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Abstract- Mirrorless lasing has been a topic of particular interest for about a decade due

to promising new horizons for quantum science and applications. In this work, we review first-

principles theory that describes this phenomenon, and discuss degenerate mirrorless lasing in a

vapor of Rb atoms, the mechanisms of amplification of light generated in the medium with pop-

ulation inversion between magnetic sublevels within the D2 line, and challenges associated with

experimental realization.
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I. INTRODUCTION

Over sixty years of existence, lasers (Light Amplification by Stimulated Emission of Ra-

diation) have played a significant role in many areas of scientific research, industry and

defense1, continuously growing as new laser technologies are developed. There are three

principal components usually attributed to a laser: a gain medium, a pumping process and

a feedback loop2. Lasing usually requires pumping the medium to a state of population

inversion, although lasing without apparent inversion can occur in the case where quantum

coherence is induced between lower levels3. There is a debate over whether lasing always

requires a feedback loop. Lasing is often distinguished from processes such as Amplified

Spontaneous Emission (ASE), Superradiance (SR) and Superflouorescence (SF)4,5. Conven-

tional lasers usually incorporate an optical resonator setup where mirrors are used to have

light amplified over several round trips in the gain medium2. In mirrorless lasing setups

involving a feedback loop, the gain medium takes the role of the resonator – usually through

multiple scattering processes4 – in systems with a range of disorder, including random lasers6

and distributed-feedback systems7. Lasing in gain medium with a nonresonant feedback loop

provided by the same medium was considered by Letokhov8 who gave a theoretical treatment

concerning light in the diffusive regime, see, for example, Ref. 9. Disordered random media

provide coherent feedback loops that generate lasing as seen in disordered ZnO nanoparti-

cles in polycrystalline films10 and quantum-dot-doped liquid crystals 11. In random lasers,

feedback is either resonant (phase sensitive, i.e. coherent) or non-resonant (frequency and

phase independent, i.e. incoherent) 10.

In this work, we adopt a broad definition of mirrorless lasing as directed monochromatic

emission from an ensemble of atoms or molecules excited with pump laser light. The treat-

ment of feedback loops arising from multiple scattering is not considered here. There is great

interest in the phenomenon of mirrorless lasing in atomic vapors with theoretical3,12–19, and

experimental investigations20–25 conducted in both cold atoms and hot vapors. The prob-

lem of mirrorless lasing in atomic gases can be split into two: (i) the problem of the gain

mechanism14,20 and (ii) the problem of multiple-scattering feedback mechanism4,16,17. Mech-

anisms involving population inversion include Mollow gain (using a near-resonant strong

pumping field), Raman gain (by driving transitions using off-resonance fields between two

non-degenerate ground states, usually Zeeman or hyperfine levels), and parametric gain (us-
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ing degenerate four-wave mixing (d-FWM) by way of counter-propagating pump fields)14,20.

Experiments in alkali metal vapor have shown the presence of gain through the phe-

nomenon of amplified spontaneous emission (ASE), see e.g.26 and Refs. therein. The com-

bination of ASE and d-FWM at above-threshold scatterer densities is suggested as a likely

mechanism21,22.

The present work covers theoretical fundamentals of the lasing mechanisms of a gas of

atoms in free space, focuses on the phenomenon of amplification of spontaneous emission and

discusses degenerate mirrorless lasing from a gas of alkali atoms with magnetically degenerate

hyperfine states. We elucidate the mechanisms for mirrorless lasing in both forward and

backward direction with respect to the pump laser beam and show that such process is

possible even in the degenerate case of the directed light being of the same frequency as the

pump. We reveal the role of population inversion among degenerate magnetic sublevels of

the hyperfine manifolds on the light amplification. The paper is organized as follows. In

Sec. II we present a first-principles theory describing mirrorless lasing and mechanisms of

light amplification in a gas of atoms. In Sec. III we present a study of degenerate mirrorless

lasing in rubidium vapor using a semiclassical approach. Finally in Sec. IV we review the

current status of experimental investigation of degenerate mirrorless lasing followed by a

summary.

