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Abstract

Viscoelastic materials are widely utilized in engineering for their advantageous damping properties, which enable

effective energy dissipation. They are also valued for their stiffness properties, particularly in the case of suspen-

sion design. The behavior of these materials is complex, making it challenging to accurately incorporate them

into simulations. If the dependence of dynamic properties on frequency and temperature has been commonly10

investigated, other phenomena still need to be studied, as for instance nonlinear phenomena leading to changes

with the magnitude of stress/strain. Amongst them, the Payne effect, which manifests itself by a monotonous

decrease of the storage modulus, remains difficult to integrate in the simulations, and is not often characterized

experimentally for vibration purposes. An approach is proposed to identify the Payne effect by combining tests

derived from the Oberst beam set-up and numerical simulations. To take into account the uncertainties inherent15

to the experiments, the identification process is based on a Bayesian identification framework which allows to

determine the parameters and their statistical properties from a limited number of experimental measurements.

The coupling between the Bayesian identification of dynamic properties of a polymer sample and a digital twin

of the experimental set-up allows to identify the evolution of the storage modulus as a function of the strain

amplitude, as well as the confidence interval around the mean value. The application on a silicone sample20

confirmed the decrease of the modulus with the strain level, with a good confidence level. The methodology

developed here for the specific case of the Payne effect can be extended more generally to the experimental

characterisation of nonlinear behavior.
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1. Introduction25

Viscoelastic materials are commonly recognized as efficient passive damping systems, and are widely used

in engineering fields with applications ranging from automotive exhaust systems and aircraft fuselages to bio-

inspired devices [1, 2]. The viscoelastic behavior can be described by the relaxation or creep functions that

express the delay between the applied force and the displacement. The tunable mechanical properties depend on

several aspects such as the frequency range, the temperature, the preload and the strain field. This work focuses30

on the amplitude-dependence of viscoelastic materials, especially strong in polymeric materials containing fillers,

e.g. carbon black fillers.

The amplitude-dependence behavior of filled polymers is led by nonlinear mechanical features, such as

hysteresis and stress softening (Mullins effect [3]). Among these, the Payne effect [4] (also known as Fletcher-

Gent effect [5]) stands out due to its influence on the strain-dependent storage modulus of reinforced polymers,35

accounting for the decrease in storage modulus as a function of the strain rate and persists through cycles. There
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is an industrial interest in characterizing the Payne effect, since the most pronounced variations in mechanical

properties due to this phenomenon occur within a strain range commonly experienced by engineering devices

(0.1 to 50% strain [6], [7]), such as stabilization solutions for optical instruments. The origin of the Payne effect

is not clearly defined - it depends on filler-matrix interactions and changes in the micro-structure of the material40

[8, 9]-, but it is a reversible phenomenon achieved by a continuous breaking and reforming Van-der-Walls forces

between carbon black particles [10].

The viscoelastic behaviour can be characterised experimentally using different approaches, which can be

classified as quasi-static or Dynamic Mechanical Analyzer tests, measurements on a viscoanalyser, and dynamic

tests. The technique of Dynamical Mechanical Analysis (DMA) is used in [11] to investigate the nonlinear45

behavior of a viscoelastic material, and in [12, 13, 14] to investigate the Payne effect in viscoelastic materials.

Jrad and al. [14] conducted DMA tests in order to identify parameters of a nonlinear Generalized Maxwell

Model and exhibited the Payne effect. Rendek and Lion [12] performed a quasi-static harmonic tension test

on filled-reinforced rubbers by gradually changing the strain amplitude, rendering it possible to capture the

softening of the material in the time domain - tests ranged from 0.2% to 13% of strain amplitude. Although50

Rendek and Lion achieved to reach different strain amplitude levels, experimental tests demanded a very high

execution time. Luo and al. [13], in turn, employed the DMA procedure to characterize the dependence of

mechanical properties on frequencies and strain amplitudes, with emphasis on the Krauss model that was

used to capture the Payne effect. To impose larger strain amplitudes than are possible in the viscoanalyser,

facilitating then the visualization of the amplitude dependency, Luo and al. stretched the specimens under a55

prestrain of 10%. A viscoanalyzer based on the shear mode has been developed in [15] to characterize the shear

stiffness of preloaded viscoelastic materials between 200 and 3500Hz and without using frequency-temperature

equivalences and shifting the measurements to higher frequencies as commonly done with DMA measurements.

Although the device has been applied to studies of linear viscoelasticity, to the best of the authors’ knowledge it

has not given rise to applications in nonlinear viscoelasticity. Finally, METRAVIB has developed a commercial60

DMA test machine (VHF104) for high frequency testing under sinusoidal excitation up to 10 kHz and for strain

up to 30% : Syed et al. [16] conducted such high-frequency DMA tests to reconstruct the frequency response

curves of polymer-filled samples, and then extract the nonlinear strain dependence in the vicinity of resonance

frequencies. The evolution of the storage modulus as a function of strain amplitudes, however, has not been

traced. The device seems to suffer from a lack of accuracy in capturing and monitoring the strain range as65

mentioned in [17] with the proposal of a new High Frequency Dynamic Mechanical Analysis (HFDMA) test

system. From this overview of some applications involving DMA tests to characterize the Payne effect, note that

restrictions on the experimental setups (test machines and sample holder) exist, either in achieving amplitudes

that highlight the strain-dependent storage modulus, or by the time required to perform these tests. Another

experimental procedure to characterize the vibratory behavior of polymers is the ASTM E-756 Vibrating Beam70

Technique applied to the modified Oberst beam configuration [18, 19]. Simply put, the (modified) Oberst beam

consists of a multi-layer cantilever beam - the test sample is glued between aluminum or steel sheets, resulting

in a sandwich configuration. Based on input and output data, the differences between the Frequency Response

Functions (FRFs) of the sandwich structure and a uniform one are compared to retrieve the storage modulus

and the loss factor of the polymeric sample. This approach only allows the identification of these mechanical75

parameters in the vicinity of resonance frequencies, an important drawback of the methodology. Nevertheless,

several ways exist to expand the characterization range of the parameters, either by adjusting the excitation
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conditions [20], or by changing the configuration of the layers [21]. Recent contributions in the literature also

suggest the use of the Oberst beam method for inferring characteristics in vibration damping of reinforced

polymers [22, 23, 24].80

This paper proposes to use a modified Oberst beam technique to experimentally characterize the nonlinear

behavior of viscoelastic material, and in particular the evolution of the storage modulus as a function of the

strain amplitude obtained from vibration data of free response system. The reconstruction of these mechanical

properties is done by capturing the resonance frequency and damping parameters that evolve nonlinearly de-

pending on the response amplitude - a feature of the Payne’s effect. To the best of our knowledge, this is the85

first contribution that exploits the Oberst beam to characterize the nonlinear dependency of storage modulus

on strain amplitudes due to the Payne effect.

