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Abstract: The symmetries of a Riemann surface Σ \ {ai} with n punctures ai are encoded in

its fundamental group π1(Σ). Further structure may be described through representations

(homomorphisms) of π1 over a Lie group G as globalized by the character variety C = Hom(π1, G)/G.

Guided by our previous work in the context of topological quantum computing (TQC) and

genetics, we specialize on the 4-punctured Riemann sphere Σ = S
(4)
2 and the ‘space-time-spin’

group G = SL2(C). In such a situation, C possesses remarkable properties (i) a representation is

described by a 3-dimensional cubic surface Va,b,c,d(x, y, z) with 3 variables and 4 parameters, (ii)

the automorphisms of the surface satisfy the dynamical (non linear and transcendental) Painlevé

VI equation (or PVI), (iii) there exists a finite set of 1 (Cayley-Picard)+3 (continuous platonic)+45

(icosahedral) solutions of PVI . In this paper we feature on the parametric representation of some

solutions of PVI , (a) solutions corresponding to algebraic surfaces such as the Klein quartic and

(b) icosahedral solutions. Applications to the character variety of finitely generated groups fp

encountered in TQC or DNA/RNA sequences are proposed.

Keywords: isomonodromic deformation; Painlevé VI; SL(2,C) character variety, algebraic surfaces;

DNA/RNA

1. Introduction

Free groups Fr of rank r = 2 and 3 have been found to be important in our earlier work about

topological quantum computing (TQC) [1] and biology at the DNA/RNA genomic scale [2]. In the

first context, one motivation is that an elementary link, the Hopf link L = L2a1 made of two unknotted

curves may serve as naive approach of TQC, corresponding to one qubit on either curves, as in [3].

Representation theory of the fundamental group π1(L) over the group SL2(C) puts the punctured

torus T1
1 whose group is π1(T

1
1 )

∼= F2 into focus. In the second context, at least in a first approximation,

a finitely generated group fp defined from an appropriate DNA/RNA sequence turns out to be close

to F2 (for a sequence built from two distinct amino acids) or to F3 (for a sequence built from three

distinct amino acids). The SL2(C) character variety of such a fp group favors the topology of the triply

punctured sphere S
(3)
2 (respectively the quadruply punctured sphere S

(4)
2 ) whose fundamental groups

are F2 (respectively F3).

The interrelation between the free groups F2 and F3 becomes apparent in the exploration of

fibrations associated with the Painlev VI (or PVI) equation, a central focus of our inquiry. The discovery

of the PVI equation by R. Fuchs in 1905, during Einsteins Annus mirabilis, marked a pivotal moment

in mathematical history. B. Gambier further highlighted its significance a year later, listing it as one of

the six Painlev transcendents [4]. These transcendents, ordinary second-order differential equations in

the complex plane, defy expression in terms of familiar elementary or special functions, such as elliptic

or hypergeometric functions.

The hallmark of Painlev transcendents is the Painlev property, denoting that the only movable

singularities are poles. Recently, the attention has shifted towards unraveling the explicit algebraic

solutions of PVI , making it a hot topic with profound connections to algebraic geometry [5] and
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representation theory over the group SL2(C) [6]. It is worth recalling that SL2(C), the special linear

group of 2 × 2 complex matrices with a determinant equal to 1, plays a crucial role in physics,

particularly in the realm of symmetries and representations.

The realm of conformal field theory unveils another layer of connection, as the conformal group

in two-dimensional space-time mirrors the isomorphism with SL2(C) [7]. This alignment assumes

paramount importance in specific facets of string theory. The AdS/CFT correspondence further

solidifies these connections, establishing a duality between a theory dwelling in anti-de Sitter space

(AdS) and a conformal field theory residing on its boundary [8]. Black-hole physics delves into the

symmetrical nuances of SL2(C), particularly in describing the isometries characterizing certain black

hole solutions in general relativity, especially those with AdS asymptotic structures.

Turning our attention to the physical applications of PVI , its profound interconnection with

SL2(C) emerges prominently in the study of isomonodromic deformations and mathematical structures

entwined with integrable systems [9,10]. Isomonodromic deformations, involving parameter variations

in a second-order differential equation while preserving fixed monodromy properties, constitute a

pivotal aspect of PVI research. The associated monodromy matrices find their home within the confines

of the group SL2(C). The Garnier system, which encapsulates PVI , manifests as a family of partial

differential equations resonating across diverse physical contexts, including statistical mechanics [11].

