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We generalize Koopman-von Neumann classical mechanics to poly-symplectic fields and recover De
Donder-Weyl theory. Comparing with Dirac’s Hamiltonian density inspires a new Hamiltonian for-
mulation with a canonical momentum field that is Lorentz covariant with symplectic geometry. We
provide commutation relations for the classical and quantum fields that generalize the Koopman-von
Neumann and Heisenberg algebras. The classical algebra requires four fields that generalize space-
time, energy-momentum, frequency-wavenumber, and the Fourier conjugate of energy-momentum.
We clarify how 1st and 2nd quantization can be found by simply mapping between operators in
classical and quantum commutator algebras.
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I. INTRODUCTION

Koopman-von Neumann (KvN) mechanics formulates classical mechanics (CM) with a complex wavefunction in a
Hilbert space [1–7]. This formulation helps clarify the similarities and differences between CM and quantum mechanics
(QM). Bondar et al. studied an algebra for KvN mechanics that can be quantized by mapping to the Heisenberg algebra

[3]. The Koopman-von Neumann algebra contains the position operator x̂i, its Fourier-conjugate wavenumber k̂j , the
momentum operator p̂k, and its Fourier conjugate q̂l. By recognizing that this KvN algebra has Fourier conjugate

variables over phase space, quantization can be found by setting p̂i = ℏk̂i. Our primary goal is to generalize this KvN
quantization to relativistic field theories.

De Donder-Weyl (DDW) theory contains a covariant Hamiltonian density for relativistic field theories with DDW
equations [8–11]. DDW theory contains poly-symplectic geometry, which introduces a conjugate poly-momentum
field of a higher tensor rank than the field; the prefix poly refers to the higher rank. In classical mechanics, the
Euler-Lagrange equations account for a time derivative of the momentum. In relativistic field theory, the analogous
conjugate momentum is the poly-momentum defined with a partial derivative, as found in DDW theory. DDW
theory can be contrasted with Dirac’s canonical Hamiltonian density [12], which uses a partial time derivative for the
canonical momentum despite the Euler-Lagrange equations containing the partial derivative.

Our initial goal was to recover KvN quantization of DDW theory by generalizing KvN mechanics to poly-symplectic
fields. We find that the DDW equations can be found from a poly-Liouville operator, which is related to previously
studied poly-symplectic Poisson brackets [30], but this obscures Dirac’s canonical quantization. However, new poly-
KvN commutator algebras allow for straightforward quantization by mapping commutators of classical operators
to quantum operators. While this provides a new path towards DDW quantization, Kanatchikov has extensively
discussed precanonical quantization as the (geometric) quantization of DDW theory by considering Gerstenhaber
brackets as generalized Poisson brackets [24–38].

The main result of this work is to find the KvN quantization of a new Hamiltonian density that is canonical,
covariant, and symplectic. Canonical quantization is typically used with Dirac’s canonical Hamiltonian density, which
is symplectic but not covariant [12]. Precanonical quantization can be applied to the DDW theory [29, 31], whose
Hamiltonian density is covariant but not symplectic. Comparing these two formulations inspires a new covariant,
canonical, and symplectic Hamiltonian density, as shown in Fig. (1). We introduce a generalized KvN algebra for
these fields, whose 2nd quantization leads to canonical commutation relations in terms of a covariant phase space of
fields with symplectic geometry.

While Witten and Crnkovic had proven that covariant and symplectic structure for fields exists, this focused
on identifying a symplectic charge that integrates over a hypersurface with time-like boundary [14–18], rather than
considering a new type of Hamiltonian density found from the canonical structure of the fields. Covariant formulations
of Hamiltonian dynamics have been previously discussed, but often do not present a Hamiltonian formulation, despite
referring to the Hamiltonian dynamics [54, 55]. In hindsight, Iyer and Wald’s formulation is close to ours, as a time-
like vector ta was introduced in a similar manner to our τ̂µ to find their Hamiltonian HX to study energy; however,
no Hamiltonian density was found directly from the Lagrangian density in this formulation for gravitational fields
[56–58]. Ashtekar found a symplectic Hamiltonian density that used a hypersurface based on null infinity, but this
was restricted to the study of general relativity [59]. Covariant phase space methods have been recently explored in
a wide class of gravitational theories [19–22]. However, a comprehensive formulation of arbitrary field theory with a
covariant, symplectic, and canonical Hamiltonian density still appears to be lacking to the best of our knowldge.

To the best of our knowledge, this work includes the following results for the first time (or at least provides additional
context and clarity):

• Construction of proper relativistic KvN mechanics and relativistic KvN algebra.

• Generalization of KvN mechanics to poly-KvN fields as DDW theory with a new poly-KvN algebra.

• A new covariant and symplectic Hamiltonian density formulation for relativistic fields.

• 2nd quantization via deformation of commutator algebras over fields.
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FIG. 1. A comparison of the Dirac HD, De Donder-Weyl H, and the new covariant Hnew Hamiltonian densities, focusing on
whether these formulations are covariant or symplectic. All Hamiltonian formulations contain a canonical momentum, but not
all are covariant or symplectic. These three Hamiltonian formulations arise from the same Lagrangian density L.

This manuscript is organized as follows. Section (II) introduces the new Hamiltonian density, the analogous set
of Hamilton’s equations, the generalized KvN algebra in terms of a Fourier-phase space of fields, and its KvN quan-
tization. Appendix (A) focuses on a relativistic formulation of KvN mechanics and its quantization to give the
relativistic generalization of the Heisenberg algebra. Appendix (B) introduces DDW theory, demonstrates that the
poly-symplectic generalization of KvN mechanics is equivalent to DDW theory, and presents KvN quantization of
DDW theory. Readers unfamiliar with KvN or DDW theory may prefer to start with the appropriate appendices,
while experts may proceed directly to Section (II). While the appendices may contain some new results, they often
contain rederivations of older results.

II. QUANTIZATION OF A NEW HAMILTONIAN DENSITY

In this section, a new Hamiltonian density inspired by Dirac’s canonical Hamiltonian density and the De Donder-
Weyl Hamiltonian density. Our strategy is to develop a new Hamiltonian formulation by taking the local time-like
component of a frame field combining it with the DDW canonical momentum to obtain something more similar to
the Dirac canonical momentum. By contracting a time-like unit vector τ̂µ(x) = e0µ(x) with the poly-momentum field
to give π(x) = τ̂µπ

µ(x), the new Hamiltonian density limits to Dirac’s Hamiltonian density when the unit vector
is τ̂µ(x) = (1, 0, 0, 0). In this manner, we can locally refer to different spacetime foliations with applications for
dynamical foliation schemes. The new canonical momentum field is found to be covariant with respect to the global
manifold, yet is symplectic with respect to the (position) field ϕ(x). This new approach is well suited for canonical
quantum relativistic evolution with manifestly covariant and symplectic fields.

A key result is the canonical and covariant commutation relations of a scalar field ϕ with its conjugate field for
classical, 1st, and 2nd quantized fields. For classical fields ϕ(x, px) over phase space (inspired by KvN mechanics), a
Fourier-conjugate wavenumber field κ(y, py) is found, which can be first quantized to give ϕ(x) and κ(y) as classical
fields over spacetime instead of phase space. Table (I) summarizes the different possible phase space configurations
of classical and quantum fields. Note that ϕ(x) is typically referred to as a classical field, but in our context, first
quantization of KvN mechanics over fields implies that classical fields such as ϕ(x) are actually first quantized, which
is expanded upon in Section (B 2 c). Quantum fields are depicted by capital letters, which lead to Φ(x) and the
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Quantization Level Field Noncommutative Conjugate

Classical phase space/0th quantized ϕ(x, p), π(x, p) κ(x, p), ξ(x, p)

Classical spacetime/1st quantized ϕ(x), π(x) κ(x), ξ(x)

2nd quantized Φ(x) Π(x)

TABLE I. The field content for classical, 1st quantized, and 2nd quantized scalar fields for the new covariant and symplectic
approach are shown above. A field A(a) with a noncommutative conjugate B(b) satisfies [A(a), B(b)] = iδ(a− b). While KvN
mechanics provides a wavefunction ψ(x, p), the study of classical fields over phase space (0th quantized) such as ϕ(x, p) has
been relatively unexplored. Classical fields such as ϕ(x) found in the Klein-Gordon equation are referred to as 1st quantized
fields, since they are taken as a function of spacetime and have classical equations of motion with ℏ. 2nd quantized quantum
fields such as Φ(x) are found as deformations of the 1st quantized fields.

conjugate momentum Π(y) as second quantized fields,

0th quantized (classical): [ϕ(x, px), κ(y, py)] = iδ(4)(x− y)δ(4)(px − py),
1st quantized: [ϕ(x), κ(y)] = iδ(4)(x− y), (1)

2nd quantized: [Φ(x),Π(y)] = iℏc|τ |δ(4)(x− y),

which includes a time-like vector τµ with dimensions of time to refer to the time-like displacement between spacetime
foliations. An important insight was to realize that τ̂µ also corresponds to the time-like component of a frame field.
The simplest quantization procedure that we found is by setting Φ(x) = ϕ(x) and Π(x) = ℏc|τ |κ(x), where the extra

factor of length c|τ | in comparison to p⃗ = ℏk⃗ is included to account for our use of four-dimensional delta functions,
while canonical quantization typically leads to three-dimensional delta functions.

A. A covariant Hamiltonian density closer to Dirac’s

The Dirac canonical momentum of a field ϕ(x) is given by πD(x) = ∂L
∂ϕ̇

, while the DDW canonical momentum

is πµ(x) = ∂L
∂∂µϕ

. The canonical momentum has the advantage of intuitively being the same rank as the field itself

with symplectic structure, similar to spacetime and energy-momentum, while the DDW canonical momentum has the
advantage of being Lorentz covariant. The canonical Hamiltonian theory requires a spacetime foliation with timelike
separated hypersurfaces, while the DDW theory obscures the interpretation of time evolution for a more general
notion of spacetime evolution. As it turns out, two different paths of exploration led to this symplectic Hamiltonian
density by pushing the poly-symplectic geometry of DDW closer to Dirac’s Hamiltonian formulation.

First, Koopman-von Neumann dynamics demonstrates that Poisson brackets and commutation relations provide
different roles in classical theory, which becomes more apparent when generalizing to poly-symplectic fields. The
Liouville operator in KvN mechanics is analogous with the Hamiltonian in quantum mechanics, but the poly-Liouville
operator L̂µ found in Section (B 2 b) is now a covector, while the Hamiltonian is a scalar. This motivated the search
for an analogue of the poly-Liouville operator as a type of energy-momentum density vector. The initial goal was
to find a scheme in which Dirac’s Hamiltonian density could be found in the time-like component when choosing
τ̂µ = (1, 0, 0, 0).