In this work, the first bending mode of the Oberst beam is at the center of the analysis, since it is responsible

for the largest strain amplitudes on the polymeric specimen. To track the nonlinear evolution of resonance decay

responses data, the sliding least-squares method is considered. The key idea is to measure the backbone curves90

from free responses and thereafter relate these to a stochastic parametric model. Similar approaches to the one

adopted are reported in experimental applications involving vibration absorbers [25, 26], mechanical systems

with geometric nonlinearities [27], and assembled structures [28, 29, 30]. When considering the Oberst beam,

however, estimating backbone curves from resonance decay responses with nonlinear parametric approximations

lack contributions.95

Toward this background, the identification scheme here proposed to obtain the storage modulus as function

of strain amplitudes includes, firstly, the estimation of the instantaneous resonant frequency and the damping

for free responses measured from independent experimental realizations. A stochastic model is put forward

to reconstruct the backbone curves and then the Markov-Chain Monte Carlo algorithm is used to update

the probability density functions of each random variable based on the Bayesian inference. This step in the100

identification procedure is done to ensure that the model takes into account uncertainties in the experimental

data related to the variability of the measurement process. Bearing mind that the strain on the polymeric

material cannot be directly measured during vibration tests, a digital-twin formulated as a 2D finite element

model of the Oberst beam is proposed to infer information about the mechanical properties of the material.

Apart from being useful for experiment design, the digital twin is the main modification to the original Oberst105

beam technique, since it is no longer necessary to use a uniform beam. Having numerical data cross-correlated

with experimental measurements, uncertainties are propagated on the storage modulus and the Payne effect is

characterized with probabilistic confidence intervals.

For covering all these steps, the work is divided as follows: section 2 introduces the Oberst Beam, the

experimental setup, and the sliding least-squares method to obtain the free responses of the structure. Section110

3 is dedicated to describing the identification methodology. Next, section 4 presents an application of the

identification framework to a numerical case, where the frequency and damping backbones of a nonlinear

oscillator are extracted from free responses. The application to the experimental case of the Oberst beam is

described in section 5. This section presents the stochastic models derived from the Bayesian approach adopted

for the backbone identification problem. Section 6 introduces the digital-twin of the Oberst beam and discusses115

the presence of the Payne effect on the polymeric specimen. Concluding remarks and trends for future research

are presented in section 7.
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2. Oberst Beam Experimental Technique

2.1. Experimental setup

The Oberst beam consists of a base beam that provides the necessary stiffness, associated to a damping120

layer. Fig. 1(a) presents the configuration used for the experiments, with the presence of the SI965 silicone

sample glued between two metallic skins. The beam is a sandwich structure with two stainless steel plates of

length 0.146m, width 0.03m, and thickness 0.001m, the polymer sample is glued at one end and has dimensions

0.05m×0.03m×0.0025m. The beam is clamped at the other end and subjected to free vibrations: an initial

displacement is applied at the free end using a nylon wire of negligible mass, a set of standard masses consisting125

in cylindrical weights between 0.5 kg and 1 kg, and a pulley (Fig. 1 (b)). The wire is cut and the free vibratory

response is recorded by an accelerometer. Fig. 2 shows a raw acceleration measurement: the free oscillatory

motion mainly corresponds to the first bending mode, whereas the amplitude of this movement decreases slowly

until the system reaches its final equilibrium state.
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Fig. 1: Experimental set-up used for the Payne effect characterization : (a) Oberst beam and the experimental apparatus, (b)
Schematic representation of the methodology used to obtain the free responses.
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Fig. 2: Example of a raw acceleration signal.
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2.2. Identification of the instantaneous damping and frequency130

The acceleration signal is post-processed to identify the dynamic properties of the structure. The whole

process for identification is detailed in Appendix A. After post-processing of the measured data, the instanta-

neous evolution of damping and frequency is estimated using the sliding least-squares method and minimizing

the objective function Fobj ,

Fobj = min
ω0,ξ

n∑
i=1

(q(ti; ξ, ω0)− qexp(ti))
2
, (1)

where q(ti; ξ, ω0) represents the analytical form of the displacement given in Appendix A Eq.A.2 and it is

written as function of instantaneous damping ξ and frequency ω0; ti denote the time steps included in the

period [t; t + dt] that composes the sliding window; qexp represents the experimental displacement extracted

from the oscillatory response.

Fig. 3 presents the evolution of the instantaneous frequency and damping for the Oberst beam. Edge effects135

can be observed due to the least-squares method, but the identified signals contain enough information for a

large post-processing. The results confirm the softening dynamic behavior of the structure as a function of the

displacement amplitude. This phenomenon is due to the Payne effect linked to the presence of the charged

silicone sample SI965. Because of it, the dynamic behavior of the beam depends on the strain rate of the

polymer. Section 6 discusses in detail the characterization of the Payne effect as function of the strain rate of140

the polymeric sample.

Fig. 3: Evolution of the identified instantaneous frequency and damping for the first mode of the Oberst beam

3. Bayesian Model Identification

The primary objective of this section is to establish a versatile framework for characterizing viscoelastic

materials using the modified Oberst beam technique. This approach allows for broader applicability, extending

its utility even to scenarios involving more complex material laws. The identification framework encompasses145

three crucial steps: model selection, sensitivity analysis, and Bayesian parameter updating. Initially, the focus

lies on identifying models capable of effectively describing the relevant quantities extracted from experimental

responses. These numerical models serve as a means to establish the relationship between these variables and

the mechanical properties of the elastomer, as well as the deformation amplitude. Once appropriate candidate

models have been selected, the subsequent step involves assessing the influence of their parameters on the150

overall outputs. This is achieved through sensitivity analysis, utilizing Sobol indices. The objective of this
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analysis is to narrow down the design space and facilitate subsequent uncertainty quantification, particularly in

the context of inverse assessment involving model and parameter uncertainties. Lastly, the parameter updating

problem is addressed within the Bayesian framework. This comprehensive approach to the identification scheme

is thoroughly discussed and examined throughout this section.155

3.1. Model selection

Since the instantaneous variations of the parameters of interest are extracted from the free response for

different ranges of initial conditions, the work focuses on identifying mathematical models and their respective

parameters that are able to represent relevant physical aspects observed experimentally. This identification

process could be summarized as a classical data-driven regression problem, where a nonlinear basis functions is160

proposed and the parameter estimation is obtained by the classical least-squares method, as performed by [27].

However, in this work, the nonlinear basis for describing frequency and damping as a function of displacement

- the so-called backbone curves - is assumed to be unknown, and as alternative, the strategy chosen here is

to adopt a set of candidate nonlinear functions. Without loss of generality, consider the following regression

problem:165

y = ΘX + ε (2)

where y ∈ IRN is a vector containing the quantity of interest, X ∈ IRN×p represents the design matrix of

arbitrary nonlinear basis functions which are responsible for transforming an input (in this work, the input is

considered as the envelope of the displacement Q(t) ∈ IRN ), and Θ ∈ IRp is formed by coefficients corresponding

to each nonlinearity; ε ∈ IRN represents the inherent randomness in the noisy observations. For the problems

here addressed, there are more data samples than candidate functions, thus N ≫ p.170

To make the regression problem presented in Eq. (2) valid for estimating the damping and instantaneous

frequency, the hypothesis assumed is that the backbone curves, which give insight into the nonlinear behavior

of dynamical systems, can be adequately approximated by the decaying envelope of the system.