In the intricate tapestry of string theory, solutions to PVI unfurl within the study of moduli spaces

of Riemann surfaces. Notably, the Painlevé equations emerge as reductions of partial differential

equations, self-dual Yang-Mills equations [12], and within the intricate framework of random matrix

theory [13]. PVI takes center stage as it obediently materializes in combinations of conformal blocks

within two-dimensional conformal field theory [14].

In Section 2, we embark on an exploration of the intricate mathematical landscape that establishes

a profound connection between the topological intricacies of free groups F2 and F3, isomonodromy

deformations (deformations preserving monodromy), SL2(C) representations of fundamental groups,

the enigmatic Painlev VI equation, and the intriguing realm of Fricke-Painlevé surfaces. The initial

manifestation of the link between PVI and a complex surface is discerned in Jimbo’s seminal paper,

specifically in [15, Equation (1.6)].

The journey unfolds further as we trace the PVI monodromy to its roots in the corresponding

SL2(C) character variety, ultimately leading to the Jimbo-Fricke cubic, a concept expounded upon

in works such as [16,17]. However, we introduce a more explicit conceptualization the notion of a

‘Fricke-Painlevé VI surface’ (or simply Fricke-Painlevé surface) to precisely characterize the intriguing

correspondence between a complex cubic surface and the dynamic equation PVI . It’s noteworthy that

all algebraic solutions of PVI have been meticulously documented [18].

Sections 3 and 4 delve into the heart of the matter. In Section 3, our focus centers on parametric

representations of algebraic solutions of PVI and the drawing of log-log plots of some of them for the

first time. Section 4 then extends our exploration to non-algebraic surfaces, providing a comprehensive

view of the diverse landscape that PVI traverses.

As the journey unfolds, Section 5 provides a reflective space where we deliberate on the

diverse applications of Painlevé VI, particularly in the character varieties of finitely generated groups

encountered in the realms of topological quantum computing (TQC) and genetics.

2. Materials and Methods

The concept of a flat connection on a fiber bundle M → B takes shape, where the base B assumes

the form of a three-punctured sphere, denoted as B = S
(3)
2 = P1 \ {0, 1, ∞}. For each point t ∈ B,

a corresponding four-punctured sphere Pt = S
(4)
2 = P1 \ {0, 1, t, ∞} emerges. Let Mt denote the

fiber of M over the base point t ∈ B, and the monodromy action unfolds through the action of the

fundamental group of the base on the fiber. This intricate dance is orchestrated by a homomorphism

π1(B) → Aut(Mt) [5].
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Now, let’s offer a succinct overview of how the Painlev VI equation is derived. Initiating the

journey, a Fuchsian system of differential equations, boasting four singularities, takes the form:

dΦ

dz
= A(z)Φ, A(z) =

3

∑
i=1

Ai

z − ai
,

where A(z) contains 2 × 2 traceless matrices Ai and poles at ai, i = 1 · · · 3. In this context, an

isomonodromic deformation involves the movement of poles in the complex space C3 and a variation

in the entries of Ai, all while conserving the conjugacy class of the corresponding monodromy

representation. These deformations adhere to Schlesinger’s system:

∂Ai

∂aj
=

[Ai, Aj]

ai − aj
, i ̸= j and

∂Ai

∂ai
= −∑

i ̸=j

[Ai, Aj]

ai − aj
.

Schlesinger’s equations not only preserve the adjoint orbit Oi containing each Ai but are also

invariant under the conjugation of Ai, i = 1 · · · 4, with A4 = −A1 − A2 − A3 representing the residue

of A(z) at infinity.

For each point (a1, a2, a3) on the base B, we consider the set

Hom(π1(C \ {ai}), G)/G,

which comprises conjugacy classes for representations of the fundamental group π1 of the 4-punctured

sphere S
(4)
2 with loops around the i-th puncture at the conjugacy classes ci = exp(2π

√
−1Oi) ⊂ G =

SL2(C), (i = 1, · · · , 4 and a4 = ∞). These representation spaces are two-dimensional and seamlessly

fit into the fiber bundle M → B.