Taking inspiration from Koopman-von Neumann mechanics in a De Donder-Weyl formulation, we define a vectorial
poly-Hamiltonian density with the operator τ̂µ which reduces to Dirac’s Hamiltonian in the zeroth component when
τ̂µ = (1, 0, 0, 0) is chosen,

Hµ = τ̂ρνρπ
µ − τ̂µL̂ (2)

The timelike component of this operator contains the canonical momentum π0. If τ̂µ is a time-like constant, then∫
d3xH0 is identical to the canonical Hamiltonian found within a particular inertial reference frame. One approach

could be to multiply the DDW Hamiltonian density by τ̂µ, but this wouldn’t lead to the Dirac Hamiltonian density
in the zeroth component in the same manner. However, the covector energy-momentum density functional above is
no longer a Legendre transform of L. Nevertheless, a scalar energy density functional can be defined by contracting
Hnew = τ̂µHµ.

Second, consider a Legengre transformation with a “velocity field” ν with the new conjugate momentum field π
giving Dirac’s canonical momentum when τ̂µ = (1, 0, 0, 0),

ν = τ̂µ∂µϕ = τ̂µνµ, π =
∂L
∂ν

= τ̂µ
∂L
∂νµ

. (3)
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By taking inspiration from the covariant DDW Hamiltonian and striving for the simplicity of Dirac’s Hamiltonian
with symplectic geometry, a new type of Hamiltonian density Hnew can be found that is covariant, symplectic, and
canonical

Hnew = νπ − L = τ̂µνµτ̂νπ
ν − L = τ̂µHµ (4)

As mentioned, it turns out that Hnew = Hµτ̂µ. The Hamiltonian density above is a Legendre transformation of the

Lagrangian density since π = ∂L
∂τ̂µνµ

= τ̂µ
∂L
∂νµ

.

To get time evolution in a specific frame and to connect back to Dirac’s canonical quantization, consider a time-slice
vector τ̂µ = τµ

|τ | that is (1, 0, 0, 0) in the rest frame. This same concept of a time-like unit vector has been considered

by Wald and Iyer as well as Rovelli and Vidotto [56–58, 87]. The poly-Liouville operator contracted with τ̂µ gives
time evolution for arbitrary inertial frames with coordinates x′µ = (ct′, x⃗′),

i
1

c

∂

∂t′
ϕ(x) = iτ̂µ∂µϕ(x) = τ̂µL̂µϕ(x) = iτ̂µπµ. (5)

While this equation in a sense relates time evolution to the conjugate poly-momentum, it does not dynamically evolve
the scalar field with the Klein-Gordon field equations. This relates to the fact that Schrödinger and KvN dynamics are
first-order in time, while Klein-Gordon is second order and DDW contains two first-order equations. Before presenting
the full equations of motion, we will demonstrate that ϕ and π are a symplectic phase space of fields.
The symplectic two-form is typically given by η = dx∧dp, motivating a 2d-dimensional phase space for d-dimensional

spacetime. To demonstrate that this new Hamiltonian formulation contains symplectic structure, recall how Poisson
brackets for 2D phase space can be described as a dyadic differential operator in terms of a symplectic metric

η =

(
0 1

−1 0

)
,

{A,B} = A
( ←−

∂
∂x

←−
∂
∂p

)(
0 1

−1 0

)(
∂
∂x
∂
∂p

)
B =

∂A

∂x

∂B

∂p
− ∂A

∂p

∂B

∂x
. (6)

Generalizing to fields, the partial derivatives with respect to ϕ and π lead to field-theoretic Poisson brackets with
symplectic structure,

{A,B}new = A
( ←−

∂
∂ϕ

←−
∂
∂π

)(
0 1

−1 0

)(
∂
∂ϕ
∂
∂π

)
B =

∂A

∂ϕ

∂B

∂π
− ∂A

∂π

∂B

∂ϕ
. (7)

Mapping from the poly-symplectic geometry of De Donder-Weyl theory to symplectic structure is found by contracting
τ̂µ with {A,B}µ shown in Eq. (B49). Separate from the commutation relations for the poly-KvN algebra, the Poisson
brackets describe how these symplectic fields lead to canonical relations,

{ϕ, π}new = 1, {ϕ, ϕ}new = {π, π}new = 0. (8)

Upon completing this work, we realized that Witten, Zuckerman, and Crnkovic have considered a symplectic current
that is covariant [14–16]. Crnkovic clarified how a symplectic current was the variation of the field times the poly-
momentum, except the relationship to De Donder-Weyl theory was not realized [17, 18]. Their symplectic form ω
includes an integral over a spacelike hypersurface, similar to Dirac’s canonical quantization, but the Poincare invariance
of ω was expressed. In this manner, our formulation is quite similar, as the choice of τ̂µ relates to a choice of spacelike
hypersurfaces. Our formulation seems to more easily provide a Hamiltonian density for general field theories.

The new set of Hamilton’s equations are found to be

τ̂µ∂µϕ = {ϕ,Hnew}new =
∂Hnew

∂π
, (9)

τ̂µ∂µπ = {π,Hnew}new = −∂Hnew

∂ϕ
. (10)

Note how these form of Hamilton’s equations apply to arbitrary fields and their associated conjugate momentum
fields, not just scalar fields. While these equations of motion are in terms of a new kind of Poisson brackets, the fields
ϕ and π can be found in a commutator algebra that generalizes the KvN algebra to fields.

Since the KvN algebra contains Fourier conjugate variables of phase space such as k⃗ and q⃗ as shown in Eq. (A11),
there should also be generalized Fourier conjugate fields κ(x) and ξ(x) that are conjugate to ϕ(x) and π(x). Addition-
ally, a field ϕ(x) is in a sense a generalization of a quantum wavefunction ψ(x), while the classical KvN wavefunction
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ψ(x, p) depends both on spacetime and energy-momentum. For this reason, generalizing KvN mechanics to fields im-
plies that the fully classical or 0th-quantized fields may be a function over all of phase space. From this perspective,
classical field theory typically studies 1st-quantized fields, which describes how the massive Klein-Gordon equation
can be studied as a classical field theory, yet still contain ℏ, as the coordinates are quantized, but not the fields
themselves.

The 0th-quantized KvN algebra associated with the fields ϕ(x, p), π(x, p), κ(x, p), and ξ(x, p) is given by the
following commutation relations,

[ϕ(x, px), κ(y, py)] = iδ(4)(x− y)δ(4)(px − py), (11)

[ξ(x, px), π(y, py)] = iδ(4)(x− y)δ(4)(px − py). (12)

The “position field basis” for 0th quantized fields are

κ(x, px) = −iδ(4)(x− y)δ(4)(px − py)
∂

∂ϕ(y, py)
, (13)

ξ(x, px) = iδ(4)(x− y)δ(4)(px − py)
∂

∂π(y, py)
. (14)

The 1st-quantized algebras associated with these fields ϕ(x), π(x), κ(x), and ξ(x) gives

[ϕ(x), κ(y)] = iδ(4)(x− y), (15)

[ξ(x), π(y)] = iδ(4)(x− y). (16)

The “position field basis” for 0th and 1st quantized fields are

κ(x) = −iδ(4)(x− y) ∂

∂ϕ(y)
, (17)

ξ(x) = iδ(4)(x− y) ∂

∂π(y)
. (18)

Alternatively, a “wavenumber field basis” could be chosen that finds ϕ(x) = iδ(4) ∂
∂κ(y) .

Next, we demonstrate that the interacting Klein-Gordon, Maxwell, and linearized gravity equations of motion can
all be derived from this new Hamiltonian density.

1. Covariant Hamiltonian density for Klein-Gordon scalars

To derive the new Hamiltonian density, it is convenient to introduce a frame field eµa = (τ̂µ, x̂µ, ŷµ, ẑµ). For
non-gravitational theories, eµa as a constant simply encodes Lorentz transformations between the global Minkowski
manifold in some frame and local coordinates that can be in a different frame. The local and global frames are
equivalent when eµa is given by the identity matrix, which leads to τ̂µ = (1, 0, 0, 0).

The Klein-Gordon action can be written as

S =

∫
d4x

[
1

2
τ̂µ∂µϕτ̂ν∂

νϕ+
1

2
eµi ∂µϕe

i
ν∂

νϕ− V (ϕ)

]
, (19)

where i = 1, 2, 3. The velocity field and conjugate momentum field are

ν = τ̂µ∂µϕ, π =
∂L
∂ν

= τ̂µ∂
µϕ. (20)

The new Hamiltonian density for an interacting Klein-Gordon field is

Hnew =
1

2

(
π2 − eµi ∂µϕe

i
ν∂

νϕ
)
+ V (ϕ). (21)

Integrating by parts for the second term and dropping the boundary term allows for an easier evaluation of Hamilton’s
equations,

Hnew =
1

2

(
π2 + ϕeµi e

i
ν∂µ∂

νϕ
)
+ V (ϕ) + bdry, (22)
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where we assume that eµi only can specify local inertial frames that correspond to global Lorentz transformations on
Minkowski spacetime. Applying the new set of Hamilton’s equations gives

τ̂µ∂µϕ = {ϕ,Hnew}new = π, (23)

τ̂µ∂µπ = {π,Hnew}new = −eµi e
i
ν∂µ∂

νϕ− ∂V

∂ϕ
. (24)

Plugging the first equation into the second leads to the Klein-Gordon equation of motion. In this manner, the
Hamiltonian dynamics are identical to Dirac’s Hamiltonian, except the frame fields are introduced to allow for arbitrary
local frames. The new Hamiltonian density found is truly covariant. Understanding the role of eµa as a frame field
also allows for a more dynamical realization of foliations. Despite τ̂µ being the zeroth component of eµa , the local
structure is independent of the global manifold. In this manner, Dirac’s Hamiltonian is not covariant with respect to
the global manifold since µ = 0 is isolated. The frame field allows for a = 0 to be chosen locally in a manner that the
Hamiltonian density is still Lorentz covariant with respect to the global manifold.

2. Covariant Hamiltonian density for Maxwell theory

The Maxwell action is

S =

∫
d4xL =

∫
d4x

(
−1

4
FµνF

µν −AµJµ

)
. (25)

The velocity field of interest is

νµ = τ̂ν∂νAµ. (26)

The following relation allows for the Lagrangian to be expressed in terms of the velocity field,

δµν = eµae
a
ν = τ̂µτ̂ν + eµi e

i
ν . (27)

The Lagrangian density can be expanded to give

L = −1

4
FµνFρσ

(
τ̂µτ̂ν τ̂ρτ̂σ + τ̂µeνj τ̂

ρeσj + eµi τ̂
νeρiτ̂σ + eµi e

ν
j e

ρieσj
)

(28)

= −1

2
eνj ν

νeσjνσ + eσjνσe
νeνj τ̂

µ∂νAµ −
1

2
eνj τ̂

µ∂νAµe
σj τ̂ρ∂σAµ −

1

4
FµνF

ρσeµi e
ν
j e

i
ρe

j
σ.