Note that X can be constructed from a wide candidate space, ranging from polynomial functions to trigono-

metric ones [31]. If this problem is treated in a classical regression framework, the coefficients corresponding175

to each nonlinear term in the candidate library will have a non-zero contribution to the approximation. This

approach can lead to a number of drawbacks in the identification process, such as inclusion of terms that do not

necessarily represent observations seen experimentally; render the parameter estimation procedure numerically

unstable for a large set of candidates; cause model overfitting. For equation discovery in the context of nonlinear

dynamical systems, the alternative that has recently been evoked in the literature lies in using the sparse regres-180

sion algorithm [31] and different variations of the same approach [32, 33]. Also noteworthy is the least absolute

shrinkage and selection operator (LASSO) method, which introduces regularization by incorporating a penalty

term into the regression equation [34]. In these methodologies, the primary objective remains consistent: to

induce sparsity over the parameter vector Θ, resulting in only a few non-zero terms, but capable to define the

relevant physics. The efficiency of these methods depends directly on the proper choice of the hyperparameters185

that are responsible for the sparsity.

With respect to the mentioned works, this paper considers a simpler and still effective way to deal with

the regression problem. Consider the following candidate basis vector constructed on a polynomial form to
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represent the quantity of interest y:

P(Q) =
[
Q0(t) Q1(t) . . . Qn(t)

]
, (3)

for the candidate basis P(Q), X is constructed for all possible combinations of the candidates space. Thus, the

estimation of the coefficients is performed using the classical least-squares method:

Θ̂ =
(
X TX

)−1 X Ty, (4)

where Θ̂ denotes the deterministic estimation of model parameters. To assist in the process of selecting the

model that best fits the experimental data while avoiding overparametrization, two statistical tools commonly

used in data-driven modeling are employed. The first is the k−fold cross-validation (CV), which consists of

randomly dividing the data into k sets, such that k−1 subsamples are used for training and the k left is used for190

validation. This process is repeated k times until all data have been equally used for training and validation. At

the end, the mean-square error (MSE) between each model and the experimental data is estimated considering

only the validation folds.

Having the MSE, the Akaike information criterion (AIC) is then used to verify which model offers the best

trade-off between the fit score and complexity, thus reducing the overparameterization risk.195

Sensitivity Analysis

After appropriate model selection, the sensitivity analysis is put forward to quantify the influence that coef-

ficients have on the output. Those whose variability results in relatively small influence on the predictive ability

of the model are considered as determined quantities, and their values are assigned based on the deterministic

estimation conducted by the least-squares method. The global sensitivity analysis is carried out by means of200

the Sobol indices that are, in turn, calculated by the Polynomial-Chaos Expansion (PCE). The procedure is

performed with UQLab framework [35], and further details of the methodology are available in [36].

Once this study is realized, it then becomes possible to perform the Bayesian inference, where the remaining

model coefficients are calibrated to increase the predictive ability to forecast the relevant physical behavior of

the real system in the presence of data uncertainties. This approach renders the model stochastic.205

Bayesian inference framework

Bayesian inference is used in this work to increase the statistical information about the system response

based on prior knowledge. The model coefficients Θ are assumed to be random variables, and the experimental

observations D ≡ y are also random. Thus, considering that fluctuations in the system’s response are related

to the measurement process, the Eq. (2) is described as:

D = DM(Θ) + ε, (5)

where DM(Θ) corresponds to the model predictions given a set of parameters Θ, and ε ∼ N (0, Iσ2
ε) is a

random noise vector ε ∈ IRN with covariance Iσ2
ε , where I is the identity matrix, i.e., it is assumed an additive

decorrelated Gaussian noise.
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Considering unknown variance σ2
ε and model parameters Θ, a prior probability density function (PDF)

π(Θ, σ2
ε) is assigned to the random vectors considering only the knowledge degree about Θ and σ2

ε before new

evidences. The Bayesian framework is then used to update the prior PDF of the numerical model parameters

based on the data from the system of interest. The Bayes’ rule of conditional probability to infer the posterior

PDF is given by:

π(Θ, σ2
ε |D) =

π(D|Θ, σ2
ε)π(Θ, σ2

ε)

π(D)
, (6)

where π(Θ, σ2
ε |D) is the updated posterior probability given the system observations D, π(D|Θ) is the likelihood210

function, π(Θ, σ2
ε) is the prior probability density function containing knowledge for candidate model parame-

ters, and the error variance. Note that the initial information that constitutes the prior PDF is given by the de-

terministic values Θ̂ found during the model selection step. In addition, considerations are made: the term π(D)

is a normalizing constant that ensures π(Θ, σ2
ε |D) as a probability density function with integral equal to unity;

π(Θ, σ2
ε) follows a non-informative Uniform distribution π(Θ, σ2

ε) ∼ U
(
(1−∆){Θ̂, σ2

ε}T , (1 +∆){Θ̂, σ2
ε}T

)
. In215

this scenario, Eq. (6) is simplified into π(Θ, σ2
ε |D) ∝ π(D|Θ, σ2

ε), i.e., the updated posterior PDF is proportional

to the likelihood distribution.

With this in mind, efforts to determine the posterior distribution concentrate on estimating the likelihood

function. Thus, based on Eq. (5) and the assumptions outlined above, its analytical expression is defined as:

π(D|Θ, σ2
ε) ∝ exp

(
−1

2

(
D −DM(Θ)

)T (D −DM(Θ)
)

σ2
ε

)
. (7)

The Bayesian framework provides all the theoretical elements needed to evaluate the likelihood function.

This task can become non-trivial, especially when a combination of parameters with different distributions are

sampled simultaneously. In this work, we adopted the strategy of sampling the posterior function numerically by220

means of the Markov Chain Monte Carlo (MCMC)/Metropolis-Hastings algorithm which is a popular method

which could be applied for complex models without analytically tractable posterior distribution. However, it is

interesting to note that analytical solutions exist for the case studied here. They are presented in the appendix

Appendix B to confirm the validity of the results obtained by MCMC. The random variables Θ and σ2
ε are

limited to the interval [{Θmin, (σ
2
ε)min}T , {Θmax, (σ

2
ε)max}T ], whose current state is symmetrically normalized225

as Θ′ = (1 − x)Θmin + xΘmax and (σ2
ε)

′ = (1 − x)(σ2
ε)min + x(σ2

ε)max ; x is a random variable ∈ [0, 1] that

represents generated candidates for the posterior distribution. These candidates are sampled from a normal

distribution with standard deviation σp, such that this hyperparameter is adjusted to obtain an acceptance rate

of candidates 40 ∼ 50 %. Only 90% of the Monte Carlo simulations ns are considered in the final stationary