II. FIRST-PRINCIPLES FORMALISM

We start with a microscopic approach for the problem of mirrorless lasing in a gas of

atoms. A system of N multilevel atoms located in free space and driven by a classical pump

field with envelope Ep(t) and frequency ωp is considered. Each atom Ai has momentum pi,

center-of-mass (COM) position Ri and relative position ri. We define the central potentials

Vi(Ri, ri) and the atom-atom interactions mainly composed of the potentials, Wij(Ri, Rj, ri),

introduced by the repulsion between the electrons of atoms Ai and Aj respectively. The

separation distance between any pair of atoms is in general much greater than the transition

wavelength λp. Each atom Ai is travelling with COM velocity vi, such that transition

frequencies and dipole moments are Doppler shifted. The dipole approximation is used such

that the interaction with the classical field driving transition l for the i-th atom is given

by −µilEp(t) cos(ωpt)(σ
+
il + σ−

il ). The vacuum interaction is given by g
(µ)

k⃗;il
a
(µ)

k⃗
σ+
il + H.c. We
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define the Hamiltonians:

HA =
∑
i

(
p2
i

2m
+ Vi(R⃗i, r⃗i) +

∑
j ̸=i

Wij(R⃗i, R⃗j, r⃗i)

)
, (1)

HF =
1

8π

∫
d3r
(
|E|2 + |B|2

)
, (2)

HAL = −
∑
il

µilEp(R⃗i, t) cos(ωpt)
[
σ+
l (R⃗i) + σ−

l (R⃗i)
]
, (3)

HAF = −
∑
il

∫
d3k g

(µ)

k⃗;il
(R⃗i)a

(µ)

k⃗
σ+
l (R⃗i) + H.c. (4)

From the above Hamiltonians, we determine the atomic density matrix equations and

the Heisenberg equation of motion for the photon operator
〈
a
(µ)†
k⃗

a
(µ)

k⃗

〉
19. We ignore

the contribution from the exchange potential terms and we use the operator UL(t, t1) =

exp
{
−i
∫ t

t1
HAL,I(t

′)
}
exp{−i (HA +HF ) t} to transform the system Hamiltonian to the field

interaction reference frame where the atomic propagators are dressed with the pump field.

This is to include the case where the system is continuously driven, as opposed to where the

system is optically pumped and then left alone. The latter approach is often used in solid-

state lasing gain media, where the presence of non-radiative emissions and quenching de-

crease the material radiative lifetimes27. We note that there are separate, often competing28,

mechanisms for gain. A seed pulse can be continuously amplified by the system or ASE can

be generated. We use the standard projection operator techniques to derive the time non-

local Liouville-von-Neumann equation29:

d

dt
ρA,I′ =− i

(∑
il

g
(µ)

k⃗l
(R⃗i)

[
σ+
l,I′(R⃗i, t),Ω

0+(R⃗i, t)
]
+H.c

)

+
∑
ilm

∫ t

t0

dt′
(
Γlm(R⃗i, t, t

′)
[
σ̂+
l,I′(R⃗i, t), σ̂

−
m,I′(R⃗i, t

′)ρA,I′(t
′)
]

−Γlm(R⃗i, t, t
′)∗
[
σ̂−
l,I′(R⃗i, t), ρA,I′(t

′)σ̂+
m,I′(R⃗i, t

′)
])

−
∑
il

∑
jm

1

ℏ2

∫ t

t0

dt′
([

σ̂+
l,I′(R⃗i, t), σ̂

−
m,I′(R⃗j, t

′)ξ
(µ′µ)
m,l (R⃗j, R⃗i, t

′, t)
]

−
[
σ̂+
l,I′(R⃗i, t), ξ

(µ′µ)
m,l (R⃗j, R⃗i, t

′, t)∗σ̂−
m,I′(R⃗j, t

′)
]
+H.c.