The conjugate momentum field is found to be

πσ =
∂L
∂νσ

= −eνj eσj (νν − τ̂µ∂νAµ) = −eνj eσj τ̂µFµν . (29)

Another way to express the conjugate momentum field is given by

τ̂νFµν =
(
τ̂ρτ̂µ + eρi e

i
µ

)
Fρν τ̂

ν = τ̂µτ̂
ρτ̂νFρν + πµ = πµ, (30)

where the antisymmetry of Fρν led to the vanishing of the first term above. A background-independent derivation
using differential forms would automatically impose this antisymmetry. Both forms of the conjugate momentum allow
for the Lagrangian density to be rewritten as

L = −1

2
πµπµ −

1

4
FµνF

ρσeµi e
ν
j e

i
ρe

j
σ −AµJµ. (31)

The covariant Hamiltonian density is found as

Hnew = νµπµ − L = πµ

(
−1

2
πµ + τ̂ν∂

µAν

)
+

1

4
FµνF

ρσeµi e
ν
j e

i
ρe

j
σ +AµJµ. (32)

Covariant Hamilton’s equations (after integrating by parts) lead to

τ̂µ∂µAν =
∂Hnew

∂πν
= −πν + τ̂µ∂νAµ, (33)

τ̂µ∂µπν = −∂Hnew

∂Aν
= ∂µπµτ̂ν + ∂µFρσe

i
µe

j
νe

ρ
i e

σ
j − Jν . (34)
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Plugging the first equation into the second leads to

Jν = −τ̂µ∂µπν + ∂µπµτ̂ν + ∂µFρσe
i
µe

j
νe

ρ
i e

σ
j

= eiνe
σ
i τ̂µτ̂

ρ∂µFρσ + τ̂ρτ̂ν∂
µFµρ + ∂µFρσe

i
µe

j
νe

ρ
i e

σ
j

= ∂µFρσ

(
τ̂µτ̂

ρeiνe
σ
i + τ̂σ τ̂νe

σ
i e

i
µ + eiµe

j
νe

ρ
i e

σ
j

)
= ∂µFµν . (35)

where using Eq. (27) and τ̂ρτ̂σFρσ = 0 were used to simplify the result above.

3. Covariant Hamiltonian density for linearized gravity

Since general relativity would require a dynamical frame field eiµ(x) that is position dependent, it is worthwhile to
first establish the new Hamiltonian density for linearized gravity. The linearized gravity action with matter is

S =

∫
d4x

(
1

2
∂ρh̄µν∂ρh̄

µν − 1

4
∂µh̄∂

µh̄

)
(36)

Treating h̄µν as the dynamical field leads to the velocity field ν̄µν ,

ν̄µν = τ̂ρ∂ρh̄µν . (37)

The Lagrangian can be rewritten as

L =
1

2

(
ν̄µν ν̄

µν − 1

2
ν̄ν̄ + eiρe

σ
i

(
∂ρh̄µν∂σh̄µν −

1

2
∂ρh̄∂σh̄

))
− 8πG

c4
κT̂µν ĥµν , (38)

where ν̄ ≡ ν̄µνηµν . The conjugate momentum field is found to be

π̄µν =
∂L
∂ν̄µν

= ν̄µν − 1

2
ηµν ν̄ = νµν = τ̂ρ∂

ρhµν , (39)

where a reciprocal relationship is found such that νµν = π̄µν , etc.
The covariant Hamiltonian density in terms of the gravitational field h̄µν and conjugate momentum field π̄µν is

Hnew =
1

2
π̄µν π̄

µν − 1

4
π̄π̄ − 1

2
eiρe

σ
i

(
∂ρh̄µν∂σh̄µν −

1

2
∂ρh̄∂σh̄

)
+

8πG

c4
κT̄µν h̄µν . (40)

The covariant Hamilton’s equations give

τ̂ρ∂ρh̄µν =
∂Hnew

∂π̄µν
= π̄µν −

1

2
ηµν π̄ = πµν , (41)

τ̂ρ∂ρπ̄µν = −∂Hnew

∂h̄µν
= −

(
eiρe

σ
i ∂

ρ∂σ

(
h̄µν −

1

2
ηµν h̄

)
+

8πG

c4
κT̄µν

)
. (42)

Plugging the first equation in the trace reversal of the second equation and rearranging leads to(
τ̂ρτ̂

σ + eiρe
σ
i

)
∂ρ∂σh̄µν = ∂ρ∂ρh̄µν = −8πG

c4
κTµν . (43)

This reproduces the known equations of motion for linearized gravity.

B. Quantization of the new Hamiltonian theory

Using the covariant and canonical Hamiltonian density Hnew, four sets of classical fields ϕ(x), κ(x), π(x), and ξ(x)
can be used to construct two quantum fields Φ(x) and Π(x),

Φ(x) = aϕ(x) + bξ(x), (44)

Π(x) = cπ(x) + dκ(x). (45)
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The commutation relations of the second-quantized fields are therefore

[Φ(x),Π(y)] = (ad+ bc) iδ(4)(x− y). (46)

Setting a = 1, d = ℏc|τ | and b = c = 0 is the simplest quantization procedure, although other possibilities exist, as
mentioned in Eq. (A34).

The following commutation relations are found with Π(x) = τ̂µΠµ(x) as the symplectic, covariant, and canonical
momentum,

[Φ(x),Π(y)] = iℏc|τ |δ(4)(x− y),
[Φ(x),Φ(y)] = [Π(x),Π(y)] = 0. (47)

Similar to how pµ = ℏkµ, it is anticipated that Π(x) = ℏc|τ |κ(x).
If one were to model the universe as a quantum computer simulation, then this quantum computer must simulate

the universe at a fast enough rate such that all possible observables lead to self-consistent results. Since the Planck
time is thought to be the smallest possible duration of time that could be measured, it is sensible to assume that
such a quantum computer simulation would use spacelike foliations separated by times no larger than the Planck
time. Thiemann states that spin quantum numbers in LQG are created and destroyed in a Planck moment and

Zizzi has discussed Planck-time foliations [23, 92]. For our construction, this implies that |τ | = tP =
√

ℏG
c5 . With

this assumption, the new canonical, covariant, and symplectic commutation relations for fields in natural units with
c = ℏ = G = 1,

[Φ(x),Π(y)] = iδ(4)(x− y). (48)

This canonical commutation relation for second quantized fields appears to be the simplest possible that are manifestly
covariant and symplectic. Building off of earlier work [72–74], Eq. (48) was recently presented in Ref. [100] by different
motivations.

III. CONCLUSIONS

In this work, we have demonstrated that a Hamiltonian density for relativistic field theory can be found that
is canonical, covariant, and symplectic. This was found by taking the De Donder-Weyl poly-momentum field and
contracting with the time-like component of a frame field to obtain a symplectic momentum field. This momentum field
can locally interpolate between different ADM foliations of spacetime, which makes it closer to the Dirac’s canonical
momentum. The generalized Hamilton’s equations for this new Hamiltonian density were found and demonstrated to
give the correct equations of motion for Klein-Gordon, Maxwell, and linearized gravity theories. We also generalized
the phase space of fields to a Fourier-phase space of fields as a generalization of Koopman-von Neumann mechanics,
giving a classical commutator algebra of fields. KvN quantization of these new fields was provided, which bypasses
the use of Poisson brackest to map from classical commutators to quantum commutators.

In Appendix (A), a relativistic formulation of Koopman-von Neumann classical mechanics was constructed, which
found a problem of time for the proper Liouville operator for the point particle action. The poly-symplectic geometry
of De Donder-Weyl theory was introduced in Appendix (B) to study the generalization of relativistic Koopman-von
Neumann mechanics to field theory, which allows for the classical equations of motion to be derived quickly from
the De Donder-Weyl Hamiltonian density. To our knowledge, classical, 1st, and 2nd quantized poly-Koopman-von
Neumann algebras for fields were presented for the first time, which was shown to be compatible with De Donder-Weyl
dynamics.

In future work, it would be worthwhile to derive the general Yang-Mills field equations and Einstein’s field equations
from their respective covariant, canonical, and symplectic Hamiltonian densities. The introduction of the frame field
for specifying local frames requires additional care in general relativity. Since the frame field is the gauge field of
the translations, formulations of gauge gravity such as subsectors of metric-affine gauge gravity should be explored.
Another avenue of exploration could use the relativistic Koopman-von Neumann algebra introduced here to extend
the prequantum operator algebra defined in [7] and its possible category-theoretic realizations using pregeometric
constructions discussed in [90, 91].

Additionally, it would be worthwhile to explore singular Lagrangian densities, such as spinor fields. Other work
has attempted to use a quadratic action with a constraint to describe spinors [101]. Revisiting the Dirac-Bergmann
algorithm for singular Lagrangians would also be appropriate [102]. Also, Kanatchikov has introduced a generalization
of the Dirac bracket formula to DDW theory for degenerate Lagrangian densities, such as the Dirac Lagrangian density
discussed above [33]. Finally, our work may be inspirational for a covariant and canonical formulation of loop quantum
gravity.
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Appendix A: Koopman-von Neumann mechanics

Rather than reviewing KvN mechanics, we introduce a relativistic KvN framework using x̂µ, p̂ν , k̂ρ, and q̂
σ, leading

to an appropriate Liouville operator that determines the proper time evolution. We find that the problem of time
occurs in this Koopman von-Neumann classical mechanics for the relativistic point particle action. This suggests that
the problem of time is not a problem with quantum mechanics, but rather stems from the choice of the appropriate
Hamiltonian formulation. Nevertheless, the KvN quantization of special relativity can also be found by imposing

p̂µ = ℏk̂µ, which is not generally true in classical mechanics.

1. Classical relativistic Koopman-von Neumann mechanics

We start by introducing classical special relativity within Koopman-von Neumann (KvN) mechanics. For an
introduction to KvN mechanics, see Ref. [6]. The two-state-vector formalism interpretation of quantum mechanics
has been related to the entangled histories interpretation [60–67]. Entangled histories allows for a Hilbert space for
time, which has also been discussed elsewhere [68–74]. To the best of our knowledge, a Hilbert space for time has
never been discussed within KvN mechanics, which helps provide a relativistic formulation of Koopman-von Neumann
mechanics.

The standard Dirac bra-ket notation can be used for classical mechanics by admitting a wavefunction ψ(A) = ⟨A|ψ⟩,
and ψ∗(A) = ⟨ψ|A⟩. A basis for phase space in classical mechanics is provided with |A⟩ = |x, p⟩ = |x⟩ ⊗ |p⟩, since
position and momentum are independent. Unlike QM, the spacetime position operator x̂µ commutes with the energy-
momentum operator p̂ν when acting on ψ(x, p),

[x̂µ, p̂ν ]ψ(x, p) = 0. (A1)

While classical non-relativistic phase space allows for ψ(x⃗, p⃗, t) as seven dimensions, the relativistic generalization
initially motivates 9 dimensions (8 independent) via ψ (xµ, pν , τ).

