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Origin of the Mode Splitting Effect in a Microwave
Sapphire Whispering Gallery Mode Resonator

Vincent Giordano, Samuel Margueron

Abstract—Cylindrical Whispering gallery modes (WGM) res-
onators, machined from high-quality sapphire mono-crystal and
cooled to liquid helium temperature, exhibit exceptionally high
Q-factors in the microwave frequency domain. Such resonators
serve as the core for ultra-stable oscillator featuring fractional
frequency stability exceeding 1 × 10−15 at short integration
times. Similar to any cylindrical resonant structure, the WGM
resonator exhibits a two-fold degeneracy. When a defect disrupts
the cylindrical symmetry of the resonator, the WGMs split and
appear as doublets. In the high-quality sapphire resonators, the
frequency separation between these twin modes varies from one
mode order to another, reaching a maximum value of a few tens
of kHz. While mode splitting for a given mode was previously
deemed unpredictable and intrinsic to each resonator, assumed
to result from randomly distributed defects, our findings indicate
that the observed mode splitting in all sapphire resonators,
regardless of their origin, primarily arises from a common defect
due to the different response of the sapphire’s crystallographic
plans to the manufacturing processes.

Index Terms—Mode degeneracy, sapphire crystal, ultra-stable
oscillator, whispering gallery mode resonator.

I. INTRODUCTION

Whispering gallery modes low loss dielectric resonators
have found widespread applications in the fields of
microwaves, millimeter waves and optics. The strong
confinement of the electromagnetic field within the dielectric
medium achieved through these excitation modes, imparts
exceptional properties to the resonator such as: high quality
factor (when associated with low loss dielectric as sapphire),
immunity to environment perturbations, enlarged dimensions
compared with classical TE01δ mode (advantageous for
mm-wave or photonics components). In the microwave
domain, these resonators serve as frequency reference to
achieve ultra-stable cryogenic oscillators [1], [2], [3], [4],
and facilitate accurate measurements of material complex
permittivity [5] or the surface impedance of superconductors
[6]. Planar WGM dielectric resonators have been employed
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in the development of millimeter-wave filters, oscillators,
and multiple-port power dividers/combiners [7], [8]. While
it is certainly in the field of photonics that we find today
the most innovative applications of WGMs with a profusion
of resonator shapes, sizes and operating wavelengths [9], [10].

A wide variety of resonator shapes such as disks, rings,
toroids or spheres, can sustain the propagation of WGMs. The
rotational symmetry of these resonators leads to a degeneration
of the solutions of the Helmholtz equation, yielding the two-
fold degeneracy of the WGMs. Any deviation from the res-
onator’s symmetry, induced by a defect, lifts this degeneracy,
and a resonance line splitting is generally observed [11], [12].
Such defects can manifest as a geometrical imperfections,
particles adhering to the resonator surface or inhomogeneities
within the dielectric bulk [13], [14]. For many applications,
this phenomenon proves detrimental. In the case of a mi-
crowave WGM resonator oscillator, frequency jumps between
the two degenerate modes can compromise the oscillator
stability [15], [16], [17]. Conversely, in photonics WGM
resonators, the degeneracy and line splitting phenomenon can
be harnessed for sensing nanoparticles, such as contaminants
or viruses [18], [19]. Regardless of the application, enhanced
control over mode splitting and a deeper understanding of its
origin would be beneficial.

Until now, the prevailing guess attributes the mode
splitting observed in sapphire microwave WGM resonators to
randomly situated defects affecting the resonator’s geometry
or homogeneity. Contrary to this widespread belief, our paper
challenges this idea and demonstrates that mode splitting
originates from a precisely determined geometrical defect.
This defect is consistently observed in all sapphire resonators,
irrespective of their origin. Notably, it aligns with the 6-fold
symmetry of the sapphire crystal and correlates with the
distinct crystallographic planes, which respond differentially
during the sapphire machining process.

As a secondary outcome of our study, we offer here a
modest answer to the question Can One Hear the Shape of
a Drum? posed by M. Kac in 1966 in his renowned article
[20]. It took mathematicians approximately thirty years to
provide a general negative answer to this question [21]. It
is also noteworthy that the first experimental verification of
the isospectrality of two distinct geometries, as discovered
by mathematicians was carried out using hollow metal
microwave cavities as a drum [22]. While we do not delve
into the intricacies of this complex mathematical problem in
this article, we show how the phenomenon of mode-splitting
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observed in a microwave whispering gallery mode sapphire
resonator allows for the deduction of its deviation from the
ideal cylindrical form.