)
,

(5)

where Ω0+(R⃗i, t) is the vacuum Rabi field operator

Ω0+(R⃗i, t) =
1

ℏ

∫
d3k

〈
a
(µ)

k⃗

〉
F
(t0)e

−iωkt, (6)
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Γlm(R⃗i, t, t
′) is the time-dependent correlator for the decay

Γ
(µ)
lm (R⃗i, t, t

′) =

∫
d3k g

(µ)

k⃗;l
(R⃗i, t)g

(µ)∗
k⃗;m

(R⃗i, t
′), (7)

and ξ
(µ′µ)
m,l (R⃗j, R⃗i, t

′, t) represents stimulated emission processes driven by the quantum light

fields

ξ
(µ′µ)
m,l (R⃗j, R⃗i, t

′, t) =
〈{

d⃗∗m · E⃗(µ′)−(R⃗j, t
′)
}{

d⃗l · E⃗(µ)+(R⃗i, t)
}〉

F
. (8)

The first term in Eq. (5) is the Langevin force that depends on vacuum fluctuations. The

second term is the spontaneous decay contribution and σ̂±
l (R⃗i, t) is the rotated dipole oper-

ator. Note that the time and position dependent exponential is included into the coupling

rates. The final term is the stimulated absorption/emission term for a single atom, (i = j),

and two-atom events, (i ̸= j). The former provides a correction to spontaneous emission

due to a non-zero quantum radiation field. We note that there is a dependence on the

expectation value
〈
a
(µ)†∗
k⃗

a
(µ′)
k⃗′

〉
F
(t′). In the case where the density matrix is separable, and

k⃗ = k⃗′ and µ = µ′, we get the product of the usual photon number operator and the atomic

density matrix. When any of the last two conditions are not met, the final term represents a

photonic coherence between two modes. The Heisenberg equations of motion for the photon

number operator can be simply defined as[
1

c

d

dt
+ i(ωk − ωk′)

]〈
a
(µ)†
k⃗,I′

(t)a
(µ′)
k⃗′,I′

(t)
〉
(t) = Ss(t) +Rs

[〈
a
(µ)†
k⃗/q⃗,I′

a
(µ′)
q⃗/k⃗′,I′

〉
(t)
]
, (9)

where SS(t) is the source term due to atomic spontaneous decay and Rs

[〈
a
(µ)†
k⃗/q⃗,I′

a
(µ′)
q⃗/k⃗′,I′

〉
(t)
]

represents scattering contributions involving other modes. Equations (5) and (9) are the

microscopic equations required to model the time and space dependent atomic density matrix

and quantum field equations. For optically thick systems with high disorder and/or non-

ultracold temperatures, statistical averaging of the equations, including averaging over the

position density and velocity distributions of atoms, and phase-space transforms are required

to obtain macroscopic equations of motion30.

A. The probe field gain

The most common method for generating an intense monochromatic beam is to am-

plify a weak probe pulse, Epr(t), using a medium which has undergone population inver-

sion, in the dressed state basis, with respect to a transition having frequency close to the
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probe frequency31. Additional methods involve using coherent fields to generate quantum

interference between stimulated emission and absorption pathways to create gain without

population inversion3,14,20,32. The probe detuning, ∆pr, the magnetic sub-level degeneracy,

the presence of population inversion and the propagation direction of the pump beam(s)

determine which amplification mechanism dominates.

A Hamiltonian analogous to that in Eq. (3) is used to model the atom-probe field inter-

action, which we call Hpr. We derive the rate equations for the probe field Epr. Using the

steady state absorption rate of quanta for a classical field33, we write

∂

∂t
Epr(R⃗, t) = n(R⃗) ⟨−i[Hpr;I(t), ρI(t)]⟩∆(R⃗, r⃗0) , (10)

where n is the density of atoms in the medium, and I denotes the field interaction picture

associated with transformation U0(t, t1) = exp{−i (HA +HF ) t}. The terms in HAL;I(t) are

restricted to atoms within a volume ∆(R⃗, r⃗0) of radius r⃗0 from the center R⃗.