To provide proper time evolution of a Hilbert space in a classical setting, a proper Hamiltonian H is introduced
from a proper Lagrangian L, such that a canonical and covariant action is

S =

∫
dτL =

∫
dτ(vµpµ −H), (A2)

where vµ = ∂xµ

∂τ is the relativistic 4-velocity and pµ = ∂L
∂vµ is the canonical energy-momentum. Proper Hamilton’s

equations are found by varying about the classical path, giving

∂xµ

∂τ
=
∂H

∂pµ
= {xµ, H}PB , (A3)

∂pµ
∂τ

= − ∂H
∂xµ

= {pµ, H}PB (A4)

where the relativistic Poisson brackets are given by

{A,B}PB =
∂A

∂xµ
∂B

∂pµ
− ∂A

∂pµ

∂B

∂xµ
. (A5)

The proper Hamiltonian H allows for a proper relativistic Liouville equation in terms of the probability density
ρ(x, p, τ),

dρ

dτ
=
∂ρ

∂τ
+
∂xµ

∂τ

∂ρ

∂xµ
+
∂pµ
∂τ

∂ρ

∂pµ
=
∂ρ

∂τ
+
∂H

∂pµ

∂ρ

∂xµ
− ∂H

∂xµ
∂ρ

∂pµ
=
∂ρ

∂τ
+ {ρ,H}PB =

∂ρ

∂τ
+ iL̂ρ = 0. (A6)
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where L̂ is the proper Liouville operator, which is Hermitian in a manner similar to the Hamiltonian operator Ĥ
in quantum mechanics. The proper Liouville operator is found from the proper Liouville equation after applying
Hamilton’s equations. The proper Liouville operator can be expressed with relativistic Poisson brackets, giving

iL̂A = {A,H}PB =
∂A

∂xµ
∂H

∂pµ
− ∂A

∂pµ

∂H

∂xµ
. (A7)

The proper Liouville operator acting on xµ and pµ gives proper Hamilton’s equations, while acting on ρ gives the
proper Liouville equation.

Koopman-von Neumann mechanics expresses probability densities ρ(x, p) = ψ∗(x, p)ψ(x, p) in terms of the
Koopman-von Neumann wavefunction ψ(x, p). While relativistic field theory typically defines a probability den-
sity of a quantum field by taking a time derivative after generalizing the current to a 4-current, the Klein-Gordon field
equation has one additional time derivative not found in the Schrödinger equation. To obtain a relativistic analogue
of the KvN equations, we assume ρ(x, p, τ) = ψ∗(x, p, τ)ψ(x, p, τ) = |⟨x, p | ψ(τ)⟩|2. The proper Liouville operator is
used to lead to the proper Koopman-von Neumann equation,

i
∂ψ

∂τ
= L̂ψ. (A8)

This equation is a classical analogue of the Schrödinger equation (generalized to a relativistic setting with proper time
evolution).

In summary, classical KvN mechanics has four axioms

1. The state of the system is representated by |ψ⟩ in a complex Hilbert space.

2. An observable is a Hermitian operator Â for an eigenvalue A with eigenstate |A⟩ satisfying Â|ψ⟩ = A|ψ⟩.

3. The probability of A is given by P (A) = |⟨A | ψ(t)⟩|2 as the Born rule, which leads to instantaneous collapse of
the wavefunction.

4. The tensor product of subsystems leads to a description of the composite system.

The third axiom should be questioned for a relativistic formulation of classical mechanics, as retarded functions for
information transfer of measurements should be incorporated. For now, our interpretation is that the wavefunction
for observers infinitesimally close to the measurement should observe the collapse of the wavefunction within an
infinitesimal amount of time.

The Poisson brackets of xµ and pν describe the symplectic structure of phase space, since

{xµ, pν}PB = δµν , (A9)

{xµ, xν}PB = {pµ, pν}PB = 0. (A10)

Groenewold showed that mapping classical Poisson brackets to quantum commutators as suggested by Dirac is not

general [76]. The quantization procedure we pursue throughout relates more to p̂µ = ℏk̂µ, which can be understood
more clearly from the Koopman-von Neumann algebra. The KvN algebra is given by[

x̂µ, k̂ν

]
= iδµν , (A11)

[q̂µ, p̂ν ] = iδµν , (A12)

[x̂µ, p̂ν ] = [x̂µ, q̂ν ] =
[
p̂ν , k̂ν

]
=
[
q̂µ, k̂ν

]
= 0, (A13)

[x̂µ, x̂ν ] = [p̂µ, p̂ν ] =
[
k̂µ, k̂ν

]
= [q̂µ, q̂ν ] = 0. (A14)

The KvN algebra is a commutative tensor product of two Heisenberg algebras (without any notion of ℏ). The KvN
algebra establishes that we have both A,B and [A,B] in the classical setting. Rather than applying A,B → 1

iℏ [A,B],
rigorous quantization can be found by deforming the KvN algebra [3, 7]. We updated the notation to reflect that

k̂µ is a frequency-wavenumber operator conjugate to x̂µ, wihle q̂µ is a frequency-wavenumber operator conjugate to
energy-momentum p̂µ. As such, the KvN algebra relates deeply to the structure of Fourier-phase space.

Natural representations for the wavenumber operators k̂ν and q̂µ in the phase space basis |A⟩ = |x, p⟩ are

k̂ν = −i∂ν ≡ −i
∂

∂xν
, q̂µ = i∂̃µ ≡ i ∂

∂pµ
. (A15)
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The operators x̂µ and p̂µ lead to the following eigenvalues when acting on a phase space eigenstate,

x̂µ|x, p⟩ = xµ|x, p⟩, p̂µ|x, p⟩ = pµ|x, p⟩. (A16)

In the classical Koopman-von Neumann formulation, there is also a Fourier space basis |A⟩ = |k, q⟩. In this basis, the
operators can be represented with a bar, yet they must satisfy the same Koopman-von Neumann algebra in Eq. (8).
The position and momentum operators become differential operators in the Fourier-conjugate basis,

ˆ̄xµ = i∂̄µ = i
∂

∂kµ
, ˆ̄pµ = −i∂̃µ = −i ∂

∂qµ
. (A17)

The wavenumber operators of phase space act on wavenumber eigenstates to return wavenumber eigenvalues,

ˆ̄kµ|k, q⟩ = kµ|k, q⟩, ˆ̄qµ|k, q⟩ = qµ|k, q⟩. (A18)

While this formulation leads to a manifestly relativistic KvN equation in terms of proper time, it leads to a problem
of time for the Lagrangian density of a free point particle, as the proper Liouville operator leads to zero. Consider
the action for a point particle in curved spacetime given by the proper length,

S = −mc
∫
dτ

√
−gµν

dxµ

dτ

dxν

dτ
. (A19)

The proper Lagrangian L is given by S =
∫
dτL, which leads to a proper covariant momentum,

pµ =
∂L

∂vµ
= mcgµνv

ν 1√
−gαβvαvβ

= mvµ, (A20)

where vµ = dxµ

dτ and vµvµ = −c2 was used to find the result above. This allows for the solution of the proper
Hamiltonian H to be found,

H = vµpµ − L = mvµvµ +mc
√
−gµνvµvν = −mc2 +mc2 = 0. (A21)

In the quantum theory, the proper Hamiltonian density operator would also be zero.
A similar problem occurs with the Wheeler-DeWitt equation, except the zero Hamiltonian is interpretted as a

constraint [77, 78]. With relativistic Koopman-von Neumann mechanics, the proper Hamiltonian would be zero,
which leads to a zero Liouville operator for time evolution of phase space. This suggests that the problem of time is
independent of quantum theory, but rather is a problem with some Hamiltonian systems for relativistic theories. To
avoid this problem and keep the manifest Lorentz invariance, De Donder-Weyl theory is pursued next, rather than a
proper Hamiltonian formulation.

2. Quantization of relativistic Koopman-von Neumann mechanics

While classical theory treats pµ and kµ as independent, quantum mechanics treats the operators as linearly de-

pendent via P̂µ = ℏK̂µ and Q̂µ = ℏX̂µ. This relates to the Heisenberg uncertainty relations of spacetime and
energy-momentum in the relativistic setting. From the operator algebra perspective, quantization of classical theory
can be seen in a straightforward manner with Koopman-von Neumann mechanics, as both utilize a Hilbert space.
A quantum deformation of classical phase space can be implemented as a change of variables from x̂µ → X̂µ and
p̂ν → P̂ν

[x̂µ, p̂ν ] = 0→
[
X̂µ, P̂ν

]
= iℏδµν . (A22)

The 16 independent variables of classical Fourier-phase space xµ, pν , kρ, and q
σ can be replaced by the 8 independent

variables of quantum Fourier space (or quantum phase space) X̂µ and P̂ν . This results in the the Heisenberg algebra

with
[
X̂µ, X̂ν

]
=
[
P̂µ, P̂ν

]
= 0.

The Heisenberg algebra can be found from the Koopman-von Neumann algebra by shifting coordinates [3]. However,
the relationship between wavenumber and the variable conjugate to position was not mentioned, which overlooked
the notion of P̂µ = ℏK̂µ. An important property of quantum mechanics is that the eigenvalues of X̂µ should lead to
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coordinates of x̂µ, assuming the quantum eigenvalues relate to a notion of classical reality. To understand what shifts
in coordinates can be made, consider

X̂µ = ax̂µ + bℏq̂µ, (A23)

P̂ν = cp̂ν + dℏk̂ν , (A24)

where a, b, c, and d are constants to be determined partially by the following constraint,[
X̂µ, P̂ν

]
= [ax̂µ, cp̂ν ] +

[
ax̂µ, dℏk̂ν

]
+ [bℏq̂µ, cp̂ν ] +

[
bℏq̂µ, dℏk̂ν

]
= iℏ(ad+ bc) → ad+ bc = 1. (A25)

The quantum theory should have operators K̂ρ and Q̂σ which satisfy the following relations,

P̂ρ = ℏK̂ρ, X̂σ = ℏQ̂σ, (A26)

which results in

K̂ρ = dk̂ρ +
c

ℏ
p̂ρ, (A27)

Q̂σ = bq̂σ +
a

ℏ
x̂σ. (A28)

In order to have a quantum theory whose operators X̂µ, P̂ν , K̂ρ, and Q̂σ lead to the same eigenvalues as found in

classical theory with x̂µ, p̂ν , k̂ρ, and q̂
σ, the following operator relations are found when x̂µ = ℏq̂µ and p̂ν = ℏk̂ν ,

X̂µ = (a+ b)x̂µ → a+ b = 1, (A29)

P̂ν = (c+ d)p̂ν → c+ d = 1, (A30)

K̂ρ = (b+ a)k̂ρ → a+ b = 1, (A31)

Q̂σ = (d+ c)q̂σ → c+ d = 1. (A32)

When the following relations are satisfied, the quantum theory satisfies P̂ν = ℏK̂ν = p̂ν = ℏk̂ν , etc. This assures
that the quantum and classical Fourier phase space operators all agree such that the quantum eigenvalues correspond
to classical variables as introduced in the Copenhagen interpretation. The solutions are not fully constrained, which
allows for b, c, and d to be found in terms of a,

b = 1− a, c =
a− 1

2a− 1
, d =

a

2a− 1
. (A33)