Markov chain (burn-in of 10%).230

4. Numerical Application

Before proceeding with the proposed methodology on experimental data, this section is dedicated to illustrate

the main aspects discussed up to this point in a numerical application. In particular, focus will be given to

the applicability of the sliding least-squares method for extracting instantaneous frequency and damping, and

the model selection procedure. Since this is only a numerical application, the sensitivity analysis and Bayesian235

inference steps will be covered directly on the experimental application of the Oberst beam.
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The motion equation of the nonlinear system examined here is given by:

mq̈(t) + c1q̇(t) + k1q(t) + c2|q̇(t)|q̇(t) + k3q
3(t) = f(t) (8)

where m [kg] is the mass, c1 [Ns/m] is the viscous damping, k1 [N/m] is the linear stiffness, c2 [Ns2/m2]

is the quadratic damping coefficient and k3 [N/m3] is the cubic stiffness. Overdots represent displacement

differentiation with respect to time, and f(t) is an applied force. Table 1 presents the numerical values of the

coefficients used for this application. To better emulate a real application, it was added to the system response,240

in all simulated situations, a Gaussian noise to have a signal to noise ratio (SNR) of 40 dB.

Table 1: Nonlinear system parameters.

m [kg] c1 [Ns/m] k1 [N/m] c2 [Ns2/m2] k3 [N/m3]
1.5 4 6 × 103 10 1 × 107

When a large initial vibration amplitude is applied, the free response decays and the vibration regime follows

the backbone curve [37, 25]. This is the reason behind the approach adopted by this paper, dealing directly with

the backbone curves instead of investigating the analytical solution of the free response to estimate the system

parameters. For deriving the analytical expressions of the backbone curves, the Harmonic Balance method [38]

is applied on Eq. (8). Considering a harmonic force f(t) = F sin(ω0t− ϕ) and the first-order approximation of

the system’s response lead to:

ω2
0 =

k1
m

+
3

4

k3
m

Q2(t) ⇒ ω2
0 = ω2

n + αQ2(t), (9)

where ωn =
√

k1/m is the natural frequency when considering the linear system, and

ξ =
c1

2mω0
+

8

3

c2ωn

πmω0
Q(t) ⇒ ξ = ξ0(ω0) + λ(ω0)Q(t). (10)

Note that both expressions, Eqs. (9)-(10), are rewritten in the form of a regression problem, where α and

λ are coefficients related to frequency and damping, respectively. Therefore, for the nonlinearity investigated

in this numerical application, the frequency can be obtained directly from the measured response envelope of

the system under analysis, without interference or participation of damping. On the other hand, in order to245

estimate the damping, it is necessary to take into account the frequency dependency.

The free response of the system described by Eq. (8) was obtained considering different initial conditions

and f(t) = 0, from 0.5 to 10 mm sampled every 0.5 mm. The Newmark method is used to time integrate

the motion equation, considering a sampling frequency of 4096 Hz. Fig. 4 illustrates an observation of the

acceleration obtained from the system for an initial condition of 10 mm. From this raw acceleration signal, the250

sliding least-squares algorithm (see Appendix A) is applied.

Fig. 5 depicts the displacement obtained by the numerical integration scheme applied on the acceleration

data from Fig. 4. To obtain this curve, the DC term was removed. Nevertheless, there was no need to apply

the EMD method, since the data observed in this section only concern the single-degree-of-freedom nonlinear

oscillator. In addition to the displacement, the figure also shows the reconstructed displacement, as well as the255

response envelope that will later be used to build the backbone curves. Note that this figure only illustrates
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Fig. 4: Acceleration response obtained through numerical integration of the equation of motion (8).

the results for an initial condition of 10 mm. For the model selection and parameter calibration step, all data

generated for the 20 initial conditions will be used, even if for small displacements the system presents linear

behavior, i.e., nonlinearity is not activated. This strategy was adopted because, in a real application case, it is

not possible to know exactly from which initial condition the system will exhibit nonlinear behavior - therefore,260

all conditions must be used during identification to ensure that no information is lost.

(a)

(b)

Fig. 5: Data extraction performed by the sliding least-squares method applied on the nonlinear numerical model. Top figure:
is the response envelope, is the noisy raw displacement and −− represents the reconstructed displacement. Bottom figure:
is the instantaneous frequency, whereas represents the damping.

Fig. 5 (b) shows the variations of the instantaneous frequency and damping as a function of time obtained

using the sliding least-squares method. One can observe the hardening effect in the frequency plot as a result of

the nonlinear stiffness term, marked by an increase in the system frequency for large displacement amplitudes.

A similar increase in damping behavior can also be noted. Worthy of note the sudden drop of these values in265

the very first instants of time. During these first instants, the displacement amplitude drops very quickly as
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the level of damping in the polymer is high (a few %). The high displacements are reached for each test before

the end of the first period, such that the identification methodology based on a window representing a period

does not allow capturing them. Thus, even adjusting the size of the sliding window, the high damping of the

system causes edge effects to exist on the extracted quantities. Similar effects are also found when the Hilbert270

transform is used to analyze the free vibration of systems that have high damping values [39].

As the free response fades away, notably from the 1.5 second time instant on, these quantities of interest begin

to show pronounced noise in their estimates. To reduce the influence of these deviations on the identification

process, only the initial 50% of all available samples are considered.

Once the entire data post-processing is completed, the model selection step is carried out. The following

polynomial basis is considered as candidate to generate models for both, damping and frequency:

P(Q) =
[
Q0(t) Q1/3(t) Q2/3(t) Q1(t) Q4/3(t) Q5/3(t) Q2(t)

]
, (11)

such that the models of the variables of interest considering all possible terms, i.e. X = P(Q), are given by:275

ω0 =
[
ωnf

δf βf λf κf γf αf

]︸ ︷︷ ︸
=Θf

X (12)

ξ = [ξ0d(ω0) δd(ω0) βd(ω0) λd(ω0) κd(ω0) γd(ω0) αd(ω0)]︸ ︷︷ ︸
=Θd

X , (13)

where Θf and Θd correspond to the frequency and damping coefficients, respectively. As previously mentioned,

the goal of the model selection step is to test all possible parameter combinations, and in the end, to determine

which model is most cost-effective between fit value and complexity. For this, five-fold CV strategy was used,

i.e. 16 free response data were randomly used for training and the remaining 4 for validation - the procedure

was performed 5 times such that all data were used for training and validation.280

Table 2 presents the three models that showed the best AIC metric values for the regression on the instan-

taneous frequency values. Note that the best model obtained by the selection algorithm, i.e. the one with the

lowest AIC value, is in fact equal to the model described in Eq. (9). The values of the coefficients obtained by

the regression method are ω2
nf

= 4000 rad2/s2 and αf = 4.85×106 N/(m3kg), whereas the analytical values are

ω2
n = 4000 rad2/s2 and α = 5 × 106 N/(m3kg), which represents a difference of ∼ 3% over the value obtained285

for the nonlinear coefficient. Fig. 6 shows a comparison between the identified frequency backbone curve, the

analytical one, as well as the extracted backbone for an initial condition of 10 mm. The identified frequency

backbone is able to reproduce, with good accuracy, the curve extracted by the sliding least-squares method,

except for amplitude values close to 10 mm, which is expected due to the presence of edge effects.