For each t ∈ B, the space of conjugacy classes of SL2(C) representations for the fundamental

group π1(Pt) is the character variety

Ct = Hom(π1(Pt), G)/G, with G = SL2(C).

The connection is flat and described by PVI equation as follows [4,5]

ytt =
1
2 (

1
y + 1

y−1 + 1
y−t )y

2
t − ( 1

t +
1

t−1 + 1
y−t )yt

+ y(y−1)(y−t)
2t2(t−1)2 {α2

4 − α2
1

t
y2 + α2

2
t−1

(y−1)2 + (1 − α2
3)

t(t−1)
(y−t)2 }

(1)

with yt =
dy
dt and parameters α1, α2, α3, α4 ∈ C.

The Fricke-Painlevé VI surface

Let the boundary components of Pt be A, B, C, D, then π1(Pt) = ⟨A, B, C, D|ABCD⟩ ∼= F3. A

SL2(C) representation of π1 is the quadruple α = ρ(A), β = ρ(B), γ = ρ(C), δ = ρ(D) with αβγδ = I.

Taking the four boundary traces a = tr(ρ(α)), b = tr(ρ(β)), c = tr(ρ(γ)), d = tr(ρ(δ)) and the three

traces x, y, z of elements AB, BC, CA representing simple loops on Pt, we obtain the character variety

for Pt ([6] Section 5.2),([19] Section 2.1),([20] Section 3B), ([21] Eq. 1.9), ([22] Eq. (39)), [18]

Va,b,c,d(x, y, z) = x2 + y2 + z2 + xyz − θ1x − θ2y − θ3z − θ4 = 0, (2)

with θ1 = ab + cd, θ2 = ad + bc, θ3 = ac + bd and θ4 = 4 − a2 − b2 − c2 − d2 − abcd.

From now, the 3-dimensional cubic surface Va,b,c,d(x, y, z) with 3 variables and 4 parameters is

called the Fricke-Painlevé surface due to the established correspondence between the automorphisms

of such a surface and Painlevé VI equation.
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Looking at the nonlinear monodromy of Painlevé VI we get the relation between parameters a,

b, c , d of Va,b,c,d(x, y, z) and parameters αi, i = 1 · · · 4, of Painlevé VI equation as [21, Theorem 3], [22,

Section 4.2], [18, Eq. 13]

(a, b, c, d) = [2 cos(πα1), 2 cos(πα2), 2 cos(πα3), 2 cos(πα4)]. (3)

The Cayley’s Nodal Cubic Surface

The most famous Fricke-Painlevé surface follows from the fundamental group of the knot

complement π1(S3 \ L2a1) = ⟨A, B|[A, B]⟩ = Z2, where S3 is the three sphere, [A, B] = A−1B−1 AB

is the group theoretical commutator and L2a1 the Hopf link. The character variety is given by the

polynomial

κ4(x, y, z) = x2 + y2 + z2 − xyz − 4, (4)

where the notation κ4(x, y, z) = V0,0,0,0(x, y, z) is for the unique surface of the Fricke-Painlevé family,

known as the Cayley nodal cubic surface, exhibiting four isolated singularities. A plot can be found in

([1] Figure 1).

Solutions of the corresponding Painlevé VI equation, attributed to Picard (in 1889), can be explicitly

expressed in terms of the Weierstrass elliptic function ([18] Proposition 51, p. 155), [23].

3. Algebraic Solutions of Painlevé VI Equation Mapping to Algebraic Surfaces

Following the description of [24], an algebraic solution y(t) of PVI equation should be specified

by a polynomial equation F(y, t) = 0 with rational coefficients and a set of four parameters αi, i = 1..4.

More precisely, an algebraic solution of Painlevé VI is a compact (possibly singular) algebraic

curve Π together with two rational functions y and t: Π → P1 providing a rational parametric

representation (y(s), t(s)) such that (a) t is a Belyi map, with its branch locus being a subset of {0, 1, ∞}
and (b) y solves PVI for some parameters αi.

All algebraic solutions of PVI have been classified in [18,25] building upon significant earlier

contributions, including [26–28]. In [25], all algebraic solutions of PVI , if not of the dihedral, tetrahedral

or octahedral type, are refered to as isosahedral solutions as they can be derived from the finite

monodromy subgroup Γ of G = SL2(C), where Γ is the binary icosahedral group. Such solutions,

governing the isomonodromic deformations of PVI , have finite branching, with a number of branches

ranging from 5 to 72.

