capture
the maximum variance.

Following mean-centering, the covariance matrix is computed, and PCA is applied
to obtain principal components ordered by variance. The decision on the number
of components to retain is crucial, often based on a predefined variance threshold.
Subsequently, time series are reconstructed using the selected principal components,
resulting in a reduced-dimensional representation.

The reduced representation serves as input for K-means clustering, where time
series are grouped into clusters based on their similarity in the reduced feature space.
PCA offers advantages such as noise reduction, computational efficiency,and enhanced
clustering performance.

Using PCA in conjunction with a clustering algorithm such as K-means appears to
be one of the most effective methods for time series clustering, as shown in the works
of Li (2019); Singhal and Seborg (2005); Yang and Shahabi (2004). These approaches
differ from our work as they do not rely on the comparison of distances between
time series. Despite achieving superior results (Table 4 and Table 5), it comes at the
cost of the interpretability of dimensionality reduction: in our method, two points
are necessarily close because they have a short distance calculated by the DTW, i.e.
their curves are similar, as opposed to the PCA method, which reduces dimensions by
creating its own axes, making projection analysis more complex.

We also conducted tests by (PCA) into the embedding stage of our methodology,
to assess whether it enhances the outcomes (Table 4 and Table 5).

4.5. TSCAPE Experimentation '

To compare both solutions the parameters used are preserved, as well as the number
of clusters and the Kmean setting (excluding "metric = dtw”).

(1) Dynamic Time Warping configuration

The ”gamma” parameter of the soft-DTW was tested with different values.
The scores of the different values were compared to each other, and also with
the results obtained on a classic dynamic time warping (Table 1).

(2) Multidimensional scaling configuration

For the multidimensional scaling step, the variation of the dimension param-
eter (n_components) was tested. An example for both datasets, on a space of
dimension d = 2, is provided in Figures 4 and 5.

Increasing the number of dimensions allows more degrees of freedom to the
Multidimensional Scaling algorithm. But looking at Table 2, one can see that
increasing the dimension d < 4 does not improve the different scores.

The MSD algorithm has a random_state parameter that allows us to initialize

1Source code available at github.com : https://github.com/ml-anon/TSCAPE/.
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Mean of 10 runs Mean of 10 runs
with House data with Market data
Soft DTW | SilScore CHScore | Dbscore | SilScore CHScore | Dbscore
gamma Mean Mean Mean Mean Mean mean
DTW 0.46 333.84 0.71 0.44 66.93 0.53
10 0.44 193.23 0.81 0.41 36.12 0.6
0.1 0.47 429.31 0.66 0.38 74.2 0.6
0.01 0.49 343.72 0.67 0.56 437.61 0.33
0.005 0.48 333.2 0.67 0.49 327.53 0.34
Table 1. Variation of the metrics according to the Soft DTW gamma parameters.
1.25
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-1.25 -1.00 -0.75 —0.50 -0.25 0.00 0.25 0.50

Figure 4. 2D projection with MDS for the Market dataset. Each point corresponds to the representation of
a time series. The distance between two points represents the similarity score.

Two points close to each other means that both time series have a similar curve.

Mean of 10 runs Mean of 10 runs

with House data with Market data
Ndim | SilScore CHScore | Dbscore | SilScore CHScore | Dbscore

Mean Mean Mean Mean Mean mean
2 0.49 343.62 0.67 0.52 376.93 0.33
3 0.48 342.99 0.67 0.56 473.74 0.34
4 0.48 343.05 0.67 0.54 456.7 0.36
5 0.48 342.81 0.67 0.54 424.43 0.37
6 0.48 342.9 0.67 0.54 421.57 0.36
7 0.48 342.9 0.67 0.54 432.47 0.36
8 0.48 342.8 0.67 0.54 424.43 0.36
9 0.48 342.83 0.67 0.54 413.05 0.37
10 0.48 342.77 0.67 0.54 432.47 0.36

Table 2. Variation of the metrics according to the number of dimensions of the MDS.

it with different seed values. The variation of this parameter does not seem
to change greatly the result (Table 3). The observation of these results shows
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Figure 5. 2D projection with MDS for the House dataset. Each point corresponds to the representation of a
time series. The distance between two points represents the similarity score.