To the first order in perturbation theory, the steady state of a driven atom results in

absorption spectrum gA(ω) of a weak probe field of mode M and frequency ω33

gA(ω) =

∫ ∞

0

dτ e−iωτ
[
d−I (τ), d

+
I (0)

]
, (11)

where d+I (τ) is the weighted sum of all dipole operators that correspond to transitions

involving radiation of mode M :

d+I (τ) =
∑
j

(ε̂ · µ⃗j)σ
+
j,I(τ). (12)

The averaged single-atom absorption rate, α(ω, t), of quanta of mode M and energy ℏω

from a weak probe field with slowly varying amplitude Epr(t) and frequency ω according

to33 is

α(ω, t) = ⟨gA(ω)⟩

∣∣∣∣∣∣
(
êp · d̂I

)
Epr(t)

√
2ℏ

∣∣∣∣∣∣
2

. (13)

Understanding of the scattering processes that contribute to stimulated emission of the

probe field in the presence of strong driving pump fields requires a dressed state approach.

In strong fields, the spectral state composition of the atoms is understood in terms of multi-

photon dressed states |λi,m⟩ with energies Ei = λi + mωp. In this case, the unperturbed

atomic dynamics at any time consists of ladder-type transitions between different m-number
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states. Therefore, contributions to the stimulated emission of probe field photons must take

into account these background ladder transitions34.

The transition amplitudes for multi-photon processes can be found by looking at the

diagrammatic expansion of the self-energy Σ(t, t0)
35. This follows from the below form of

the Liouville-von-Neumann equation:

ρ̇I(t) =

∫ t

t0

dt′ρI(t
′)Σ(t′, t). (14)

For example, the sum of transition amplitudes for all three-photon processes that involve

absorption of two pump photons and emission of one single probe photon is given by summing

over three-vertex Keldysh diagrams with vertices (t1, σ
+
j E

−
P ), (t2, σ

−
l E

+
pr), (t, σ

+
j E

−
P ). The

vertices can be on the forward or backwards branch of the density matrix, and we sum over

all permutations of the vertices.

FIG. 1: A diagram representing the three-photon scattering process.

For the three-photon scattering process involving absorption of two pump photons and

emission of one single probe photon, the contribution to the evolution of the atomic density

matrix is given by

δ(3)ρA,I(t1) =
E2

PEpr

ℏ3

∫ t

0

∫ t2

0

dt1dt2e
−i((∆p)(t+t1)−∆prt2)

×
[
d+PU(t, t2)d

−
prU(t2, t1)d

+
PρA,I(t1)U

†(t, t1)

+ U(t, t1)ρA,I(t1)d
+
P (t2)U

†(t2, t1)d
−
prU

†(t, t2)d
+
P (t) + ...

]
,

(15)

where suspension points refer to all other possible time and branch (forward or reverse

of the density matrix) orderings of the three vertices, see Fig. 1. The contribution in the
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steady state limit is determined by substituting the steady state expression ρ̄A,I;s = ρ̄A,I;0 +∑
j ρ̄A,I;je

−iνjt. To look at the contribution for a specific transition, we compute the change

in energy of the probe field,
〈
HpX̂

〉
, for the particular transition described by the string of

operators, X̂.

In the following subsections, we described possible gain mechanisms using the example

of a two-level degenerate system modeling the F = 2 → F = 3 component of 87Rb D2

transition.

B. Mollow gain

FIG. 2: Mollow gain in a two-level system (TLS). The pump field (ωp), with detuning ∆p, pumps

atoms into the higher energy state. Depending on the sign of ∆p, the probe field with frequency

ωpr inducing two-photon detuning δ is either amplified or reduced due to a three-photon scattering

process. The probe field polarization is parallel to the polarization of the pump field.