Note that Ref. [3] chose a = 1, b = 1/2, c = 1, and d = 1/2 (since their λ̂p is our −q̂). What this suggests is that
the quantum theory in their formalism leads to quantum position eigenvalues that do not correspond to the position

eigenvalues in the classical theory. For instance, if their p̂q = ℏk̂q and p̂ = ℏk̂, then p̂q = 3
2 p̂. This was not considered

problematic, as taking α (or ℏ) to zero leads to p̂q = p̂. However, quantum theory leads to measurements of classical
observables with real eigenvalues, so it seems to be an improvement to select only the classical formulations that

admit a correspondence between the operators. While classical mechanics does not satisfy p̂ = ℏk̂, our assertion is

that quantum theory must use operators P̂ = ℏK̂ that contain eigenvalues that match P̂ = p̂ and K̂ = k̂ in some

classical framework, which implies that p̂ = ℏk̂ within the quantum theory.
A few simple solutions for the coefficients include

Solution 1: a = 1, b = 0, c = 0, d = 1,

Solution 2: a = 2, b = −1, c = 1
3 , d = 2

3 ,

Solution 3: a = 3
2 , b = − 1

2 , c = 1
4 , d = 3

4 ,

Solution 4: a = 1√
2
, b = 1− 1√

2
, c = − 1√

2
, d = 1 + 1√

2
,

(A34)

where all of these satisfy ad+ bc = 1, a+ b = 1, and c+ d = 1. The solutions for a, b, c, and d are shown in Fig. (2).
The first solution above is clearly the simplest, as it leads to

X̂µ = x̂µ, (A35)

P̂ν = ℏk̂ν , (A36)

K̂ρ = k̂ρ, (A37)

Q̂σ =
1

ℏ
x̂σ. (A38)
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FIG. 2. The solution for coefficients a, b, c, and d are shown as a function of a such that both the classical and quantum phase
space coordinates equal to Planck’s constant times their corresponding wavenumbers.

This change of variables from Koopman-von Neumann classical mechanics to quantum mechanics is the simplest and
most unambiguous, as it clearly states that the quantum momentum is equal to ℏ times the classical wavenumber.
For this solution, the classical momentum p̂ν and its conjugate momentum-wavenumber q̂σ are not expressed in the
quantum theory.

Appendix B: Poly-Koopman-von Neumann mechanics as De Donder-Weyl theory

Our next goal is to generalize KvN mechanics to relativistic field theory, which can be done in multiple ways, as there
are multiple relativistic formulations of Hamiltonian dynamics for fields. While the Dirac or canonical Hamiltonian
density is most popular, the De Donder-Weyl Hamiltonian density naturally contains the poly-momentum as found
in the Euler-Lagrange equations for relativistic field theory, as shown in Table (II). While both formulations have a
momentum field, the Dirac momentum is typically called the canonical momentum, while the DDW momentum is
covariant.

Reconciling canonical and covariant formulations of quantum gravity is perceived as a challenge to this day [13].
While formulations have been proposed by both string theorists and loop quantum gravity researchers, relatively
little attention has been given to KvN [1–7] and DDW theory [8–11]. While Witten et al. have found canonical and
covariant formulations with symplectic structure, no Hamiltonian density was found [14–18]. Researchers have recently
explored Witten’s use of covariant, canonical, and symplectic structures in a wide range of gravitational theories,
often referred to as covariant phase space methods [19–22]. DDW theory contains poly-symplectic/multisymplectic
geometry, which contains a Hamiltonian density and a conjugate poly-momentum field. The covariant phase space
methods refer to the conjugate poly-momentum, but the connection to DDW theory has been largely overlooked.
Thiemann acknowledges that quantization of DDW theory is challenging and relatively unexplored [23], in reference
to progress from Kantachikov on DDW quantization [24–38].

A common approach to quantization is canonical quantization, which uses Dirac’s iℏ prescription by converting
classical Poisson brackets into quantum commutation relations. Groenewold’s theorem demonstrates that such a
quantization map does not formally exist in general, while deformation quantization considers a Moyal bracket as
the appropriate quantum deformation of Poisson brackets. Geometric quantization includes prequantization, which
introduces a prequantum Hilbert space with a mapping between classical Poisson brackets to quantum commutators.
Kanatchikov’s precanonical quantization is a type of geometric quantization from a DDW Hamiltonian, which studies
Gerstenhaber brackets as a generalization of Poisson brackets [31].

Kanatchikov has extensively explored DDW theory with a poly-symplectic form Ω [24–38]. His precanonical quan-
tization extends the DDW Hamiltonian operator to act on a Clifford algebra-valued wavefunction with Dirac’s gamma
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Euler-Lagrange Hamiltonian

Newtonian particles d
dt

dL
dvi − dL

dxi = 0 H = vipi − L

Relativistic fields ∂µ
∂L
∂νA

µ
− ∂L

∂ϕA = 0 H = νAµ π
µ
A − L

TABLE II. A comparison of the Euler-Lagrange equations with the Hamiltonian (density) for Newtonian mechanics and
relativistic field theory is shown above. Since the Euler-Lagrange equations contain a partial derivative with respect to the
poly-velocity νµ = ∂µϕ

A, the De Donder-Weyl (DDW) Hamiltonian density H with poly-momentum πµA conjugate to any field
ϕA is natural for a manifestly covariant and canonical Hamiltonian formulation.

matrices giving iℏκγµ∂µΨ = ĤΨ as a generalized Schrödinger equation for Ψ in a Clifford algebra [24]. While DDW
theory directly applies to classical fields, Kanatchikov’s exploration of precanonical quantization is largely based on
Clifford-valued wavefunction, similar to how the Wheeler-DeWitt equation has a wavefunctional. While authors
have explored DDW theory [46–53], most do not discuss quantization outside of Kanatchikov’s work. Kanatchikov’s
generalized Schrödinger equation may also be significant for Clifford relativity and applications to membranes [39–45].

Below, we use poly-Poisson brackets previously explored by Kanatchikov [30] to obtain the equations of motion,
which makes Dirac’s quantization not possible and led Kanatchikov to consider the Gerstenhaber brackets. However,
by introducing new poly-KvN algebras in addition to the poly-Poisson brackets, a transparent quantization of DDW
theory is found by mapping commutators of classical operators to commutators of quantum operators. Both geometric
quantization and KvN quantization have a notion of polarization, which relates to the mapping of 2d dimensions of
phase space to d dimensions of space or spacetime. The KvN quantization introduced by Bondar et al. [3] is therefore
similar to geometric quantization, except the quantization map most straightforwardly maps operators in a complex
Hilbert space from a classical commutator algebra to a quantum commutator algebra. The nonrelativisti KvN algebra

contains operators x̂i, p̂i, k̂i, and q̂i. We clarify how quantization of KvN mechanics relates to setting p̂i = ℏk̂i as
operators. This quantization procedure is in this sense straightforward and intuitive.

1. Classical field theory with De Donder-Weyl theory

Classical non-relativistic Lagrangian formulations lead to Euler-Lagrange equations involving a time derivative d
dt .

This naturally leads to a covariant momentum in terms of a velocity that takes a time derivative, giving a Hamiltonian.
Relativistic field theory generalizes the Euler-Lagrange equations to include a partial derivative ∂µ. However, the so-
called canonical Hamiltonian formulation from Dirac does not consider a poly-momentum from ∂µ and instead resorts
to the time derivative within some frame of reference, which breaks manifest Lorentz symmetry and is not covariant
[12]. As we saw for the relativistic point particle, using the proper time with d

dτ instead of d
dt also leads to a vanishing

proper Hamiltonian. A natural framework for obtaining a manifestly covariant and canonical Hamiltonian density
that generalizes the notion of the relativistic Euler-Lagrange equations is to introduce a poly-momentum that uses
∂µ instead of d

dt [8–10]. Relativistic field theories motivate poly-symplectic geometry, since the Lagrangian density
integrates over spacetime, not time. To summarize, consider the Euler-Lagrange equations in classical mechanics vs
classical field theory with a Klein-Gordon scalar, which lead to the corresponding Hamiltonian formulations as shown
in Table (II).

A manifest covariant and canonical formulation motivates the De Donder-Weyl Hamiltonian density H that is
different than the canonical Hamiltonian density HD. The poly-velocity and poly-momentum densities of any field ϕ
are given by

νµ = ∂µϕ (B1)

πµ =
∂L
∂∂µϕ

(B2)

Since ∂0 = 1
c

∂
∂t , the standard canonical momentum density π = ∂L

∂ϕ̇
= 1

cπ
0. Consider a different type of Poisson

bracket that contains a covector index to express the poly-symplectic geometry,

{A,B}µ =
∂A

∂ϕ(x)

∂B

∂πµ(x)
− ∂A

∂πµ(x)

∂B

∂ϕ(x)
=

∫
d4yδ(4)(x− y)

[
∂A

∂ϕ(x)

∂B

∂πµ(y)
− ∂A

∂πµ(y)

∂B

∂ϕ(x)

]
. (B3)

The poly-symplectic structure of phase space over fields is characterized by this poly-Poisson bracket, since

{ϕ(x), πµ(x)}ν = δµν , (B4)

{ϕ(x), ϕ(x)}µ = {πµ(x), πν(x)}ρ = 0. (B5)
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Kanatchikov had previously discussed the same type of brackets in the language of differential forms [30], which is
similar to other authors use of poly-symplectic Poisson brackets [48, 94–99]. Other Poisson brackets over fields lead
to Dirac delta functions over space [13]. Our conventions for the poly-Poisson brackets allow for an easy identification
of the De Donder-Weyl equations in a manner that mimics classical mechanics. Note that Dirac’s iℏ prescription no
longer holds, since the poly-symplectic geometry has a conjugate poly-momentum of a different rank than the original
field. This does not obscure second quantization, especially once the generalization of the Koopman-von Neumann
algebra is articulated.

The De Donder-Weyl Hamiltonian density is

H = πµνµ − L. (B6)

The De Donder-Weyl Hamiltonian is different than the canonical Hamiltonian introduced by Dirac, as it contains
additional Legendre transformations for spatial components of the poly-momentum and poly-velocity. The canonical
form of the action is therefore

S =

∫
d4x (νµπ

µ −H) . (B7)

The variation of the action with respect to a classical orbit ϕ = ϕcl + δϕ and πµ = πµ
cl + δπµ leads to

δS =

∫
d4x

[
δνµπ

µ + νµδπ
µ − ∂H

∂ϕ
δϕ− ∂H

∂πµ
δπµ

]
, (B8)

=

∫
d4x

[(
νµ −

∂H
∂πµ

)
δπµ −

(
∂µπ

µ +
∂H
∂ϕ

)
δϕ+ ∂µ (π

µδϕ)

]
.