Two points close to each other means that both time series have a similar curve.

that changing the initialization seed of the MDS varies only slightly with the
clustering result for datasets with many samples. In case of datasets with a few
samples, this parameter can be useful to increase the silhouette score.

Mean of 10 runs Mean of 10 runs

with House data with Market data
Seed | SilScore CHScore | Dbscore | SilScore CHScore | Dbscore

Mean Mean Mean Mean Mean mean
2 0.49 343.67 0.67 0.54 450.69 0.35
3 0.49 343.72 0.67 0.54 373.75 0.37
4 0.49 343.69 0.67 0.54 396.38 0.36
5 0.49 343.68 0.67 0.55 464.09 0.34
6 0.49 343.7 0.67 0.54 436.32 0.35
7 0.49 343.71 0.67 0.51 370.92 0.33
8 0.49 343.7 0.67 0.54 390.69 0.36
9 0.49 343.57 0.67 0.51 371.39 0.33
10 0.49 343.72 0.67 0.56 437.61 0.33

Table 3. Variation of the metrics according to the seed number of the MDS.

Tests have been performed with other dimensionality reduction algorithms.
The t-SNE algorithm is one of the best methods in this category. It was used
just after the MDS to see if it was able to place the points corresponding to the
products more efficiently than the MDS. The results (Table 4 and Table 5) show
a slight improvement in silhouette score for datasets with many samples. It seems
that when the number of samples and the size of the matrix M is larger, the MDS
has fewer degrees of freedom to place the points between them, and therefore
offers more convergent results whatever the seed. It can then be assisted by the
t-SNE to improve these results (Figures 6 and 7).

Tests were also done by replacing the MDS algorithm with a Spectral Embed-
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ding such as in Belkin and Niyogi (2003). Although the results were better on
some configurations, this did not allow the best solution to be surpassed (Table 4
and Table 5).
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Figure 6. 2D projection with MDS followed by point replacement using the t-SNE algorithm for the Market
dataset. The distance between two points represents the similarity score.

Each point corresponds to the representation of a time series. Two points close to
each other mean that the both time series have a similar curve.
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Figure 7. 2D projection with MDS followed by point replacement using the t-SNE algorithm for the House
dataset. The distance between two points represents the similarity score.

Each point corresponds to the representation of a time series. Two points close to
each other mean that both time series have a similar curve.

(3) K-means configuration
The parameters of the K-means are the same as for the tslearn part: max_iter
was set to 400, n_init to 100, init to K-means++, and finally random_state was
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initialized and varied from 0 to 20. The number of clusters is also the same as
defined in the tslearn part of this paper: (8 for the house datasets and 10 for the
control Market dataset). All the points are indeed in a cluster, but sometimes
some points close to each other are in 2 different clusters. This is due to the K-
means clustering method, it is the only problematic consequence of this choice.
This problem can be corrected by increasing the number of clusters enough to
try to better distribute the points in each group, at the expense of the size of
the number of individuals per cluster, and of the ease of analysis (Figures 8 and
9).

Experiments were conducted using K-Medoids and Spectral clustering algo-
rithms. Replacing the K-means algorithm in our solution with K-Medoids led
to some improvements in certain metrics for specific datasets. However, when
used solely after DTW, our solution remained the most effective. On the other
hand, the Spectral Clustering algorithm did not improve our solution (Table 4
and Table 5).

-0.25 B ..

-0.50

-1.25 -1.00 -0.75 —0.50 -0.25 0.00 0.25 0.50

Figure 8. Clustering for the Market dataset. Clusters are represented by different colors: two points of the
same color are in the same cluster.