II. THE CRYOGENIC SAPPHIRE RESONATOR

The mono-crystal of Al2O3, or sapphire, stands out as the
material with the lowest dielectric losses in the microwave
frequency range. With a loss tangent (tan δ) of approximately
5 × 10−6 at 300 K and lower than 10−9 at liquid helium
temperature [23], it is an ideal dielectric for constructing high
Q-factor microwave resonators in X-band. Despite its low
relative permittivity (ϵr ≈ 10), sapphire’s high azimuthal order
modes, known as whispering gallery modes, are strategically
utilized to fully exploit its low dielectric loss tangent. A
standard design consists of a large sapphire disk, typically 30
to 50 mm in diameter (for X-band operation), housed within a
metallic cylindrical cavity. In the case of a whispering-gallery
mode, total reflection occurs at the curved air–dielectric inter-
face, effectively limiting the power dissipation in the metallic
enclosure walls. Consequently, the resonator’s unloaded Q-
factor (Q0) is only limited by the sapphire dielectric losses:

Q0 ≈ 1

tan δ
(1)

Since 2010, we have successfully constructed and validated
a dozen of ultra-stable Cryogenic Sapphire Oscillators (CSO)
at the FEMTO-ST Institute, all based on this cutting-edge
technology. Our most advanced design is currently available
as a commercial instrument under the codename: ULISS-2G
[24], [25], [26]. Describing the (in)stability as the Allan
deviation (ADEV) σy(τ) of the fractional frequency y as a
function of the measurement time τ , ULISS-2G features
σy(τ) < 3 × 10−15 for 1 s ≤ τ ≤ 104 s and is limited by a
drift of ≈ 10−14 at one day. It can run unattended for years
of continuous operation, requiring only simple maintenance
every 2nd year.

All the resonators incorporated into our CSOs are manu-
factured according to the same design, as illustrated in Fig. 1
[27].

Fig. 1. ULISS-2G sapphire resonator.

Made in a high purity sapphire mono-crystal, it is 54 mm in
diameter and 30 mm in height, with the cylindrical axis parallel

to the Al2O3 crystal c-axis within 1◦. The 10 mm diameter
spindle machined from the bulk is used to attach the resonator
to the bottom flange of a gold plated standard Oxygen-free
high-thermal-conductivity (OFHC) copper cavity. This copper
cavity has an internal diameter of 85 mm. The resonator
operates on the quasi-transverse magnetic whispering-gallery
mode WGH15,0,0 resonating at ν15 = 9.99 GHz [28]. Two
diametrically opposed small magnetic loops constitute the
input and output resonator ports. These magnetic probes are
formed from the internal conductor of a copper UT085 coaxial
cable. The loop area is ≈ 1.5 mm2. The radial position of
these probes can be adjusted to tune the coupling coefficient
at each resonator port. In practice and for the operating mode,
the resonator is nearly critically coupled at its input port and
weakly coupled at its output: β1 ∼ 1 and β2 ≤ 0.01. To
achieve critical coupling, the input coupling probe penetrates a
few millimeters into the cavity. In that conditions, the resonator
coupling induces a very weak perturbation to the resonator
frequency. Indeed, the fractional frequency shift induced by
the input port coupling is [29]:

∆ν

ν
= − β1

2Q0

XG

Z0
(2)

where Z0 = 50 Ω the line impedance and XG is the
impedance reactive part of the circuit connected to the
resonator input port, in the worst experimental conditions
XG < 5 Ω. Due to the high unloaded Q-factor, the induced
fractional frequency shift is always less than 1 × 10−10, and
thus completely negligible with respect to the other causes of
perturbation. In the following calculations, the impact of the
coupling probes are neglected. The cavity is thermally linked
to the 2nd-stage of a Pulse-Tube cryocooler and stabilized
near 6 K.