Assuming that boundary terms vanish, the De Donder-Weyl equations are found to give

∂µϕ(x) =
∂H

∂πµ(x)
= {ϕ(x),H}µ, (B9)

∂µπ
µ(x) = − ∂H

∂ϕ(x)
=

1

d
{πµ(x),H}µ, (B10)

where ∂πµ

∂πν = δµν and δµµ = d for d-dimensional spacetime.
The canonical Hamiltonian density allows for the derivation of field equations. Before discussing quantization, we

demonstrate how derivations of classical equations of motion are simpler with the De Donder-Weyl Hamiltonian density
in comparison to the canonical Hamiltonian density. The Hamilton-Jacobi theory for De Donder-Weyl theory for Klein-
Gordon, Dirac, and gauge fields has been previously discussed [11]. Kanatchikov has discussed a wide variety of field
theories with De Donder-Weyl theory, including p-form electrodynamics, Yang-Mills theory, and general relativity to
name a few [24–29, 31, 32, 34–38]. Next, we provide simple and straightforward derivations of the Klein-Gordon,
Yang-Mills, and linearized gravity fields using standard notation familiar to quantum field theorists. Later, we show
that KvN quantization can be applied to DDW theory after generalizing the KvN algebra to poly-symplectic fields.

a. Klein-Gordon scalar field

The action of a real and massive Klein-Gordon scalar field ϕ(x) with an arbitrary potential V (ϕ) is

SKG =

∫
d4x

(
1

2
∂µϕ∂

µϕ− m2c2

2ℏ2
ϕ2 − V (ϕ)

)
, (B11)

where the mostly-minus metric ηµν is used. Throughout, ℏ = c = 1. The Klein-Gordon poly-velocity and poly-
momentum are

νµ = ∂µϕ, πµ =
∂L
∂νµ

= ∂µϕ. (B12)

The De Donder-Weyl Hamiltonian density for the Klein-Gordon theory is

H = vµπ
µ − L =

1

2
πµπµ +

m2

2
ϕ2 + V (ϕ) (B13)
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The De Donder-Weyl equations give

∂µϕ =
∂H
∂πµ

= πµ, (B14)

∂µπ
µ = −∂H

∂ϕ
= −m2ϕ− ∂V

∂ϕ
(B15)

Plugging the first equation into the second equation gives the Klein-Gordon equation,

(
∂µ∂

µ +m2
)
ϕ = −∂V

∂ϕ
. (B16)

Since this Hamiltonian formulation is manifestly relativistic, it is more straightforward than the canonical Hamiltonian
approach. The tradeoff was to introduce a poly-momentum vector field that is conjugate to the scalar field, but the
poly-velocity is already in the standard Euler-Lagrange equations for fields.

Since it will be instructive for a later demonstration, we also consider a complex Klein-Gordon field with the
following action,

S =

∫
d4x

(
∂µϕ∂

µϕ∗ −m2|ϕ|2 − V (ϕ, ϕ∗)
)
. (B17)

Since ϕ = ϕ1 + iϕ2, the poly-Poisson brackets must sum over both ϕ and ϕ∗. The following poly-velocities and
poly-momenta are found,

νµ = ∂µϕ, πµ =
∂L
∂νµ

= ∂µϕ∗,

ν∗µ = ∂µϕ
∗, π∗µ =

∂L
∂ν∗µ

= ∂µϕ, (B18)

where ν∗µ is defined as the poly-velocity of ϕ∗, not immediately as the complex conjugate of νµ. The poly-Poisson
bracket must consider both ϕ and ϕ∗,

{A,B}µ =
∂A

∂ϕ

∂B

∂πµ
− ∂A

∂πµ

∂B

∂ϕ
+
∂A

∂ϕ∗
∂B

∂π∗µ −
∂A

∂π∗µ
∂B

∂ϕ∗
. (B19)

For later convenience, the De Donder-Weyl Hamiltonian density is given by

H = νµπ
µ + ν∗µπ

∗µ − L = πµπ∗
µ +m2|ϕ|2 + V (ϕ, ϕ∗). (B20)

b. Yang-Mills spin-1 field

Next, the DDW Hamiltonian for Yang-Mills theory is derived. The spin-1 Yang-Mills field has the following action,

S =

∫
d4x

(
−1

4
FA
µνF

µνA − JµAAA
µ

)
, (B21)

where the Yang-Mills field strength FA
µν is found in terms of the gauge potential AA

µ ,

FA
µν = ∂µA

A
ν − ∂νAA

µ − gfABCAb
µA

c
ν . (B22)

The Yang-Mills poly-velocity and poly-momentum are

νµν
A = ∂µA

A
ν , πµνA = −FµνA. (B23)

The De Donder-Weyl Hamiltonian density for Yang-Mills theory is

H = −1

4
πA
µνπ

µνA +
g

2
πµνAfABCAB

µA
C
ν + JµAAA

µ . (B24)
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The De Donder-Weyl equations give the equations of motion for Yang-Mills theory when asserting that πµνA is
antisymmetric,

1

2

(
∂µA

A
ν − ∂νAA

µ

)
=

∂H
∂πµνA

= −1

2
πµν

A +
g

2
fABCAB

µA
C
ν (B25)

∂µπ
µνA = − ∂H

∂AA
ν

= −g
2
πνµBfBACAC

µ −
g

2
πµνCfCBAAB

µ − JνA = gfABCAB
µ π

µνC − JνA (B26)

The first equation leads to πµνA = −FµνA, which when plugging this into the second equation gives the Yang-Mills
equations of motion,

∂µF
µνA = JνA + gfABCAB

µ F
µνC = jνA, (B27)

where jνA is the gauge-dependent current. The equations of motion are also expressed as DµF
µνA = JνA, where

Dµ is the covariant derivative. Choosing the Abelian gauge group U(1) would lead to Maxwell’s electrodynamics.
This completes the derivation of the equations of motion for all of the field content in the standard model within De
Donder-Weyl theory.

Since the gauge-dependent Yang-Mills current will be inspirational for generalizing the Liouville equation in the
relativistic setting, consider how charge conservation can be stated with the covariant or partial derivative,

DµJ
µA = ∂µJ

µA − gfABCAB
µ J

µC = 0, ∂µj
µA = 0, (B28)

where JµA is the gauge-covariant current, while jµA is the conserved Noether current. Later, the poly-Liouville
equation for probability 4-current conservation of relativistic fields will be derived in analogy with DµJ

µA = 0.

c. Linearized gravity with spin-2 field

In linearized gravity, the spacetime metric gµν is perturbed with respect to a background Minkowski metric ηµν ,

gµν = ηµν + κhµν , (B29)

gµν = ηµν − κhµν +O(κ2), (B30)

where hµν(x) is the linearized gravitational field and κ =
√

32πG
c3 . The linearized gravity action is

S =

∫
d4x

(
1

2
∂ρhµν∂ρhµν − ∂µhµρ∂νhνρ + ∂µhµν∂

νh− 1

2
∂µh∂

µh

)
, (B31)

where h = hµνη
µν . The trace-reversed metric h̄µν = hµν − 1

2ηµνh is the field mapped from the Yang-Mills gauge field
with respect to the radiative double copy [80]. This allows for a simplification in the action and the field equations
as well, since

S =

∫
d4x

(
1

2
∂ρh̄µν∂ρh̄µν −

1

4
∂µh̄∂

µh̄

)
. (B32)

Plugging h̄µν in terms of hµν of the action above leads to

S =

∫
d4x

(
1

2
∂ρhµν∂ρhµν −

1

4
∂µh∂

µh

)
. (B33)

Consider the poly-velocity and poly-momentum of the trace-reversed metric,

ν̄ρµν = ∂ρh̄µν , (B34)

π̄ρµν =
∂L
∂ν̄ρµν

= ∂ρh̄µν − 1

2
ηµν∂ρh̄ = ∂ρhµν , (B35)

where the poly-momentum of the trace-reversed metric is the partial derivative of the metric. The De Donder-Weyl
Hamiltonian density for linearized gravity is

H = ν̄ρµν π̄
ρµν − L =

1

2
∂ρh̄µν∂ρh̄µν −

1

4
∂ρh̄∂

ρh̄ = L

=
1

2
π̄ρµν π̄ρµν − π̄ µρ

µ π̄ν
νρ + π̄µ

µνη
αβ π̄ν

αβ −
1

2
ηαβηρσπ̄µαβ π̄

µ
ρσ, (B36)
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where the massless linearized graviton’s De Donder-Weyl Hamiltonian density is the same as the Lagrangian density,
which is encouraging, as there is only gravitational kinetic energy present. The De Donder-Weyl equations give

∂µh̄αβ =
∂H
∂π̄µαβ

= π̄µαβ − 2ηµαπ̄
ν
νβ + ηµαη

ρσπ̄βρσ + π̄ρ
ρµηαβ − ηαβηρσπ̄µρσ, (B37)

∂µπ̄
µαβ = − ∂H

∂h̄αβ
= 0. (B38)

The equation of motion can be found by solving the first equation for πµαβ and plugging into the second equation.
The first equation of motion differs from the assignment of the poly-momentum specifically unless the De Donder

gauge condition is taken,

∂µh̄
µν = 0. (B39)

This “gauge condition” is sometimes called the harmonic, Hilbert, Lorenz, Lorentz, or Fock gauge. Specifically when
this gauge is taken, then the definition of the poly-momentum found from the Lagrangian density can be found, which
leads to the following vacuum equations of motion,

∂µ∂
µhαβ = 0. (B40)

Since the stress-energy-momentum tensor Tµν is given by

Tµν = − 2c√
−g

∂
√
−gLM

∂gµν
= −2c∂LM

∂gµν
+ cLgµν , (B41)

it is understood that κh̄µν will couple to T̄µν at lowest order. This implies that the matter Lagrangian is

SM = − κ

2c

∫
d4x
√
−gT̄µν h̄µν . (B42)

To derive the De Donder-Weyl Hamiltonian for linearized gravity in another manner, consider the solution for ∂µh̄αβ
in terms of πµαβ from Eq. (B37),

ν̄µαβ = ∂µh̄αβ = π̄µαβ −
1

2
ηαβ π̄µ ≡ πµαβ , (B43)

A reciprocal relationship is found between the trace-reversed poly-velocity ν̄µαβ with the trace reverse of the trace-
reversed poly-momentum πµαβ . This allows for the De Donder-Weyl Hamiltonian density to be written as

H =
1

2
πµαβπ

µαβ − 1

4
πµπ

µ +
8πG

c4
κT̄µν h̄µν =

1

2
π̄µαβ π̄

µαβ − 1

4
π̄µπ̄

µ +
8πG

c4
κT̄µν h̄µν , (B44)

where π̄µ = −πµ = ∂µh = −∂µh̄. For this Hamiltonian density, the De Donder gauge was not explicitly solved for,
but the reciprocal relationship of the polymomenta and the polyvelocities implies the De Donder gauge, as the De
Donder-Weyl-Hamilton equations from the Hamiltonian density above lead to

∂µh̄αβ =
∂H
∂π̄µαβ

= π̄µαβ −
1

2
ηαβ π̄µ = πµαβ , (B45)