In the case where the probe field is near two-photon resonance, Mollow gain33 dominates

with the gain mechanism due to a three-photon process involving the absorption of two

pump photons and stimulated emission of a probe photon20, see Fig. 2. Population inversion

in the dressed state basis occurs here and results in gain/loss in the sidebands around the

resonance peak in the absorption spectrum36.

Figure 3 shows the absorption spectrum for the case of the resonant driving field. Note

that, in this work, frequency parameters (such as ∆p,pr) and the excited state decay rate

are expressed in units of Γ, and time parameters in the units of 1/Γ. The feature seen
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g A
(ω

)

FIG. 3: Absorption spectrum of light with parallel (to pump) polarization for the resonantly driven

87Rb system with parameters Γ = 1.0, Ωp = 4Γ, ∆p = 0.

−20 −15 −10 −5 0 5 10 15 20
−0.1

0

0.1

0.2

0.3

∆pr (units of Γ)

g A
(ω

)

FIG. 4: Absorption spectrum of light with parallel (to pump) polarization for the off-resonantly

driven 87Rb system with parameters Γ = 1.0, Ωp = 4Γ, ∆p = 2Γ

around ∆pr = 0 corresponds to an interference between multiple two-photon processes. The

dominant resonant contribution is the two-photon Rayleigh scattering process involving an

absorption of the probe photon and spontaneous emission of a photon having the same

frequency37. Additionally there are processes involving absorption of a pump photon and

emission of a probe photon and vice versa. The greatest gain components are observed at

the sidebands centered at the dressed state frequencies ±Ωp in the resonant driving case.

Increasing ∆p from zero, results in an asymmetric spectrum where amplification occurs only

on one sideband while an absorption feature occurs on the other, as shown in Fig. 4.
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FIG. 5: Atom-photon dressed state picture of the TLS in the case when the pump pulse is off

resonance; ωA corresponds to an absorption feature that appears with non-resonant driving; ωG =

2ωpr − ωA is the probe frequency that corresponds to the three-photon scattering amplification

side-band.

Figure 5 shows various spectral lines corresponding to features in the absorption spec-

trum for the slightly detuned case as in Fig. 4. In the atom-photon number dressed state

basis, we see that the features correspond to transitions between different dressed states

involving absorption/emission of a probe photon with energy ℏωpr and absorption/emission

of a number of pump photons with energy ℏωp.

FIG. 6: Raman gain in a detuned system with multiple magnetic sub-levels. |g,m⟩ is the ground

state magnetic sub-level m. The pump field (ωp) and spontaneous decay create a population

distribution among the |g,m⟩ states that depends on their Clebsch-Gordon coefficients. The probe

laser (ωpr) experiences gain/loss depending on the signs of ∆p, δ.
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C. Raman gain using Zeeman sublevels

For the case of a two-level system with many magnetic sub-levels, a far-detuned pump

laser field can induce probe gain through population inversion among the shifted sub-levels.

Unlike Mollow gain, Raman gain on magnetic sublevels requires a probe field with polariza-

tion orthogonal to the pump filed polarization14. This is due to the necessary two-photon

Raman transition between different m number states. The high one-photon detuning creates

level shifts of the dressed states corresponding to each magnetic sub-level and introduces a

dispersive structure for the absorption spectrum at δ = 0 shown in Fig. 6. This results in

gain on one side of the structure and loss on the other, shown in Fig. 7.

−20 −15 −10 −5 0 5 10 15 20
−0.2

0

0.2

0.4

∆pr (units of Γ)

g A
(ω

)

FIG. 7: Absorption spectrum of light with perpendicular polarization for the off-resonantly driven

87Rb system with parameters Γ = 1.0, Ωp = 4Γ, ∆p = 1.75Γ.

D. Raman gain with coupling fields

Raman gain can be induced by sustaining a population inversion between two different

lower energy states, e.g. hyperfine ground states20 through optical pumping, and then

producing gain with a stimulated two-photon transition using a coupling field Ec(t)
20,38.