Table 2: Models obtained for regression on the instantaneous frequency (numerical application) and their respective AIC values.

Model AIC
ω2
0 = ω2

nf
+ αfQ2(t) 25.51

ω2
0 = ω2

nf
+ βfQ2/3(t) + αfQ2(t) 33.45

ω2
0 = ω2

nf
+ δfQ1/3(t) + αfQ2(t) 33.50

Once the model identification for instantaneous frequency has been conducted, it is now possible to perform290

the regression for damping. Table 3 presents the three models that showed the best AIC metric values for the
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Fig. 6: Comparison of the identified frequency backbone with respect to the curve extracted by the sliding least-squares method.

regression on the damping values. Again, the model found that best represents the available data corresponds

to the analytical damping model presented in Eq. (10). The values of the estimated coefficients without the

normalization by the ω0 term are ξ0d = 1.31 and λd = 184.41, whereas the analytical values are ξ0 = 1.33 and

λ = 178.95, which represents a difference of ∼ 3.6% over the value obtained for the nonlinear coefficient. The295

comparison between the damping backbone identified, the analytical response and the curve extracted by the

sliding least-squares method is shown in Fig. 3. The results obtained indicate that the damping model is able

to represent the numerical values in good agreement, except in the region around 10 mm, again due to the

presence of the edge effects mentioned earlier.

Table 3: Models obtained for regression on damping (numerical application) and their respective AIC values.

Model AIC
ξ = ξ0d(ω0) + λd(ω0)Q(t) 212.11
ξ = ξ0d(ω0) + λd(ω0)Q(t) + κd(ω0)Q4/3(t) 216.24
ξ = ξ0d(ω0) + λd(ω0)Q(t) + αd(ω0)Q2(t) 216.82

Fig. 7: Comparison of the identified damping backbone with respect to the curve extracted by the sliding least-squares method.

Overall, the results discussed throughout this section indicate that the proposed methodology is capable of300

handling the estimation of the damping and instantaneous frequency backbone curves from the free response of

a nonlinear system. The next section deals with assessing the feasibility of the identification algorithm on an

experimental application.
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5. On the Stochastic Parameter Calibration of the Oberst Beam

5.1. Frequency backbone calibration305

Since the free response data acquired from the Oberst beam were previously presented during section 2,

this section is entirely devoted to the model calibration procedure for instantaneous frequency and damping

variables. Fig. 8 illustrates the free displacement response of the beam for an initial amplitude of 8.5 mm, as well

as the reconstructed output and its envelope. To minimize the importance of edge effects on the identification

methodology, only the first 80% of the time response is considered. A total of 20 experimental responses were310

obtained from the Oberst beam with initial conditions ranging from 1 to 8.5 mm.

Fig. 8: Data extraction performed by the sliding least-squares method applied on the Oberst beam. This free response is obtained
for an initial condition of 8.5 mm.

The polynomial basis used for the experimental application is the same as described by Eq. (11). As with the

numerical application, the 5-fold CV strategy was used. In this context, Table. 4 presents the three frequency

regression models that have the best performance on the AIC values. Note that the model that shows satisfactory

predictive ability for the frequency data is the one that contains the fewest terms, ω2
0 = ω2

nf
+ δfQ1/3(t). Thus,315

this is the model chosen to proceed with the calibration procedure on its parameters.

Table 4: Models obtained after regression on instantaneous frequency data (experimental measurements) and their respective AIC
values.

Model AIC

Mf
1 : ω2

0 = ω2
nf

+ δfQ1/3(t) 36.76

Mf
2 : ω2

0 = ω2
nf

+ δfQ1/3(t) + γfQ5/3(t) 43.64

Mf
3 : ω2

0 = ω2
nf

+ δfQ1/3(t) + αfQ2(t) 43.72

Then, global sensitivity analysis is performed to assess which parameters have most influence on the model

Mf
1 response. It is assumed that each parameter follows a Uniform distribution U

(
a, b
)
, with a = (1 −∆) its

minimum and b = (1 + ∆) its maximum value, whereas ∆ = 10%. The supports are determined based on the

deterministic values Θ̂ obtained after the model selection step. The supports are indicated in Table 5.320

Table 5: Uniform prior distribution U(a, b) of the model Mf
1 parameters for global sensitivity analysis.

Support ωnf
[rad/s] δf×105 [N/(m3kg)]

a 344.67 -2.9103
b 381.05 -2.3811
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The total and partial variances of each parameter were calculated based on Monte-Carlo simulations, since

only two parameters are being evaluated. Fig. 9 depicts the total and first-order Sobol’ indices. These results

lead to conclusions: parameter ωnf
has considerable influence on the model Mf

1 , whereas varying the parameter

δf within its adopted support has little influence on the model’s predictive ability. For this reason, the parameter

δf is considered as a determined quantity and its value is set to δf = −2.6457× 105. In contrast, the variability325

of the parameter ωnf
requires attention, and its posterior distribution is calibrated using the Bayesian inference

framework.

Fig. 9: Prior global sensitivity analysis. Total and first order Sobol’ indices of parameters ωn0 and δf .

In addition to ωnf
, the variance σ2

ε is also considered as a random parameter and its values are adjusted with

the MCMC/Metropolis-Hastings algorithm. For both parameters, the prior distribution is assumed Uniform,

such that the supports for ωnf
remain as those indicated by Table 5, and σ2

ε ∼ U
(
5×10−4, 2×10−3

)
. A Markov330

chain containing ns = 1200 samples was generated (burn-in of 10 %). Then, the random walk step σp was fixed

to 0.07 (acceptance rate of ≈ 45%). These results also ensured the convergence of the chain.

Importantly, for Bayesian calibration, 16 free response data for different initial conditions were considered,

whereas the remaining 4 are used for validation of the stochastic model.

Figs. 10(a)-(b) show the prior and posterior PDFs of ωn0
1 and σ2

ε , respectively. Statistical aspects of both335

distributions are present in Table 6, which includes the MAP and mean µ values for each PDF from Fig. 10,

in addition to the deterministic result Θ̂ for ωn0 obtained in the previous step. Note that both the MAP and

the mean mean µ are close to the deterministic estimate obtained by least-squares method, indicating that the

approach adopted by this work to propose prior distributions is adequate.

To quantify how much information is lost if knowledge was based only on the prior distribution, the Kullback-340

Leibler (KL) divergence is calculated and the results are also included in this table. The divergence values are

around Dkl(posterior||prior) ≈ 0.875 for ωn0
, and ≈ 0.156 for σ2

ε , indicating that posterior PDFs have added

a considerable amount of information, especially for the first parameter, in comparison with the Uniform ones.