∂µπ̄
µαβ = − ∂H

∂h̄αβ
= −κ8πG

c4
T̄αβ . (B46)

The trace-reversal of the second equation above after plugging in the first equation leads to the equations of motion
for linearized gravity sourced by matter in the De Donder gauge,

∂µπ
µαβ = ∂µ∂

µh̄αβ = −8πGκ

c4
Tαβ . (B47)

The De Donder gauge is therefore a type of Hamiltonian constraint. Just as Dirac’s canonical Hamiltonian formulation
of general relativity reduces the metricial degrees of freedom from 10 to 6, so does imposing the De Donder gauge
condition [75]. For general relativity, h̄µν would be generalized to

√
−ggµν , which has been discussed previously

[81, 82]
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2. Poly-Koopman-von Neumann mechanics as De Donder-Weyl theory

Next, we generalize relativistic Koopman-von Neumann mechanics to classical field theory with poly-symplectic
fields and recover De Donder-Weyl theory. First, Koopman-von Neumann mechanics must be generalized to work
on Fock spaces to describe classical fields. Second, a poly-Liouville operator L̂µ is constructed, which leads to a
poly-Liouville equation for probability 4-current conservation. The classical analogue of a poly-Schrödinger equation
with ∂µ instead of ∂

∂t is also found, which corresponds to the first De Donder-Weyl equation, while the second De
Donder-Weyl equation of motion is interpreted as a poly-Schrödinger equation for the conjugate poly-momentum.
Finally, we formulate two types of poly-Koopman-von Neumann algebras with covariant and canonical commutation
relations over a Fourier-phase space for classical and 1st quantized fields with poly-symplectic geometry.

a. Sketch of assumptions for axiomatic interacting field theories

A Fock space is defined as the tensor product ofN -particle Hilbert spaces. In quantum field theory, a non-interacting
bare vacuum |0⟩ is typically presumed to be embedded in Minkowski space with the Wightman or Haag-Kastler axioms
[83, 84]. Hall and Wightman concluded from Haag’s theorem that there is not a single Hilbert space representation
for the free and interacting fields [85]. We embrace this notion by considering a dynamical discrete spectrum of the
renormalized (physical) vacuum state |Ω⟩ that is uniquely determined by the phase space geometry, which is not found
in |0⟩. The renormalized vacuum |Ω⟩ need not have the same spectrum as |0⟩, since the setting of the energy scale
relates to the types of measurements that can be performed. We suppose that algebraic quantum field theory can be
constructed via operator algebras that need not be related to Minkowski space in the interacting field theory. From
a philosophical perspective, QFTs should include gravity, since all fields carry energy and momentum as a source of
gravitation.

While quantum mechanics contains a measurement problem, quantum field theory does not in the same sense, as
the renormalized measurement apparatus ⟨Ω| contains additional information not found in the non-interacting bare
template of abstract measurements ⟨0|. The true state of measurement is defined by a destruction operator acting on
a renormalized vacuum ⟨χ| = ⟨Ω|â, which denotes a notion of measurement via absorption of quantum information.
Quantum mechanics has no destruction operators without Fock spaces.

Since Fock spaces are used in field theory rather than Hilbert spaces, the wavefunction must be replaced with
raising and lowering operators associated with quantum fields. If a field ϕ has a† and a as creation and annihilation

operators that act on a renormalized vacuum state |Ω⟩, then projection operators are replaced via |s′⟩ ⟨s| → a†s′as.
Without rigorously developing axiomatic interacting QFT, the progression from wavefunctions ψ(x) to (classical or
quantum) fields ϕ(x) is aided by the Dirac bra-ket notation,

Ôψ(x) ≡ ⟨x|Ô|ψ⟩ → Oϕ(x)
〈
x
∣∣∣Ôa†∣∣∣Ω〉 = ⟨x|Ô|ϕ⟩, (B48)

where a single-particle state |ϕ⟩ = a†|Ω⟩ was constructed above. Without loss of generality, |ϕ⟩ can contain an arbitrary
number of creation operators acting on |Ω⟩. In this manner, the classical Koopman-von Neumann wavefunction can
be appropriately generalized to classical Koopman-von Neumann fields, including the relativistic Klein-Gordon field.

b. Poly-Koopman-von Neumann mechanics

Manifestly covariant and canonical evolution can be found from the De Donder-Weyl equations, which motivates
the introduction of a covector poly-Liouville operator in poly-Koopman-von Neumann mechanics. The poly-Liouville
operator is introduced as

iL̂µA = {A,H}µ =
∑
ϕ

(
∂H
∂πµ

∂

∂ϕ
− ∂H
∂ϕ

∂

∂πµ

)
A. (B49)

If a wavefunction was evolved, then the classical poly-Koopman-von Neumann equation would be i∂µψ = L̂µψ for a
wavefunction ψ. However, we desire fields, not wavefunctions. As mentioned, since Fock spaces are constructed from
Hilbert spaces, it is anticipated that a similar equation should hold for classical fields over Fock space. As such, the
poly-Koopman-von Neumann equation should be generalized to apply the Liouville operator to the poly-symplectic
fields, rather than a single wavefunction, which leads to two DDW equations instead of one.
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Consider the poly-Liouville operator acting on the poly-symplectic fields ϕ and πµ. The poly-Koopman-von Neu-
mann equations for fields are defined as the poly-Liouville operator acting on classical fields of poly-symplectic phase
space, which are found by applying the De Donder-Weyl equations,

iL̂µϕ = {ϕ,H}µ =
∂H
∂πµ

= ∂µϕ, (B50)

iL̂µπ
ν = {πν ,H}µ = −∂H

∂ϕ

∂πν

∂πµ
= −∂H

∂ϕ
δνµ = ∂ρπ

ρδνµ. (B51)

These poly-Koopman-von Neumann equations replace the classical wavefunction ψ(x, p) with the classical fields ϕ and

πµ. The poly-Liouville operator L̂µ acting on πν does not simply take the partial derivative i∂µ, which is different
than how the Liouville operator gives time evolution of the Koopman-von Neumann wavefunction similar to the
Hamiltonian operator for the quantum wavefunction. Nevertheless, i∂µπ

µ gives De Donder-Weyl equations,

i∂µϕ = −L̂µϕ = i {ϕ,H}µ = i
∂H
∂πµ

, (B52)

i∂µπ
µ = −1

d
L̂µπ

µ =
i

d
{πµ,H}µ = −i∂H

∂ϕ
. (B53)

This demonstrates for the first time that the De Donder-Weyl equations can be rewritten with a poly-Liouville
operator, since {πµ,H}µ = −iL̂µπ

µ.
To clarify, Kanatchikov extends the Wheeler-De Witt equation to arbitrary DDW field theories, which is one type

of generalized Schrödinger equation [29, 31], while here, we simply point out that the first De Donder-Weyl equation
is a generalization of the Scrödinger equation in another sense, as a relativistic field can be seen as a generalization
of a wavefunction. In this sense, Kanatchikov’s contributions to DDW theory are much deeper and significant than
our somewhat trivial recovery of the DDW equations from poly-KvN mechanics.

The relationship of the Liouville equation and Hamilton’s equations motivates a poly-Liouville equation from
De Donder-Weyl equations, which replaces the partial time derivative with the partial derivative of spacetime ∂µ.
This implies that the poly-Liouville equation should involve a probability 4-current Jµ(ϕ(x), π(x)), rather than the
probabilty density ρ. The probability 3-current of a wavefunction generalized to a 4-current leads to the following
probability density for ϕ in quantum field theory,

Jµ
QFT =

iℏ
2m

(ϕ∗∂µϕ− (∂µϕ∗)ϕ) . (B54)

Classical theory does not have ℏ. Also, massless Klein-Gordon fields can be studied. Taking inspiration from above,
consider the following canonical classical Klein-Gordon probability current for a complex scalar field,

Jµ(ϕ(x), π(x)) =
i

2
(ϕ∗π∗µ − πµϕ) . (B55)

While the Liouville equation typically implements time evolution of global phase space with Poisson brackets of
a Hamiltonian, the poly-Liouville equation implements local spacetime evolution with a Hamiltonian density. This
analogy implies for the existence of a total spacetime derivative d

dxµ , which contains the partial spacetime derivative
plus partial derivatives with respect to the fields and their conjugate polymomenta. It turns out to be trivial for real
Klein-Gordon fields ϕ, as ∂µJ

µ = 0 and the Liouville operator on Jµ would vanish. For complex Klein-Gordon fields,
the poly-Liouville equation can be derived by considering the following,

∂µJ
µ =

i

2
(∂µϕ

∗π∗µ + ϕ∗∂µπ
∗µ − ∂µπµ − πµ∂µϕ) =

i

2
(ϕ∗∂µπ

∗µ − ∂µπµϕ) , (B56)

iL̂µJ
µ = {Jµ,H}µ =

∂Jµ

∂ϕ

∂H
∂πµ

− ∂Jµ

∂πµ

∂H
∂ϕ

+
∂Jµ

∂ϕ∗
∂H
∂π∗µ −

∂Jµ

∂π∗µ
∂H
∂ϕ∗

(B57)

=
id

2
(ϕ∗∂ρπ

∗ρ − ϕ∂ρπρ) . (B58)

Putting these two terms together, the poly-Liouville equation for arbitrary field theories is found to be

dJµ

dxµ
≡ ∂µJµ − i

d
L̂µJ

µ = ∂µJ
µ − 1

d
{Jµ,H}µ = ∂µJ

µ − 1

d

∑
i

∂µϕi
∂Jµ

∂ϕi
+ ∂νπ

ν
i

∂Jµ

∂πµ
i

= 0, (B59)
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where the complex Klein-Gordon scalar field theory has ϕi = (ϕ, ϕ∗). The poly-symplectic geometry leads to a
contraction between ∂νπ

ν in the last term above. Curiously, if dµ ≡ d
dxµ is thought of as a covariant derivative, the

poly-Liouville operator L̂µ is like a gauge field.
The poly-Liouville equation describes the conservation of a 4-current density, whose structure is more similar to the

second De Donder-Weyl equation. In this sense, the equations for the 4-current and the conjugate poly-momentum
are similar, while the non-relativistic Liouville equation is more similar to the first De Donder-Weyl equation. The
poly-Liouville equation acting on classical fields cannot be found by applying the chain rule due to the structure of
poly-symplectic geometry. While this equation does give a partial derivative that includes a time derivative as used in
time evolution, the poly-Liouville operator acting on ϕ gives πµ rather than the evolution of ϕ, as the poly-Liouville
operator acts on πµ to give the equations of motion for ϕ after plugging in the first equation. In summary, poly-KvN
mechanics is equivalent to DDW theory.

c. 0th and 1st quantized poly-Koopman-von Neumann algebras

Finally, we consider poly-Koopman-von Neumann algebras that generalize the Koopman-von Neumann algebra.
Since phase space coordinates are replaced with poly-symplectic fields, Fourier-conjugate fields κ and ξµ are introduced,

xµ → ϕ

kν = −i ∂
∂xν → κ ∝ −i ∂

∂ϕ

pρ → πρ

qσ = i ∂
∂pσ

→ ξσ ∝ i ∂
∂πσ .