Before the release of [25], the list of 45 exceptional solutions of PVI was documented in the 2006

Cambridge slides by Philip Boalch [29]. Subsequently, for practical purposes, we adopt the solution

numbering for PVI as provided in [18].

Mapping an algebraic Fricke-Painlevé surface with integer parameters θi to an algebraic solution

of Painlevé VI equation is one to one except for parameters θi = (1, 0, 0, 2) (yielding three distinct

solutions) and θi = (0, 0, 0, 3) (yielding two distinct solutions) [18, Table 4]. In the first exceptional case

the surface is a degree 3 del Pezzo surface of type A1 (with one isolated singularity) while in the later

case it is a degree 3 del Pezzo surface without a simple singularity. Detailed information about the 12

solutions (3 + 2 + 7) is provided in this section.

3.1. The Klein Solution

The Klein solution, corresponding to the Klein surface, is obtained with parameters

(θ1, θ2, θ3, θ4) = (1, 1, 1, 0) [30], ([5] p. 26),([18] solution 8). The parametric form of the solution

is

y(s) =
(5s2 − 8s + 5)(7s2 − 7s + 4)

s(s − 2)(s + 1)(2s − 1)(4s2 − 7s + 7)
, t(s) =

(7s2 − 7s + 4)2

s3(4s2 − 7s + 7)2
(5)
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It corresponds to the complex reflection group 24 in the Shephard-Todd list. The solution has 7

branches and parameters αi = (2/7, 2/7, 2/7, 4/7). It is shown in Figure 1.

Figure 1. Left: Parametric plot for the modulus of Klein solution of PVI (solution 8 of ([18] p 157)),

the discontinuities of the plot correspond to the four poles. Right: the corresponding cubic surface

xyz + x2 + y2 + z2 − x − y − z = 0.

3.2. Solutions with Parameters (θ1, θ2, θ3, θ4) = (1, 0, 0, 2)

There are three solutions of PVI corresponding to the algebraic surface xyz+ x2 + y2 + z2 − x− 2 =

0. They are referred to as solution 3 (a tetrahedral solution with 6 branches), solution 21 with 12

branches and solution 42 with 36 branches in [18]. The surface is a degree 3 del Pezzo surface with an

isolated singularity of type A1. It is depicted at the bottom of Figure 2.

The parametric form of the tetrahedral solution 3 is

y(s) =
−s(s + 1)(s − 3)2

3(s + 3)(s − 1)2
, t(s) =

−(s + 1)3(s − 3)3

(s − 1)3(s + 3)3
(6)

The parametric forms for solutions 21 and 42 are found in [18]. The log-log plots of the solutions

are given in Figure 2.

The parametric form of solution 3 has poles at s = 1 and 3 which are evident as discontinuities in

the log-log plot. For solution 21, there are poles at s = 0, 2, −
√

2 ± 2.21/4 (i.e. s ∼ 0.964 and −3.793).

For solution 42, there are poles at s = 101/3 + 1 ∼ 3.154 and (7 ±
√

5)/2 (i.e. s ∼ 6.854 and 0.146)
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Figure 2. Solutions related to the algebraic surface xyz + x2 + y2 + z2 − x − 2 are indexed in [18].

Up left: the tetrahedral solution 3, up right: solution 21, middle: modulus of solution 42, down: the

corresponding algebraic surface. It is a degree 3 del Pezzo surface of the A1 type.

3.3. Solutions with Parameters (θ1, θ2, θ3, θ4) = (0, 0, 0, 3)

There are two solutions of PVI corresponding to the algebraic surface xyz + x2 + y2 + z2 − 3 = 0.

They are referred to as solution 20 (an octahedral solution with 12 branches) and solution 45 with 72

branches in [18]. The surface is of a degree 3 del Pezzo type devoid of an isolated singularity. It is

depicted at the bottom of Figure 3.

The parametric form of the octahedral solution 20 is

y(s) = 1
2 + 45s6+20s5+95s4+92s3+39s2−3

4(5s2+1)(s+1)2u(s)

t(s) = 1
2 + s(2s+1)2(27s4+28s3+26s2+12s+3)

(s+1)3u(s)3

u(s)2 = (2s + 1)(9s2 + 2s + 1)

(7)
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The parametric forms for solution 45 is given in [18]. The log-log plots of the solutions are

presented in Figure 3. The parametric form of solution 20 reveals two poles at s = −1 and −1/2 and

another discontinuity at s = 0. For solution 45, there are poles at s = ±1, 2/7, 7/2 and 101/3 + 1.