III. THE MODE DEGENERACY

Although WGM are strictly hybrid modes, they can be
classified in quasi-TM (WGH) and quasi-TE (WGE) mode
families. A WGH mode is characterized by the electric field
mainly directed in the axial direction while its magnetic field
is essentially transverse. Conversely, for a WGE mode, the
situation is inverted. Whispering gallery modes can be further
characterized by three integers, i.e. m,n and l, representing the
variation of the electromagnetic field components in the az-
imuthal (ϕ), radial (r) and axial (z) directions of the cylindrical
coordinate frame. In our developments, we specifically focus
on the WGHm,0,0 modes, which exhibit the highest Q-factor.
For these modes, the axial electric field inside the sapphire
can be expressed as [30]:

Ez(r, ϕ, z) = EmJm(kr) cos(βz)

{
cos(mϕ)
sin(mϕ)

(3)

where Em is the electric field amplitude, Jm is the Bessel
function of the first kind of order m, β denotes the axial
propagation constant and k is the guided wave number. The
brace indicates that the resonator can support two orthogonal
modes, both equivalent solutions of the Helmholtz equation.
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In a perfect sapphire cylinder, the twin modes probe
exactly the same medium, and thus resonate at the same
frequency. The position of the nodes of the stationary wave
pattern is set by the coupling structure. Previous studies
have demonstrated how any defect that affects the resonator
cylindrical symmetry lifts the degeneracy of the twin modes
[11]. The frequency splitting, denoted δνm, between the
twin modes is dependent on the azimuthal number m, as m
conditions the electromagnetic field configuration within the
sapphire crystal. For example, the impact of a localized defect
affecting the dielectric properties of the medium, will be
higher for modes exhibiting a maximum of the electric field
near the defect position. It is worth noting that in presence
of the defect, the azimuthal position of the stationary wave
pattern is no longer set by the coupling structure, but remains
locked to the defect. One of the twin mode has a node at the
defect location, the second one has a maximum.

In the CSO we exploit the mode WGH15,0,0 at
ν15 = 9.99 GHz for which the twin resonances have always
been observed. δν15 typically falls within the order of 10 kHz
(10−6 in relative value). Fig. 2 shows the two WGH15,0,0

modes of a typical sapphire resonator as experimentally ob-
served with a Vector Network Analyzer after a first cooling
near 6 K. Here, the calibration planes are set at the level of the
cryostat RF feedthroughs. Thus, the cryogenic cables linking
the resonator to the cryostat external flange are part of the
measured assembly. For this particular sapphire resonator, we
have δν15 = 8.6 kHz ( δν15

ν15
≈ 0.9 × 10−6). In this particular

case, the insertion losses of the two modes are nearly the same,
which can lead to frequency instability for the oscillator.
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Fig. 2. |S11| and |S21|: magnitude of the reflection and transmission
coefficients for the twin modes WGH15,0,0 observed during the first
cooling down to 6 K.

The presence of the twin modes poses a challenge for
our application. Indeed, the oscillator will start on the mode
with the lower insertion losses (higher coupling). The latter
will be hardly predictable before cooling as the degeneracy
lifting is not observable at room temperature. In unfavorable
scenarios, both modes may exhibit equivalent insertion losses,
potentially jeopardizing the oscillator stability due to random
frequency jumps. This issue has been solved by rotating the
sapphire resonator with respect to the coupling probes position,

effectively suppressing the mode with the lowest frequency, as
demonstrated in Fig. 3.
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Fig. 3. |S11| and |S21|: magnitude of the reflection and transmission
coefficients for the twin modes WGH15,0,0 measured after a resonator
rotation and a second cooling down to 6 K. The sapphire rotation
favoured the higher frequency mode, which is now the only mode that
can oscillate.

Apart the WGH15,0,0 mode, which serves as frequency
reference for our oscillator, the experimental setup allows
for the observation of other WGH modes spanning
from approximately 4 GHz to 14 GHz corresponding to
5 ≤ m ≤ 24. Beyond this range, the constrained bandwidth
of the isolators positioned at each resonator port and the
poor coupling of the remaining modes typically render their
detection impractical.

Until now, we had not extensively investigated the origin
of mode splitting. As the disturbances leading to the mode
splitting should be randomly distributed, the various δνm are
challenging to predict and were believed to be specific to each
resonator. In our opinion, this assertion must be reconsidered,
as demonstrated in Fig. 4.
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Fig. 4. Compilation of the relative mode splitting δνm/νm. For a
given azimuthal number m, each resonator is represented by a black
bar. The red bullets represent the calculation result obtained with
∆r = 1.3 µm (see section IV).
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Fig. 4 compiles the relatives values of δνm/νm measured
across more than fifteen resonators sourced from various
manufacturers, each overseeing the entire processing chain
from crystal growth to final polishing. Some of these
resonators have been ordered more than ten years ago. The
tested resonators come from three different manufacturers
located on distinct continents, each employing their unique
growth methods. The data also includes the measurement
results obtained with a 50 mm diameter and 30 mm height
resonator and with another operating on the WGE modes.