For measuring the dispersion of distributions, another useful statistical measure is the coefficient of variation

(CoV) related to each parameter: the CoV for the frequency parameter is less than 1%, whereas for σ2
ε the345

value is around 10%, indicating that there is greater uncertainty about the estimation of this parameter. With

respect to the shape of these PDFs, for ωn0
, an unimodal PDF was identified, being concentrated around this

unique mode; PDF of σ2
ε , in turn, resulted in a bimodal distribution.

1To bring physical insight into the values of this parameter, the distributions are shown considering the unit as [Hz] instead of
[rad/s].
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Fig. 11 presents the frequency backbone curves obtained by the calibrated model with confidence intervals

with respect to experimental measurements for four different initial conditions. These curves indicate that350

the regression model obtained is valid and able to reproduce the experimental backbones within its confidence

intervals. The nonlinear softening effect is also well captured by the numerical model due to the negative δf

coefficient. Note that the data used for validation were not considered during the Bayesian updating.

(a) PDF of ωn0 (b) PDF of σ2
ε

Fig. 10: PDFs of the random variables ωn0 and σ2
ε . −− is the prior, the posterior and represents the MAP value.

Table 6: MAP estimator, mean value µ, initial estimate Θ̂, Kullback-Leibler divergence and CoV for each random variable of the
frequency model.

Parameter MAP µ Θ̂ Dkl(posterior||prior) CoV [%]
ω0n 363.29 (57.82 Hz) 363.45 (57.84 Hz) 363.31(57.82 Hz) 0.875 0.28
σ2
ε 1.99× 10−3 1.77× 10−3 - 0.156 10.5

Fig. 11: Frequency backbone curves considering different initial conditions.

5.2. Damping backbone calibration

Having the frequency model established, the next step is to select the most appropriate model to reproduce355

the experimental damping curves. Once again, the polynomial basis described by Eq. (11) is used to generate

candidate models. Table 7 presents the models2 obtained after regression on damping data. Note that selecting

2To simplify the notation, the frequency dependence is not included in this table.
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among these models based only on AIC values is not recommended, since considering only deterministic estimates

of their parameters, the three models deliver nearly the same performance. Thus, to prevent the identification

process from suffering bias, all models are calibrated by the Bayesian framework.360

Table 7: Models obtained after regression on damping data (experimental measurements) and their respective AIC values.

Model AIC

Md
1 : ξ = ξ0d + λdQ(t) + κdQ4/3(t) + γdQ5/3(t) + αdQ2(t) 192.59

Md
2 : ξ = ξ0d + βdQ2/3(t) + κdQ4/3(t) + γdQ5/3(t) + αdQ2(t) 193.00

Md
3 : ξ = ξ0d + βdQ2/3(t) + λdQ(t) + κdQ4/3(t) 193.12

Before proceeding to the MCMC/Metropolis-Hastings algorithm, sensitivity analysis is carried out to evalu-

ate the most influential parameters that consequently require calibration. For each model, a Uniform distribution

U
(
a, b
)
is assigned to each of its parameters based on the estimation obtained by the least-squares method, such

that ∆ = 10% was employed. Fig. 12 shows the Sobol indices of the models’ parameters. Although some of the

parameters are present in more than one model, their influence is not the same, as is the case for the parame-365

ter κd. For models Md
1 and Md

2 , this parameter has high total Sobol indices, around 0.82 and 0.76 respectively,

and is therefore considered as a parameter that requires attention and, for both cases, needs to be calibrated by

the Bayesian inference. On the other hand, note that this same parameter is also present in model Md
3 with a

total index of 0.21, i.e., it can be considered as a determinate variable for this model. The responsible for such

variations is the structure of the models, such that the weight of the parameter is impacted by the other terms370

present in the polynomial approximation. In this work, all parameters with Sobol index greater than 0.25 have

their posterior probability distributions estimated by the Bayesian inference, whereas the others are taken as

determinate variables with values set to the estimate found by the least-squares method. Note that the term

‘determinate variables’ is employed to denote those parameters with low influence on the system’s output, as

determined through sensitivity analysis, and does not necessarily imply deterministic variables.375

(a) Model Md
1. (b) Model Md

2. (c) Model Md
3.

Fig. 12: Prior global sensitivity analysis performed on three model candidates for damping.

Fig. 13 shows the probability distribution function marginal likelihood derived from the mean absolute

scaled error between each candidate model and experimental data. The Bayesian approach to model selection

reveals its benefits: note that the marginal likelihood for the simplest model with relatively fewer parameters

has higher values than for the most complex models. In general, the more complex models are able to replicate

a larger amount of data. However, since the marginal likelihood must be normalized, they are penalized in the380

region where all models are able to replicate the same data, showing smaller values of the marginal likelihood

with a wider shape. Green and Worden [40] provided an insightful discussion on this subject. For each model,
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a Markov chain containing ns = 2000 samples was generated (burn-in of 10 %) and the acceptance rate was

adjusted around 40%, ensuring convergence of the chains.

Fig. 13: Marginal likelihood derived from the mean absolute scaled error between models and experimental data.

From the PDFs presented in Fig. 13, the Bayesian Information Criterion (BIC) was estimated to provide385

quantitative evidence about the model structures and its values are shown in Table 8. It is important to point

out that the quantity calculated by BIC is different from that obtained by AIC, and their scores for the case

investigated in this work are inversely proportional, which means that AIC prioritized models with a greater

fit to the data. The BIC penalizes the model more for its complexity, i.e., more complex models have higher

scores. Therefore, from the marginal likelihood and the values obtained by the BIC score, the model selected390

to describe the damping data is model Md
3. Note that among the candidate models, the selected one presents

less complexity in terms of the number of coefficients. Moreover, considering only the training data, the mean

absolute scaled error for Md
3 is 5.44%.

Table 8: BIC scores for each model candidate.

Model BIC
Md

1 161.95
Md

2 157.52
Md

3 145.68

Figs. 14(a), (b) and (c) depict the prior and posterior PDFs of βd, λd and σ2
ε , respectively. Table 9 concen-

trates the main statistical metrics extracted from these distributions. Once again, the MAP and mean values395

obtained after Bayesian inference are close to those estimated by the least-squares method. It is noteworthy

that, among all the parameters, the one that obtained he one that obtained more information regarding its prior

distribution is the parameter σ2
ε , although it is also the estimate with the highest uncertainty. Proposing sup-

ports for this parameter can be challenging, and involves expertise. If high values for the support are adopted,

the model obtained may become more uncertain (this parameter is associated with the error dispersion in the400

model, see Eq. (5) and with wider confidence intervals.

Since the estimation for the damping backbone involves the presence of more than one model coefficient in

the calibration process of the posteriors, it is desirable to evaluate the existence or not of correlation between

parameters. Fig. 15 shows the Pearson’s correlation coefficient for λd and βd. Bearing in mind that this

coefficient can assume values from -1 (inversely correlated) to 1 (correlated), where 0 indicates there is no405

correlation, it can be seen that none of the model coefficients are correlated with σ2
ε , and that between them,
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(a) PDF of βd. (b) PDF of λd. (c) PDF of σ2
ε .