The probe polarization in this case depends on the choice of level |e2⟩, see Fig. 8.
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FIG. 8: Raman gain in a system with coupled hyperfine levels gi. The pump laser (ωpr) optically

pumps the system to induce ground state coherence. The coupling laser (ωC) is introduced to

return atoms to the ground states and create gain in the probe (ωp) due to the Raman transition

involving the coupling and probe.

E. Four-wave mixing (FWM) gain

FWM is a phase-sensitive parametric nonlinear optical process that involves the interac-

tions of four fields with a nonlinear medium and transferring energy between the fields39.

When considering a degenerate FWM (d-FWM) using counter-propagating pump fields and

satisfying a phase matching condition, gain is observed in the backward propagating reflec-

tion of the probe field20,40.

F. Inversionless gain in coherently driven multilevel systems

Probe gain in coherently driven multilevel systems without inversion in any meaningful

basis has been described as resulting from coherence between dressed states31,32. For the

case of the three-level V-system, each of the coherent, linked dressed state contributes to

the absorption spectrum with two independent Lorentzians occurring at the dressed states

resonances. The presence of gain is suggested to be due to competition between n-photon

scattering processes, each of which is responsible for contributing to gain or loss. In V and Λ

type systems, two-photon scattering is responsible for inversionless gain, while one-photon
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processes cause gain in cascade type systems32.

G. Amplified Spontaneous Emission (ASE)

Spontaneous emission is a quantum process in which an atom in an excited state spon-

taneously de-excites into a lower energy state by emitting a photon into one of the modes

of the quantum mechanical vacuum/reservoir field. It can be semiclassically described as

emission process stimulated by vacuum noise, (the zero-point fluctuations of the electric

field in the vacuum state)41. ASE is a result of stimulated emission processes that amplify

the spontaneous radiation field propagating in a medium with gain and is often a pervasive

phenomenon in lasers and optical amplifiers42. We distinguish between ASE and the coop-

erative phenomena of superfluorescence, the latter process requiring negligible dephasing to

form a cohrent macroscopic interaction5.

The threshold for ASE in a particular gain medium is reached when the contribution from

optical gain processes is greater than that of absorption and escape processes, (radiation

scattering away from the medium). Unlike lasing involving coherent amplification of the

probe pulse, the temporal coherence of ASE in media with multiple scatterers without

coherent feedback is often low, due to a large radiation bandwidth. In particular, the second-

order coherence g(2)(ω, t) of ASE demonstrates super-Poissonian statistics consistent with

that of thermal light43. However the presence of a coherent feedback loop realizes random

lasing and the generation of more coherent light with Poissonian statistics44. Coherent

feedback loops can be created by manipulating the scattering processes in the gain medium,

as multiple scattering can replace the requirement of mirrors for coherent feedback. This

leads to the formation of a new threshold for lasing with coherent feedback that depends on

the gain medium’s scattering properties45.

The spatial coherence of ASE can be very high even without a coherent feedback loop.

In atomic gas systems, the geometry of the lasing setup (the optically active part of the

system), as well as the internal degrees of freedom (atomic populations, coherences and the

spectral lineshape46), affect spatial coherence and beam divergence. The treatment of spatial

coherence becomes more complicated when considering multiple scattering, especially in the

strong scattering regime where localization of light can occur6.

The starting point for the microscopic treatment of ASE in a continuously driven medium
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is the Heisenberg equations of motion for the photon number operator Eq. (9). In general,

it is difficult to solve for the photon number operator, especially in the case of large systems.