Evidently, the observed distribution of mode splitting is
not entirely random. Notably, the mode splitting is higher
for modes with m being a multiple of 3 (m = mult(3)),
regardless of the crystal’s origin, dimensions, or the excited
mode family. In the observable frequency range, a maximum
occurs for m = 6 and then δνm decreases with m following
a curve parallel to 1/QL, QL being the loaded Q-factor. This
observation supports the presence of a defect that affects the
external shape of the resonator. Higher-order modes being
more confined in the dielectric are less impacted by a defect
on the resonator surface. For other modes with m ̸= mult(3),
the mode splitting is generally not observed or remains of
the order of the mode bandwidth. Fig. 5 shows the resonator
transmission coefficient |S21| for the two modes WGH9,0,0 and
WGH10,0,0 measured at 6 K. The mode splitting δν9 ≈ 30
kHz is clearly resolved, whereas for m = 10 the twin modes
can be hardly distinguished.
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Fig. 5. |S21|: magnitude of the transmission coefficient for the
WGH9,0,0 and WGH10,0,0 modes at 6 K.

IV. DEDUCTIVE SIMPLIFIED MODEL

It is improbable that identical defects exist on all these
resonators with vastly different origins, unless these defects
are linked to an intrinsic property of the sapphire crystal. Lu et
al. demonstrated for a photonic WG modes micro-cavity that
an intentionally modulating the resonator diameter induces
controlled mode splitting for a selected azimuthal mode
number [31]. The observation that modes with m = mult(3)
exhibit the largest observed mode splitting suggests the
presence of a periodic cylindrical defect that would primarily
interact with this class of modes. In this section we apply the
first order perturbation method to determine a resonator outer
shape consistent with the experimental observation reported
in Fig. 4.

Let’s consider the sapphire resonator with a small geomet-
rical defect placed in the center of a copper cavity delimiting
the volume V (see Fig.6).

φr(  )
r0

φ

Vδ

Fig. 6. Whispering Gallery Mode Sapphire resonator with a small
geometrical defect, inserted in the center of the copper cavity. The
nominal sapphire resonator radius is r0. For the ULISS-2G resonator
r0 = 27 mm.

For the unperturbed resonator, the Maxwell’s equations are
solved using a custom software based on Mode Matching
Method [30]. Frequency, Q-factor and the electromagnetic
field components for an arbitrary WG mode are calculated
knowing the resonator geometry and the material properties.
The permittivity tensor describing the material dielectric prop-
erties will be denoted [ϵ]. In the empty volume surrounding
the sapphire piece, it reduces to the identity matrix [ϵ] = [1].
Inside the sapphire resonator, we have:

[ϵ] = [ϵS ] =

 ϵt 0 0
0 ϵt 0
0 0 ϵz

 (4)

with ϵt ≈ 9.27 and ϵz ≈ 11.37 at liquid helium temperature
[32]

The resonance frequency shift resulting from the geometri-
cal defect can be assessed using the perturbation method [33],
[34].

∆ν

ν
=

∆Wm −∆We

Wm +We
(5)

where ∆Wm and ∆We are the changes in the stored magnetic
energy and electric energy, respectively, after the shape pertur-
bation, and Wm +We is the total stored energy in the cavity.
As there is no magnetic material in the cavity ∆Wm = 0. The
first order perturbation method assumes that the defect does
not modify the electromagnetic field components and thus:

∆ν

ν
= ϵ0

∫∫∫
δV

E ([ϵS]− 1)E∗dv∫∫∫
V
(µ0H2 + ϵ0E[ϵ]E∗) dv

(6)

where E and H are the electric and magnetic fields of the
unperturbed resonator, ϵ0 and µ0 are the vacuum permittivity
and permeability respectively. δV is the volume affected by
the geometrical defect. δV > 0 corresponds to a dielectric
removal.