Fig. 14: PDFs of the random variables βd, λd and σ2
ε . −− is the prior, the posterior and represents the MAP value.

Table 9: MAP estimator, mean value µ, initial estimate Θ̂, Kullback-Leibler divergence and CoV for each random variable of the
damping model.

Parameter MAP µ Θ̂ Dkl(posterior||prior) CoV [%]
βd 6117.8 6119.1 6116.8 0.16 2.11
λd -58237 -58262 -58294 0.13 1.68
σ2
ε 3.94× 10−3 3.51× 10−3 - 0.30 10.29

the correlation is low.

Fig. 15: Correlation plot for βd and λd parameters based on the Pearson coefficient. Results indicate low correlation between
parameters

Fig. 16 shows the damping backbone curves obtained by the model and their respective 99% confidence

intervals for different initial conditions. The results indicate that the model predictions accommodate the

experimental measurements. However, the model is not able to reproduce the drop seen in the damping values410

- the model mean does not fully represent the observed physical behavior.
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Fig. 16: Damping backbone curves considering different initial conditions.

6. Identification of the Payne Effect using Bayesian Identification

The Payne effect identification process combines the Bayesian identification results presented in section 5,

and a numerical twin of the experimental set-up. The complete process is detailed in Fig. 18, and it is based

on both the experimental set-up 1 as well as the digital model of this set-up 2 . The main steps indicated in415

the text as • can be positioned on this figure.

6.1. Experimental Set-up 1

The experimental frequency backbones identified in section 5, and presented in Fig. 6, are used to quantify

the frequencies fexp 3 in the free vibratory response of the polymer. The frequency band is placed 46Hz and

56Hz.420

6.2. Digital Twin 2

The digital twin is a 2D Finite Element-based model of the experimental set-up built in COMSOL Multi-

physics ®(Fig.17). This 2D model assumes plane stress and incorporates two metallic skin plates, the polymer

sample; the clamper base and the accelerometer are also modelled for a better representation of the test con-

figuration. The metallic skins are made of stainless steel, with properties of E = 210GPa for the elastic Young425

modulus, ν = 0.29 for the Poisson ratio and 7800 kg/m3 for the density. The viscoelastic polymer sample is

represented with an unknown storage modulus ranging from 4MPa to 30MPa and a loss factor of 0.49. The

variations of the loss factor estimated from the experimental identification have been taken into account (Fig.

7), but the results show that these variations lead to a frequency variation of less than 0.06 %. The rest of the

work was therefore conducted on the basis of modulus variations only. A prescribed displacement is imposed430

on the clamper.

A parametric modal analysis carried out on the digital twin, varying the storage modulus of the polymer

material, allows to estimate the evolution of the first natural frequency as a function of the modulus. By

inverting the curve, the digital model thus enables the determination of how the modulus evolves with respect435

to frequency 4 .
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Fig. 17: The digital twin model is a 2D Finite Element model under the plane stress assumption.

6.3. Combination of experiments and numerical results for identification of the Payne effect

After identifying the frequency range of interest 3 , and having the evolution of the storage modulus with

frequency known 4 , both are combined to estimate the evolution of the storage modulus on the frequency range

of interest E(fexp). For each value of the storage modulus E, an initial displacement Dispnum is applied in the

y-direction, allowing for the computation of constant shear strains Strainnum within the sample, facilitated by

the digital twin model. The homogeneity of the shear strains in the sample is numerically validated, ensuring

its accuracy. These quantities are used to create a ratio R, defined as

R(E) =
Strainnum(E)

Dispnum(E)
. (14)
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Fig. 18: Process for the identification of the Payne effect.

By leveraging this ratio alongside the experimentally measured displacement, it becomes feasible to estimate

deformations Strainexp occurring within the characterized sample 5 .

As the estimation of the experimental strain is done for different values of the storage modulus, the link440

between these quantities is established.The obtained dependency of the storage modulus on the shear strain

rate, known as the Payne effect, is illustrated in Fig. 20. The Bayesian identification conducted to estimate

the experimental frequencies enables the quantification of both the mean value and the standard deviation, or

a99% confidence interval, for the Payne effect. The results obtained demonstrate a high confidence level with a

narrow confidence interval centered around the mean value.445
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Fig. 19: Evolution of the Storage Modulus of the sample with the first eigenfrequency, from the digital twin of the experimental
setup.

Fig. 20: Identification of the Payne effect
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7. Final Remarks

This research work aims to propose an approach to quantify the Payne effect in a polymer material. First,

a modified Oberst experiment has been implemented to characterize the dynamic behavior of an elastomeric

material under different stress amplitudes. The dynamic properties of the structure, frequency and damping of

the first mode, are identified by applying a Bayesian inference approach which allows to quantify the selection450

of the models allowing to maximize the a posteriori probability, and to quantify their confidence level.

A digital twin of the experimental set-up is then developed and coupled to the experimental results, to

estimate the strain level in the characterized sample, and identify the Payne effect. As expected, this results in

a decrease of the storage modulus with the stress amplitude, and the results show that the confidence level is

good with a small confidence interval around the mean value.455

The strength of the proposed approach lies in the combination of experimental data that can be collected

rapidly, of a digital twin of the experimental set-up, and of a Bayesian identification process for quantifiying

the complex nonlinear behavior of a viscoelastic material with its uncertainty.
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Appendix A. Sliding Least-Squares identification Method470

This appendix details the post-processing of the experimental data and the sliding least-squares identification

method applied to recover the evolution of the instantaneous damping and frequency, as used in [30], [41].

Having the raw acceleration data in Fig. A.1(a), Figs. A.1(b) to (e) depict the steps used to exploit the

measured signal and obtain the instantaneous frequency and the damping according to the oscillation time

(Figs. A.1(f)). A brief description of each step is outlined below:475

• Fig. A.1(b): The raw acceleration signal is integrated twice by using the trapezium rule to result in the

displacement. The time increment ∆t used is equal to 1/Fs, whereas Fs denotes the sampling frequency

which, in this work, it was set to Fs = 51200 Hz. Notwithstanding, experimental data is often corrupted

by noise which, when numerically integrated, results in a spurious mean level that has to be disregarded.
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This operation is performed by removing the DC component from the displacement after the integration480

scheme. The underlying assumption that holds in structural dynamics is that the system oscillates around

its equilibrium position.

• Fig. A.1(c): The displacement signal obtained has response contributions not only from the first bending

mode. Thus, to filter out this frequency component from the others that compose the signal, the Empirical

Mode Decomposition (EMD) method [42] is used. This approach relies on identifying the characteristic485

time scales that are embedded in the oscillatory response through the Intrinsic Mode Functions (IMF),

or also known as intrinsic modes. The construction of the IMFs is based on a cubic spline interpolation

of the upper and lower envelopes of the time series signal. By subtracting the average between envelopes

m1(t) from the initial response signal x(t), the first IMF is obtained h1(t) = x(t)−m1(t); this component

must satisfy two properties:490

– The number of extremes and passages through the equilibrium must be equal or differ from 1 at

most.