Figure 3. Solutions related to the algebraic surface xyz + x2 + y2 + z2 − 3 = 0 are indexed in [18].

Up left: the modulus of the octahedral solution 20, up right: the modulus of solution 45, down: the

corresponding algebraic surface.

3.4. The great Dodecahedron Solution

The great dodecahedron solution, obtained with parameters (θ1, θ2, θ3, θ4) = (2, 2, 2,−1) [18,

solution 31], has the parametric form

1
2 − 8s7−28s6+75s5+31s4−269s2+318s2−166s+56

18u(s)(s−1)(3s3−4s2+4s+2)

1
2 + (s+1)(32(s8+1−320(s7+s)+1112(s6+s2)−2420(s5+s3)+3167s4

54u(s)3s(s−1)

u(s)2 = s(8s2 − 11s + 8)

(8)

The solution has 18 branches and parameters αi = (1/3, 1/3, 1/3, 1/3). A log-log plot for

the modulus of solution 31 is shown in Figure 4 (Left) where the three poles at s = (4 − 2.102/3 +

101/3)/9 ∼ −0.348, s = 0 and 1 are shown. The corresponding algebraic surface is a degree 3 del

Pezzo of type 3A1.
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Figure 4. Left: Parametric plot for the modulus of the great dodecahedron solution of PVI (solution 31

of [18, p 157]), the three poles are identified. Right: the corresponding cubic surface is a degree 3 del

Pezzo surface of type 3A1 that is with three isolated singularities).

3.5. Three Extra Solutions Leading to an Algebraic Fricke-Painlevé Surface

There are three extra solutions corresponding to an algebraic Fricke-Painlevé surface. They

correspond to the unique solutions with parameters (θ1, θ2, θ3, θ4) = (0, 1, 1, 0) (solution 1 with 5

branches), (0, 0, 0, 3) (solution 30 with 16 branches), and (1, 1, 1, 1) (solution 39 with 24 branches).

The parametric expressions are in [18]. The log-log plots are found in Figure 5. The corresponding

Fricke-Painlevé surfaces are degree 3 del Pezzo and devoid of isolated singularities.

Figure 5. Parametric plots for the modulus of solutions 1 (with 5 branches: Fricke-Painlevé form

xyz + x2 + y2 + z2 − y − z = 0), 30 (an octahedral solution with 16 branches: Fricke-Painlevé form

xyz + x2 + y2 + z2 − 2 = 0) and 39 (a Valentiner solution with 24 branches: Fricke-Painlevé form

xyz + x2 + y2 + z2 − x − y − z − 1 = 0.

4. Further Algebraic Solutions of Painlevé VI Equation

From now, we list further algebraic solutions of PVI not related to an algebraic Fricke-Painlevé

surface.

4.1. The Icosahedral Solution 7

The surface, obtained with parameters (αi = (1/5, 2/5, 1/5, 1/3)), that is (θ1, θ2, θ3, θ4) = ((1 +√
5, (3 +

√
5)/2, (3 +

√
5)/2,−2 −

√
5) [18, solution 7], has six branches and parametric form

y(s) =
−54s(s − 7)

(s − 4)(s + 1)(s4 − 20s2 − 35)
, t(s) =

432s

(s + 5)(s + 1)3(s − 4)2
(9)
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Figure 6. Left: Parametric plot of an icosahedral solution of PVI (solution 7 of [18, p 157]), the

discontinuities of the plot correspond to the poles. Right: the corresponding cubic surface.

4.2. Dubrovin-Mazzocco Platonic Solutions

In [26], some platonic solutions of Painlevé VI equation are explored. These include the tetrahedral

solution (solution III in [18] with 3 branches), the dihedral solution (solution IV in [18] with 4 branches),

icosahedral solutions (solution 16 and 17 with 10 branches in [18]) and the great dodecahedron solution

(solution 31 in [18]). These solutions are obtained for parameters αi = (0, 0, 0, 2/3), (0, 0, 0, 1/2),

(0, 0, 0,−4/5), (0, 0, 0,−2/5) and (1/3, 1/3, 1/3, 1/3), respectively. The great dodecahedron solution

was previously mentioned in subsection 3.4 and the parametric forms of other solutions are depicted

in Figure 7. The explicit parametric forms can be found in the aforementioned papers.