Expression (6) can be simplified by considering that for
a WGH mode, the electric field is principally axial: E ≈
Ez(r, ϕ, z)z. Moreover, as the deformation is small compared
to the sapphire dimensions, Jm(kr) can be considered as a
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constant over δV . Taking these approximations in account, it
is shown in the Appendix that for a given azimuthal number
m, the twin modes will be differently shifted and δνm is
proportional to:

Im =

∫ 2π

0

(
cos(2mϕ)

∫ r0

r(ϕ)

rdr

)
dϕ (7)

Let us consider a small modulation of the resonator radius
such as: r(ϕ) = r0+∆r cos(pϕ), with p being an integer and
∆r ≪ r0. Im becomes:

Im = 2r0∆r

∫ 2π

0

cos(2mϕ) cos(pϕ)dϕ (8)

Im takes a non null value only if p = 2m. As a first
consequence, p should be an even integer to induce mode-
splitting. Thus the radius modulation only affects the mode
with m = p/2 , leaving the other WGH modes unperturbed. To
obtain a distribution like those in Fig. 4, the radius modulation
should be less smooth. In other words, r(ϕ) should contain
harmonics of the fundamental modulation frequency:

r(ϕ) = r0 +∆r
∑
j≥1

aj cos(j × pϕ) (9)

In that condition, Im becomes the weighted sum of terms
proportional to the Fourier coefficients aj . The jth term takes
a non null value for a specific azimuthal number:

mj = j
p

2
(10)

Thus, for a given even integer p, the azimuthal numbers
for which a mode splitting appears follow an arithmetic
progression with a reason ∆m:

∆m = mj −mj−1 =
p

2
(11)

In our case, we have m = mult(3), thus ∆m = 3 and:

p = 6 (12)

From this simple observation, we deduce that the
geometric defect must have a periodicity of π/3 in the
azimuthal direction to induce a mode-splitting distribution
compatible with the experimental observations.

The shape of the resonator is not yet known. We have
now to determine the coefficients of the dependence of the
r(ϕ). The non null terms in Im is proportional to the Fourier
coefficients aj such as j = m/3. The measured δνm/νm
gives thus an estimation of the relative value of the Fourier
coefficients aj .

As mentioned earlier, mode splitting for m = 3 cannot be
determined experimentally. Indeed, the WGH3,0,0 is hardly
observable in the standard conditions of the experiment.
However, we have, in one case, pushed the resolution of
the VNA using high power and averaging and observed
a bandwidth of approximately 200 kHz for the WGH3,0,0

mode. Due to the poor signal-to-noise ratio, no mode splitting
could be highlighted. We then assume that for the WGH3,0,0

mode, a mode-splitting of the order of magnitude of the line
half-bandwidth, i.e., δν3/ν3 ∼ 3 × 10−5, which represents
roughly the limit below which the mode splitting cannot be
observed. For the other m values, we take the average of
the collected data. Setting a1 = 1, we get for the Fourier
coefficients up to j = 6:

TABLE I
FOURIER COEFFICIENTS OF THE EXPECTED RADIUS DEFORMATION r(ϕ)

j m δν/νm Fourier Coef.
1 3 (3.0× 10−5) a1 = 1.000
2 6 1.0× 10−5 a2 = 0.333
3 9 4.5× 10−6 a3 = 0.150
4 12 2.0× 10−6 a4 = 0.067
5 15 1.0× 10−6 a5 = 0.034
6 18 5.0× 10−7 a6 = 0.017

The amplitude of the defect ∆r remains the only free
parameter. Using the perturbational technique based on Eq. (6),
we calculated the mode splitting for m ranging from 3 to
24 and various radial deviations ∆r. In this analysis, we do
not rely on previous approximations; instead, we take into
account all electromagnetic fields components, their variation
with respect to the coordinates in the entire volume V , and
the anisotropy of the dielectric medium. In Fig. 4 the red
points represent δνm/νm calculated with ∆r = 1.3 µm,
which provides the best fit with the experimental observations.
The corresponding resonator shape is depicted in Fig. 7
representing r(ϕ) − r0 + 5 µm in polar coordinates. Such a
homothetic contour plot is classically used by engineers to
magnify the representation of circularity defects.

2 µm

Fig. 7. Resonator profile derived from the measurement of δνm/νm
assuming ∆r = 1.3 µm. This homothetic contour plot corresponds to
r(ϕ)− r0 +5 µm. The dashed line represents the nominal resonator
cylindrical shape with r0 = 27 mm.