(B60)

While it is common to derive the classical equations of motion for the Klein-Gordon equation in terms of a scalar field
ϕ(x), the poly-Koopman-von Neumann approach to field theory leads to a different type of classical field, as it may
depend both on position and momentum. Since the poly-symplectic fields are generalizations of the wavefunction,
the fully classical poly-Koopman-von Neumann fields should depend on position and momentum such as ϕ(x, p)
or ϕ̄(k, q) as Fourier-phase-space conjugates. First quantization is realized as quantizing phase space coordinates
with pµ = ℏkµ without quantizing fields, which leads to ϕ(x) and ϕ(p) as Fourier conjugates. Second quantization
applies quantization of the fields. As such, classical field theory admits 0th quantized (classical) and 1st quantized
poly-Koopman-von Neumann algebras.

It is also worth clarifying that the study of KvN fields introduces the concept of 1st and 2nd Fourier conjugation.
At the classical phase space level, a field ϕ(x, p) admits a 1st Fourier transformation to give ϕ̃(k, q). Half-Fourier

transformations giving ϕ̃(k, p) or ϕ̃(x, q) can be found. In another sense, a functional such as H(ϕ, π) may admit a

2nd Fourier transformation, leading to H̃(κ, ξ). In general, κ(k, q) is not the 1st Fourier transform of ϕ(x, p), but
rather κ(x, p) is the 2nd Fourier conjugate field to ϕ(x, p). This matches how xµ and pν denote coordinates for (1st)
phase space, while the covariant phase space description refers to phase space over fields (2nd phase space). Kvn
fields require the articulation of of 1st and 2nd Fourier-phase space over coordinates and fields as shown in Eq. (B60).
Throughout, we refer to 1st quantization as the reduction of 1st Fourier-phase space, while 2nd quantization is the
reduction of 2nd Fourier-phase space.

Overall, the discussion of generalizing Koopman-von Neumann mechanics has been rather limited. Gozzi and
Reuter had previously considered the notion of classical path integrals as a counterpart to Koopman-von Neumann
mechanics [93], which has been more recently reviewed by Piasecki [6]. However, Gozzi and Reuter focused more on
adding BRST ghosts to classical fields, rather than the 2nd Fourier conjugate fields such as κ and ξ.
While classical field theory is typically over spacetime, poly-KvN mechanics motivates classical fields over phase

space. The 0th quantized poly-KvN algebra is therefore

[ϕ(x, px), κ(y, py)] = iδ(4)(x− y)δ(4)(px − py), (B61)

[ξµ(x, px), π
ν(y, py)] = iδνµδ

(4)(x− y)δ(4)(px − py), (B62)

[ϕ(x, px), π
µ(y, py)] = 0, (B63)

[ξµ(x, px), κ(y, py)] = 0, (B64)

where all other commutation relations vanish. This algebra contains fields that differ from standard classical field
theory, as the Klein-Gordon scalar field typically is ϕ(x), not ϕ(x, p).
Assuming ϕ(x) is a 1st-quantized field, the introduction of fields κ(x) and ξσ(x) over spacetime implies that the
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Field 1st Quantized Dimensions Mass Dimensions

ϕ(x, p) False
√

m
t

1

πµ(x, p) False 1
l

√
m
t

2

κ(x, p) False 1
l8

(
t
m

) 9
2 -1

ξν(x, p) False 1
l7

(
t
m

) 9
2 -2

ϕ(x) True
√

m
t

1

πµ(x) True 1
l

√
m
t

2

κ(x) True 1
l4

√
t
m

3

ξν(x) True 1
l3

√
t
m

2

TABLE III. The dimensional analysis of 0th and 1st quantized fields in KvNdDW mechanics are depicted above.

following covariant and canonical commutation relations should hold

[ϕ(x), κ(y)] = iδ4(x− y), (B65)

[ξµ(x), π
ν(y)] = iδνµδ

4(x− y), (B66)

[ϕ(x), πµ(y)] = 0, (B67)

[ξµ(x), κ(y)] = 0. (B68)

The units of κ(x, p) must differ from κ(x) if we assume that the units of ϕ(x) and ϕ(x, p) are the same. To understand
second quantization of fields, the classical fields satisfying the first-quantized classical commutation relations are the
most helpful.

The dimensional analysis of fields over phase space differs from fields over spacetime. Consider a 0th quantized
Klein-Gordon scalar field ϕ(x, p). If such a theory is to exhibit phase space symmetry with Born’s reciprocity, then
the Klein-Gordon scalar would be massless if we consider that Spin(4, 4) or Spin(6, 2) for relativistic phase space both
contain the conformal group Spin(4, 2). The conformal group has been studied as a shadow of phase space [86] and
conformal theories are massless. This ensures that the action principle can be considered without ℏ, since the kinetic

term is void of ℏ, while the mass term is − 1
2

(
mc
ℏ
)2
ϕ2. This gives ϕ(x, p) the dimensions of

√
m
t . The conjugate

poly-momentum πµ(x, p) has dimensions of 1
l

√
m
t . The dimensional analysis of 0th and 1st quantized fields are shown

in Table (III). Assuming that the dimensions of ϕ(x, p) and ϕ(x) are the same, then the dimensions of
∫
d4pκ(x, p)

are equal to κ(x). First quantization of fields over phase space may involve integrating out energy-momentum, as∫
d4py[ϕ(x, px), κ(y, py)] = iδ4(x− y)

∫
d4pyδ

4(px − py) = [ϕ(x), κ(y)]. (B69)

In general, for the “phase space field basis,” the conjugate fields as operators for 0th quantized fields are given by

κ(x, px) = −iδ(4)(x− y)δ(4)(px − py)
∂

∂ϕ(y, py)
, (B70)

ξµ(x, px) = iδ(4)(x− y)δ(4)(px − py)
∂

∂πµ(y, py)
, (B71)

while for 1st quantized fields,

κ(x) = −iδ(4)(x− y) ∂

∂ϕ(y)
, (B72)

ξµ(x) = iδ(4)(x− y) ∂

∂πµ(y)
. (B73)

3. KvN quantization of De Donder-Weyl theory

Next, quantum fields in the De Donder-Weyl formalism are discussed. Rather than referring to a particle’s position
and momentum, a quantum field Φ(x) replaces position, which admits a canonical poly-momentum Πµ(x). In principle,
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one may consider a mixture of ϕ and ξσ as well as πµ and κ, but the mismatch in tensor rank implies the following
quantization schemes may be considered,

Φ = aϕ+ bµξµ, (B74)

Πµ = cπµ + dµκ. (B75)

The commutator of the second-quantized fields Φ(x) and Πµ(y) for arbitrary coefficients is found from Eq. (B68)

[Φ(x),Πµ(y)] = (adµ + bµc) iδ(4)(x− y). (B76)

The simplest scheme is a = 1, dµ ∝ τ̂µ, bµ = c = 0. Next, we seek a solution for dµ given a = 1. If the dimensions
of 1st and 2nd quantized fields ϕ(x) and Φ(x) are the same, this is analogous to the dimensions of x̂µ matching the

dimensions of X̂µ. However, κ(x) and Πµ(x) do not differ by dimensions of ℏ. The dimensions of dµ must be the
same as ℏcτµ. One cannot set Πµ(x) = ℏκ(x) due to dimensional analysis and the poly-symplectic geometry, but
Πµ(x) = ℏcτµκ(x) is possible.
The commutation relations of a field Φ and its conjugate poly-momentum Πµ can be found by recognizing that

ΠD = ∂L
∂ ∂Φ

∂t

= 1
cΠ

0 is Dirac’s canonical momentum, where

[Φ(x),ΠD(y)]x0=y0 = i
ℏ
c
δ(3)(x− y). (B77)

While this reference to x0 and y0 implies a specific frame, the canonical commutation relations in with the poly-
momentum can utilize τ̂µ, giving

[Φ(x),Πµ(y)] = iℏcτµδ(4)(x− y) = iℏc|τ |τ̂µδ(4)(x− y), (B78)

where [Φ(x),Φ(y)] = [Πµ(x),Πν(y)] = 0. These commutation relations are manifestly Lorentz invariant. Since τµ is
not meant to encode the time coordinate, but rather the direction of a time-like curve in relation to another frame, |τ |
should never be zero. The magnitude relates to differences in time between spacetime foliations, which may motivate
Planck’s time as the interval to be used in Feynman’s discrete path integral. The discrete calculus of time evolution
has been discussed previously by one of the authors [88, 89]. The canonical commutation relations are recovered in
the frame where τ̂µ = (1, 0, 0, 0),[

Φ(x),
1

c
Π0(y)

]
= iℏ|τ |δ(4)(x− y) = iℏ|τ |δ(3)(x− y)δ (tx − ty) (B79)

= iℏδ(3)(x− y)|τ |δ (c (tx − ty)) = iℏδ(3)(x− y)δ ((tx − ty) /|τ |) . (B80)

Integrating over ty leads to ty = tx and recovers Eq. (B77). In conclusion, the second-quantized De Donder-Weyl
algebra leads to Dirac’s canonical quantization when the zeroth component of the poly-momentum is considered and
Φ(x) and Π0(y) are evaluated at the same time.
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[8] T. De Donder, “Théorie invariantive du calcul des variations,” Gauthier-Villars, (1935).
[9] H. Weyl, “Observations on Hilbert’s Independence Theorem and Born’s Quantization of Field Equations,” Phys. Rev.

46, 505-508 (1934), doi:10.1103/PhysRev.46.505
[10] H. Weyl, “Geodesic Fields in the Calculus of Variation for Multiple Integrals,” Annals of Math. 36 (3), 607-629 (1935).
[11] J. von Rieth, “The Hamilton–Jacobi theory of De Donder and Weyl applied to some relativistic field theories,” J. Math.

Phys. 25, 1102 (1984), doi:10.1063/1.526253.
[12] P. A. M. Dirac, “Generalized Hamiltonian Dynamics,” Can. J. Math. 2, 129-148 (1950), doi:10.4153/CJM-1950-012-1.
[13] R. Loll, G. Fabiano, D. Frattulillo and F. Wagner, “Quantum Gravity in 30 Questions,” PoS CORFU2021, 316 (2022),

doi:10.22323/1.406.0316, arXiv:2206.06762 [hep-th].
[14] E. Witten, “Interacting field theory of open superstrings,” Nucl. Phys. B 276 2, 291-324 (1986), doi:10.1016/0550-

3213(86)90298-1.
[15] G. J. Zuckerman, “Action principles and global geometry,” Math. Aspects of Str. Th., 259-284 (1987).

doi:10.1142/9789812798411 0013.
[16] C. Crnkovic and E. Witten, “Covariant description of canonical formalism in geometrical theories,” in: “Three Hundred

Years of Gravitation,” 676 - 684, Cambridge University Press (1987).
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