– At all points, the average value of the envelopes defined by the local maximums and minimums must

be 0.

The IMF construction is iteratively solved: if the mode does not hold these properties, the algorithm495

is repeated on the updated h1(t) until finding a component that satisfies them. This is a critical step

in ensuring that each IMF is a monochromatic signal for which amplitude and frequency can still be

modulated. The number of IMFs to be extracted is established with a stopping criterion, which can be

formulated in terms of energy. It is important to point out that when considering the free response of a

system, these IMFs have physical meaning: the dominant IMFs correspond to the vibrating modes of the500

structure, and they can be analytically rewritten as equivalent single-degree-of-freedom linear oscillators.

For nonlinear systems, this assumption holds for weakly nonlinearities with no modal interactions.

• Fig. A.1(d): Once the IMF corresponding the first bending mode of the Oberst beam is well extracted,

the evolution of instantaneous frequency and damping as a function of time can then be computed.

Assuming that the EMD does indeed allow a modal decoupling, the weakly nonlinear response can be

written as:

q̈ + 2ξ(Q)ω0(Q)q̇ + ω2
0(Q)q = 0, (A.1)

where, in this second order differential equation, ξ and ω0 depend directly on the amplitude Q of the time

response q(t). To simplify the notations, the dependence of these parameters on Q will be implicit. The

solution of Eq. (A.1) yields:

q(t, ξ, ω0) = Q(t) cos(ωrt+ ϕ), (A.2)

where the envelope is Q(t) is given by:

Q(t) = Q0e
−ξω0t. (A.3)

Rewriting Eq. (A.2) by sinus and co-sinus terms:

q(t, ξ, ω0) = e−ξω0t (A cos(ωrt) +B sin(ωrt)) , (A.4)
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where ωr = ω0

√
1− ξ2 is the damped frequency, and A and B are amplitude coefficients:

A = Q0, and B =
Q̇0 + ξω0Q0

ωd
,

where Q0 and Q̇0 denote the initial displacement and velocity, respectively. The measured signal is

approximated by the analytical solution over a window representing a period. The identification of the

parameters ξ and ω0 over this period is done by minimizing, in the sense of least-squares approach, the

following objective function:

Fobj = min
ω0,ξ

n∑
i=1

(q(ti, ξ, ω0)− qexp(ti))
2

(A.5)

where q represents the analytical form (A.1) of the displacement, qexp the experimental displacement that

corresponds to the first IMF extracted from oscillatory response; ti, for i ∈ [1, n], denotes the time steps

included in the period [t; t+ dt] that compose the sliding window. The coefficients A and B are updated505

taking into account the initial conditions of displacement and velocity for each window.

• Fig. A.1(e) and (f) This identification approach based on the sliding least-squares method renders

possible to track the instantaneous variations of the damping ξ and the frequency ω0 to reconstruct the

experimental signal as well as its envelope. Put practically, this is more of an “average” instantaneous

frequency than an instantaneous frequency in the sense of that provided by the Hilbert transform. These510

figures also illustrate how the Oberst beam behaves, such that the amplitude decreases with time while

the instantaneous frequency increases, going from 46 Hz to 55 Hz, and that the damping seems to go

through a maximum around 8% before decreasing to tend around 3%. Note that when the displacement

is around zero, the damping measurement becomes influenced by noise.
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: Post-treatment process : raw acceleration (a), raw displacement and continuous component (b), EMD on the displace-
ment without the continuous component (c), identification of the instantaneous frequency and the modal damping by a sliding least
square method (d), reconstruction of the experimental displacement (e) and instantaneous frequency and damping ratio evolution
according to the time (f)

Appendix B. Bayesian Linear Regression Formulation515

The authors thank the reviewer who pointed out the existence of analytical solutions for the Bayesian linear

regression case investigated in this article. For this case, in which the models for frequency and damping are

linear in their parameters (although not linear with respect to the displacement), it is possible to derive analytical

expressions for the posterior distributions of the model parameters Θ and also the variance σ2, a parameter

that is also assumed as unknown in this work. Under the hypothesis of additive decorrelated Gaussian noise,
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the following presents the joint posterior distributions for the regression problem presented in equation (2)3:

π
(
Θ, σ2

ε |D
)
∝ π(Θ, σ2

ε)π(D|Θ, σ2
ε), (B.1)

where π(Θ, σ2
ε) corresponds to the prior distribution. Considering an uninformative prior distribution such that

π(Θ, σ2
ε) ∝ 1

σ2 which is a flat prior almost uniform, the resulting marginal posterior distributions for Θ and σ2

are given by:

π(Θ|D) ∼ tN−p

(
Θ̂,

(
D −DM(Θ)

)T (D −DM(Θ)
)

N − p

(
X TX

)−1

)
, (B.2)

π(σ2
ε |D) ∼ Inv-Gamma

(
N − p

2
,

[
1

2

(
D −DM(Θ)

)T (D −DM(Θ)
)]−1

)
, (B.3)

i.e., the marginal posterior distribution π(Θ|D) results in a multivariate t− student distribution, and π(σ2
ε |D),

an inverse gamma distribution. In both equations, p corresponds to the number of model parameters, and the

expected value of Θ is given by:

Θ̂ =

∫
Θ,σ2

ε

Θπ(Θ, σ2
ε |D)dΘdσ2

ε , (B.4)

which corresponds to the least-squares estimate.

Tables B.1 and B.2 present the results obtained by the MAP estimator considering the results derived520

analytically by expressions (B.2)-(B.3) and the ones obtained by the MCMC/Metropolis Hastings algorithm.

Note that, for this method, a uniform distribution for the model parameters Θ and the variance σ2
ε is adopted.

In the scenario investigated in this work, where a large amount of data is available, the use of a uniform

distribution to derive the closed-form solutions yields a t-student PDF for the model parameters and also

an inverse gamma for σ2
ε . As the amount of data available increases, the influence of the prior decreases525

in relation to the likelihood. Consequently, the analytical results directly align with those obtained via the

MCMC/Metropolis-Hastings algorithm. Moreover, both methodologies yield close values for the frequency and

damping models.

Table B.1: MAP estimator for each random variable of the frequency model considering the analytical PDF and the one obtained
by the MCMC/Metropolis-Hastings algorithm.

ω0n [Hz] δf × 105 [N/(m3kg)] Method
57.8 -2.643 Analytic
57.8 -2.645 MCMC/Metropolis Hastings

Table B.2: MAP estimator for each random variable of the damping model considering the analytical PDF and the one obtained
by the MCMC/Metropolis-Hastings algorithm.

ζ0d βd λd κd × 105 Method
3.56 6221 -59353 1.510 Analytic
3.56 6117 -58237 1.512 MCMC/Metropolis Hastings

3These results can be used for the same class of problem without loss of generality
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