At the first glance, the shape of the resonator deduced from
our calculation is astonishing. The calculated resonator profile
looks like a flower with six well-defined petals, exhibiting a
peak-valley radius deviation of ≈ 3 µm. In the next sections,
we will explore how the real profile of the resonator aligns
with this calculated shape and provide an explanation for its
specific form.

V. ACTUAL RESONATOR PROFILE

The profiles of two sapphire resonators from different
manufacturers were measured using a metrological optical
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coordinate measuring machine µCMM Bruker Alicona. This
instrument allowed the measurement of the resonator contour
in its equatorial plane with a resolution of 0.1 µm. Fig. 8
displays the two measured profiles compared to the modelled
one (see Fig. 7).

2 µm 2 µm

B)A)

Fig. 8. Red plain line: Profile of two sapphire resonators measured
with a resolution of 0.1 µm. Black plain line: Profile deduced
from frequency measurements. Dashed black line: Resonator nominal
diameter.

It is remarkable that the calculated profile faithfully mirrors
the actual resonator contour. This comparison fully validates
the calculation presented in the previous section. The radius
of the two resonators exhibits a modulation with a periodicity
of π/3, and the peak-valley radius deviation is approximately
3 µm, and this same defect is consistently observed in all
resonators, regardless of their origin. Consequently, it is rea-
sonable to attribute this defect to an intrinsic property of the
sapphire crystal polishing.

VI. CONTOUR DEFECTS AND SAPPHIRE CRYSTAL
POLISHING

In the following, a discussion on the intriguing contour
of the sapphire resonator is presented from a manufacturing
and material perspective. All c-oriented sapphire cylinder were
prepared by chemical mechanical polishing (CMP) composed
of particles and chemical agent with rotation polishing ma-
chine (whose exact production conditions may change from
one manufacturer to another). However, the contour presents
systematically large curved surfaces and concave engraving
defects as shown in Fig. 8 that are schematically redrawn in
Fig. 9.

The symmetry of order 6 indicates that one of the prismatic
planes a (1120) or m (1010) planes (the first two densest
planes perpendicular to the c-plane (1000)) is favoured over to
the other. This outcome directly illustrates Neumann’s princi-
ple, emphasizing the fundamental connection between crystal
structures and symmetries, as detailed in Robert Newnham’s
book [35].

Furthermore, looking carefully at Fig. 8, the curved surfaces
show a stepped shape indicating that it corresponds to a
crystallographic plane which tends to maintain its flat surface
(low surface energy). Rather than following the curvature
imposed by the polishing machine, the sapphire piece will
keep flat surfaces corresponding to this crystallographic
plane. We will then have a succession of parallel steps that
will approximate the desired cylindrical surface. This plane

has the slower CMP etching rate (noted Vslow) than any
other prismatic plane of sapphire. As for the second family
of prismatic plane, located at π/6 to the first one, it presents
a concave engraving. This family plane has the fastest
polishing rate (noted Vfast). The engraving phenomena can
be explained by the Rehbinder effect [36]. The polishing
chemical agent with the highest surface energy tends to
accumulate the polishing particles to this face under the
polishing pressure. The particles create microcracks after
microcracks penetrating the crystal [37]. Fig. 9 schematizes
the polar diagram of the crystal shape with two CMP etching
rates. At this level of discussion, the determination of faster
and slower CMP etching rate surfaces among the a- or
m-planes has not been determined by diffraction X-rays in
this study. [38]

Fig. 9. Polar diagram representing the crystallographic planes (black
lines), the etching rates and the expected final shape (red lines) (figure
adapted from [37]).