Figure 7. Cont.
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Figure 7. Parametric plots for the modulus of solutions III (the tetrahedral solution), IV (the dihedral

solution), solutions 16 and 17 (icosahedral solutions) as first described in [26]. For the later two

solutions, we find poles located at irrational values s = −1, 1/3, 2 ±
√

5 and ±1/
√

3.

4.3. Solutions Related to the Valentiner Group

The Valentiner group is the three-dimensional complex reflection group 27 with an order of 2160

in the Shephard-Todd list. Three solutions of PVI are built upon this symmetry [5, Theorem D]. One of

them is solution 39 described in subsection 3.5. The other two are solutions 26 and 27 (with parameters

αi = (1/3, 1/3, 1/3, 3/5) and (1/3, 1/3, 1/3, 1/5)), representing θi = ((3 ∓
√

5)/2, (3 ∓
√

5)/2, (3 ∓√
5)/2,±

√
5 + 1) and 15 branches.

The solutions are plotted in Figure 8

Figure 8. Parametric plots for the modulus of solutions 26 and 27 that are related to the Valentiner

group.

4.4. Two Extra Icosahedral Solutions

Solutions 33 (with parameters αi = (1/3, 1/7, 1/7, 6/7)) first found in [28] and 34 (with

parameters αi = (2/7, 2/7, 2/7, 1/3)) are closed to each other. Their parametric forms are plotted in

Figure 9.
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Figure 9. Parametric plots for the modulus of solutions 33 and 34.

5. Discussion

5.1. Application to SL2(C) Character Varieties of Finitely Generated Groups

Our interest in Painlevé VI arises from our exploration of SL2(C) representations of finitely

generated groups fp encountered in models of topological quantum computing (TQC) [1,17] and the

investigation of DNA/RNA short sequences crucial in transcriptomics [2,31]. A model of TQC can

commence with a link such as the Hopf link L2a1, whose character variety is the Cayley cubic surface

κ4(x, y, z) given in (4). This surface is associated with the Picard solution of PVI , as mentioned at the

end of the introduction. Other links, such as L7a4 or L6a1 = 62
3 [1, Figure 2], whose character varieties

contain the Fricke-Painlevé surfaces κd(x, y, z) for d = 2 and 3 can be utilized. To these surfaces one

can attach solution 30 of Painlevé VI (see subsection 3.5 for the former case), and solutions 20 or 45

(see subsection 3.3 for the latter case).

It has been observed that the truncated Groebner basis of four-letter fp groups encountered

in the context of DNA/RNA sequences contains algebraic surfaces κd(x, y, z) for d = 3 and 4 as

mentioned above, as well as the surface V1,1,1,1(x, y, z) [2]. This surface corresponds to Fricke-Painlevé

solution 31, with parameters θi = (2, 2, 2,−1), associated with the symmetry of the great dodecahedron

(see subsection 3.4). The surface with parameters θi = (1, 0, 0, 2) is also part of the Groebner basis

for four-letter fp groups. This reveals that many algebraic solutions of PVI , the Picard solution for

the Cayley cubic κ4(x, y, z), solutions 20 and 45 associated to κ3(x, y, z), solutions 3, 21 and 42 for

parameters θi = (1, 0, 0, 2) and the great dodecahedron solution 31 should play a role in genetics at the

genome scale.

A Specific Example: m6 A (N6-Methyladenosine) Modifications

In the context of so-called epitranscriptomics there are chemical modifications that control the

metabolism of transcription of the genetic information. More than 170 types of RNA methylation

processes have been discovered. The most common for eukaryote organisms is the methylation of

N6-methyladenosine (m6 A) on some sites A with a specific short sequence RRACH (R = A or G,

H = A, U or C), see e.g. [36–38]. In paper [32, Table 2], we provide a group theoretical analysis of

such sequences. For instance, the Groebner basis of three-nucleotide sequences AAACA and GGACA

contain algebraic surfaces of type S(A2), S(A1 A2) or S(A2 A2) with S(A2) = xy2 − z3 − yz − x + 3z,

S(A1 A2) = xz2 − xy − yz − x + z for the former sequence and S(A2) = −x3 − y3 − yz + 4x + 2y − z − 1,

S(A2 A2) = y3 + z2 − xz + 2yz + 2x − 4y − 2z for the latter sequence. The exponent (*) in the surface

S(∗) refers to the type of A-D-E (simple) singularity of the surface [32, Section 2.4]. In our view, the

occurrence of such a simple singularity in the character variety of a relevant sequence is associated to a
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potential disease. In addition, we observe that the aforementioned singularities do not belong to the

list of singularities found in the context of Painlevé VI.