4.6. Results

In our methodology, the first two steps involving dynamic time warping and multi-
dimensional scaling represent the similarity between two time-series by establishing
a distance between two points. Our goal is to group time series that have the most
similar curves, necessitating the grouping of the closest points. Each individual within
a cluster should be as close as possible to the other members of the same cluster and
ideally far from the members of other clusters. This implies the creation of clusters
around their centroids, a task efficiently performed by the K-means algorithm. Metrics
such as the silhouette score, Calinski-Harabasz score, and Davies-Bouldin index are
relevant to evaluate data clustering when seeking to group the closest points. The sil-
houette score measures the similarity of points within clusters and their dissimilarity
from other clusters. The Calinski-Harabasz score evaluates cluster compactness and
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Figure 9. Clustering for the House dataset. Different colors represent clusters: two points of the same color
are in the same cluster.

separation, while the Davies-Bouldin index quantifies both intra-cluster dispersion and
inter-cluster separation. These metrics offer a comprehensive evaluation of clusters in
terms of intra-cluster cohesion, inter-cluster separation, and differentiation between
clusters.

The silhouette score of the clusters proves the improvement our solution TSCAPE
brought (Table 4 & Table 5). The addition of multidimensional scaling improves the
silhouette score compared to a solution composed only of dynamic time warping and K-
means (with equal parameter settings). Adding a t-SNE algorithm between MDS and
clustering improves the silhouette score in some cases. Replacing the DTW algorithm
by its Soft-DTW enables one to improve the results with certain ”gamma” parameter
values.

5. Conclusion

Through this paper, we have presented a technique to cluster time series. This cluster-
ing is based on the analysis and comparison of curve shapes. The different techniques
could be tested by comparing the silhouette scores, the Calinski-Harabasz score and
the Davies-Bouldin index, of all the clusters. The results showed that the solution
proposed in this paper is more efficient in creating clusters than the existing methods
based on dynamic time warping and K-Means. Although our method is less effective
than the PCA-based methods, it provides better interpretation in terms of dimension
reduction. The next step of this work is to use these clusters to make predictions by
grouping products in the context of data from a wholesaler-retailer for French phar-
macies. Clustering improvement works can also be done, for example by testing other
clustering algorithms more powerful than the K-means one.
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Dataset SilScore | CHScore | Dbscore | SilScore | CHScore | Dbscore
House mean mean mean STD STD STD
DTW + MDS 0.46 333.86 0.72 0 0 0

+ K-means

DTW + MDS + 0.53 563.74 0.61 0.002 35.33 0.005
t-SNE +K-means

DTW + K-means 0.39 226.08 0.88 5.55 2.84 0
DTW + t-SNE 0.43 160.26 0.77 0.03 12.51 0.04
+ K-means

DTW + Spectral 0.42 149.11 0.67 0 0 0
Embeding + K-means

DTW + SpectralEmbeding 0.52 449.2 0.68 0.01 17 0.005
+ t-SNE + K-means

Soft DTW + Spectral 0.43 186.05 0.71 0 0 0
Embeding + K-means

Soft DTW + SpectralEmbeding | 0.55 818.68 0.63 0 52.31 0.02
+ t-SNE + K-means

Soft DTW + K-means 0.41 198.74 0.88 0 0 0
Soft DTW + t-SNE + K-means | 0.56 1404.53 0.61 0.01 289.89 0.03
Soft DTW + MDS +K-means 0.49 343.62 0.67 0 0 0
Soft DTW -+ MDS 0.56 924.1 0.58 0 93.34 0

+ t-SNE + K-means

Soft DTW + MDS + 0.40 279.49 1.0 0 0 0
K-Medoids

Soft DTW + MDS + 0.59 750.82 0.48 0 0 0
t-SNE + K-Medoids

Soft DTW + MDS + 0.40 255.62 0.79 0 0 0
SpectralClustering

Soft DTW + MDS + 0.26 125.53 1.95 0 0 0
t-SNE + SpectralClustering

Soft DTW 0.35 179.13 1.11 0 0 0

+ SpectralClustering

Soft DTW 0.37 257.70 0.98 0 0 0

+ K-Medoids

Soft DTW + PCA 0.53 469.35 0.60 0 0 0

+ K-Means

Soft DTW + PCA + 0.64 1061.51 0.41 0 0 0
t-SNE + K-Means

PCA + K-means 0.62 2337.83 | 0.41 0 69.31 0.04
tslearn 0.053 13.65 5.49 0 0.34 0.08

Table 4. Benchmark (means of 10 runs) of all solutions and options of this paper for House dataset (the best
solution is in bold).
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