The literature presents several conflicting results on the
CMP polishing rate of a- and m-planes [39], [40], as well as
crystal morphology, surface energy, chemical dissolution and
tribological/mechanical tests. Additionally, CMP polishing rate
may likely change behavior due to surface atomic relaxation,
crystal impurities, surfactant composition, water, wear rotation
speed, or temperature [37]. Meanwhile, the surface energy is
generally correlated to the friction but also to the hardness
and etching rate [37]. In fact, the CMP polishing rates of
the two prismatic planes may be very close. This result
can be attributed to the close tensorial properties of the
a and m planes, particularly up to fourth-order properties.
Distinguishing between the two surfaces, as suggested by
Le Blois and Tellier’s work on crystal etching [41], requires
consideration of high-order tensorial properties of the surface.
One can note that the final contour gives a very low crystal
roughness of 3 µm for a crystal diameter of 54 mm which
may depend on the polishing time. The relative tolerance of
6 × 10−5 in micro-machining is in the state of the art for
anisotropic crystal. Finally, another argument in favor of the
Rehbinder effect can be seen in Fig. 8. Almost all stepped
shape and engraving defects have an asymmetrical shape tilted
in the same direction, which is likely the direction of polishing
rotation.
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VII. SUMMARY

In this paper we have solved the problem of the origin
of the mode splitting effect in the cylindrical sapphire
whispering gallery mode resonator. The same mode splitting
repartition as a function of the azimuthal mode order is
effectively observed in any sapphire resonator whatever their
origin. Consequently, we have deduced that mode splitting
results from a 6-fold modulation in the radius of the resonator
contour, a consequence of the resonator polishing step.
This study serves as an illustration of Neumann’s principle,
emphasizing that, despite meticulous attention during the
manufacturing of crystalline cylinders, the inherent symmetry
of crystals takes precedence at the finest scales of micro-
fabrication. In the case of sapphire, the properties of the
prismatic plane remain remarkably consistent up to the 4th
tensorial order, allowing for the production of quasi-cylinders.
Nevertheless, as proposed by Tellier and her colleagues, the
variation in surface slowness is influenced by higher-order
tensor terms. The observed mode splittings enable to calculate
an approximate resonator profile, which is confirmed with
high resolution resonator contour measurements.

Finally, our results, which seem to demonstrate that we
can calculate the shape of a body from the spectrum of its
resonances, do not, of course, question the work of mathe-
maticians. This is a very specific case, where we determine
only the irregularities of a known form, here a cylinder, from
a peculiarity of the spectrum of its resonances, and theorems
that prove the isospectrality of distinct geometries certainly
do not apply. However, the similarity between the calculated
contour and the actual profile is surprising and, in our view,
deserves to be highlighted.
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APPENDIX I:
DERIVATION OF EXPRESSION (7)

The general equation (6) can be simplified for WGH modes
by assuming: i) the electric field is axial, and ii) all the
energy is stored within the dielectric. We thus neglect the
electromagnetic fields components in the empty volume sur-
rounding the sapphire cylinder. Moreover, at resonance, the
stored magnetic and electric energies are equals. Expression
(6) can be rewritten as:

∆ν

ν
=

(ϵz − 1)

2ϵz

∫∫∫
δV

E2
z (r, ϕ, z)dv∫∫∫

VS
E2

z (r, ϕ, z)dv
(13)

where VS is the volume of the sapphire cylinder.
For a given azimuthal number m, the first solution of the

Helmholtz equation corresponds to an electric field varying as
cos(mϕ) along the azimuthal direction:

Ez(r, ϕ, z) = EmJm(kr) cos(βz) cos(mϕ) (14)

Replacing Ez in Eq. (13) by this expression and assuming
Jm(kr) constant over δV , the frequency shift is:

∆νm
νm

∣∣∣∣
c

= Km

∫ 2π

0

(
cos2(mϕ)

∫ r0

r(ϕ)

rdr

)
dϕ (15)

with

Km =
(ϵz − 1)

2πϵz

J2
m(kr0)∫ r0

0
rJ2

m(kr)dr
(16)

Strictly speaking Km is a function of the azimuthal order.
However, its variations are small as shown on Fig 10 where
is drawn Km/K15.
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Fig. 10. Km as a function of the azimuthal number m.

For m ≥ 3, Km does not deviate by more than 10%
from its asymptotic value, and we will neglect this variation
considering Km as a constant independent of the value of m:

Km = K ∀ m (17)

The second solution of the Helmholtz equation varies as
sin(mϕ) and likewise:

∆νm
νm

∣∣∣∣
s

= K

∫ 2π

0

(
sin2(mϕ)

∫ r0

r(ϕ)

rdr

)
dϕ (18)

Eventually the mode splitting is given by:

δνm
νm

=
∆νm
νm

∣∣∣∣
c

− ∆νm
νm

∣∣∣∣
s

(19)

Dropping the constant K, the mode splitting is found
proportional to Im given by Eq. (7).
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