Let us now pass to the four-nucleotide sequence GGACU. This case is not investigated in much

detail in [32, Table 2]. Below, we look at the the degree-2 Groebner basis associated to the character

variety of group π1 = ⟨A, C, G, U|GGACU⟩. The degree d-Groebner basis is the truncated Groebner

basis obtained by ignoring polynomials of total degree larger than d. In our case, we obtain algebraic

surfaces of the Fricke-Painlevé type.

For a four-nucleotide sequence, the degree-2 Groebner basis G2 contains 14-dimensional

surfaces of the form Sa,b,c,d,e, f ,g,h(x, y, z, u, v, w) in C14 (instead of 7-dimensional surfaces of the form

Sa,b,c,d(x, y, z) in the case of a three-nucleotide sequence).

For the sequence GGACU, we find that, for parameters (a, b, c, d, e, f , g, h) = (0, 0, 0, 0, 0, 0, 0, 0),

G2 contain decoupled surfaces κ4(x, y, z), κ4(x, u, v), κ4(y, u, w) and κ4(z, v, w) corresponding to the

Picard solution of Painlevé VI. For parameters (a, b, c, d, e, f , g, h) = (0, 0, 1, 1, 0, 0, 1, 1), G2 contains

decoupled surfaces κ3(x, y, z), κ3(x, u, v) as well as the Fricke-Painlevé surfaces with parameters θi =

(2, 2, 2,−1) and variables (y, u, w) and (z, v, w). For parameters (a, b, c, d, e, f , g, h) = (1, 1, 1, 1, 1, 1, 1, 1),

G2 contains the decoupled Fricke-Painlevé surfaces with parameters θi = (2, 2, 2,−1) and variables

(x, y, z), (x, u, v), (y, u, w) and (z, v, w). Then, for parameters (a, b, c, d, e, f , g, h) = (1, 1, 0, 0, 0, 1, 1, 0),

G2 contains the decoupled Fricke-Painlevé surfaces with parameters θi = (1, 1, 1, 1) and variables

(x, y, z), the Fricke-Painlevé surface κ3(x, y, z), as well as the Fricke-Painlevé surfaces with parameters

θi = (1, 0, 0, 2) and variables (x, u, v), (z, v, w) and (x, u, v).

These explicit calculations confirm our hypothesis that some algebraic solutions of Painlevé VI

may govern the dynamical transcription in genomics.

5.2. Perspectives

Isomonodromic deformation is a concept dating back to the nineteenth century, pioneered by P.

Painlev and subsequently studied by Fuchs, Schlesinger, Jimbo, and numerous other scholars. This

concept is underpinned by crucial mathematical properties of isomonodromy equations, including

the Painlev property, indicating that essential singularities remain fixed while poles may shift;

transcendence, implying that solutions are non-classical; the existence of a symplectic structure,

a twistor structure, and a Gauss-Manin connection. Isomonodromic deformation finds applications

across various fields, such as random matrix theory, statistical physics, topological quantum field

theory, nonlinear partial differential equations, Einstein field equations, and mirror symmetry.

While this paper primarily delves into the exploration of algebraic solutions of the Painlev VI

equation, it is noteworthy that the chaotic dynamics of PVI has also received attention [33]. Further

generalizations can be explored, as presented in [34]. In this latter paper, the role of PVI is assumed

by a differential equation governing the divergences in a formulation of renormalization in quantum

field theory. The concept of a flat connection on a fiber bundle over the three-punctured sphere

is significantly extended to a ‘flat equisingular bundle’ within a tensor category. The underlying

symmetries are no longer discrete but are described by a motivic Galois group, also referred to as the

‘cosmic Galois group’, in line with ’Cartier’s dream’ [35].
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