Instead, the operator
〈
E

(µ)−
I′ (r⃗)E

(µ′)+
I′ (r⃗)

〉
(t) is considered. Before we look at the effects of

feedback and multiple scattering, we look into this operator in detail. The contribution of

spontaneous emission in
〈
E

(µ)−
I′ (r⃗, t)E

(µ′)+
I′ (r⃗, t)

〉
is

Ss(t) =
∑
j,α

∑
i,β;ν=±

∫ t

0

dt′
(
Γ
(µµ′)
ji (R⃗α, R⃗β, t, t

′)
〈
σ+
i,I′(R⃗α, t)σ

−
j,I′(R⃗β, t

′)
〉

+Γ
(µµ′)
ij (R⃗α, R⃗β, t, t

′)
〈
σ+
j,I′(R⃗β, t

′)σ−
i,I′(R⃗α, t)

〉)
,

(16)

where Γ
(µµ′)
ij (R⃗α, R⃗β, t, t

′) is given by∫ ∫
d3k d3k′ g

(µ)

k⃗;i
(R⃗α, t)g

(µ′)∗
k⃗′;j

(R⃗β, t
′). (17)

We distinguish between the single-atom term (α = β) and the two-atom terms (α ̸= β).

The latter contributes to collective emission, the superfluorescence. The stimulated emission

term is

Rs(t) = i
∑
i,α

∫ ∫
d3k d3k′

(
g
(µ′)∗
k⃗′ i

(R⃗α) Tr
{
a
(µ)†
k⃗,I′

(t)σ−
i,I′(R⃗α, t)ρI′(t0)

}
−g

(µ)

k⃗i
(R⃗α) Tr

{
a
(µ′)
k⃗′,I′

(t)σ+
i,I′(R⃗α, t)ρI′(t0)

})
−

∑
ij,α;ν=±

∫ t

0

dt′
(〈

E
(µ)−
I′ (r⃗, t)

[
d⃗l · E⃗(ν)+

I′ (R⃗α, t
′)
]
· C(µ′)

i,j (r⃗, R⃗α, t, t
′)
〉

+
〈[

d⃗∗l · E⃗
(ν)−
I′ (R⃗α, t

′)
]
E

(µ′)+
I′ (r⃗, t) · C(µ)†

i,j (r⃗, R⃗α, t, t
′)
〉)

.

(18)

The first term, the Langevin force, is non-zero only if there are initial correlations at time

t0. The d⃗l is the unit transition dipole vector for transition l. The term proportional to the

single-atom dipole correlation operator reads

Cµ′

i,k(r⃗, R⃗α, t, t
′) =

[
σ−
i,I′(R⃗α, t), σ

+
j,I′(R⃗α, t

′)
]
×
∫

d3k′ g
(µ′)∗
k⃗′ i

(R⃗α − r⃗)ε
(µ′)

k⃗′
. (19)

The single-atom dipole-dipole functions are expanded in terms of projection operators onto

the populations and coherences to give us the contributions to the spontaneous emission and

gain/loss spectra. In the case where we have non-degenerate levels and no driving fields,

one transition is coupled to each radiation mode, and single-atom dipole-dipole functions for

transition l are equal to sums of σz
l and Il. Coupling multiple transitions to a single mode
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introduces lower-state or upper-state coherence. The contribution from each transition is

weighted by their Clebsch-Gordan coefficient and the transition frequency.

In the field interaction picture where the atomic propagators are dressed with the driving

field, non-zero driving introduces the σ±
l operators in the dipole-dipole functions, thus intro-

ducing dependence on the atomic coherences. In this way, the dressed state structure of the

degenerate system appears with the presence of new Lorentzians and interference terms in

the spectral function. Since the atomic coupling to the vacuum is weak, it is useful to switch

to the more physically meaningful basis of the dressed states which are the eigenstates of

UL(t, t0).

We assume that driving fields are slowly varying, with small losses in the intensities over

large timescales. The dressed states,
∣∣∣Λk(R⃗α, t)

〉
, are defined along with their corresponding

energies λk(t) such that

σ+
j;I′(R⃗α, t) =

∑
m′m

Cj
m′m(R⃗α, t)e

it(ωj+λm′−λm)
∣∣∣Λm(R⃗α, t)

〉〈
Λm′(R⃗α, t)

∣∣∣ . (20)

The dipole-dipole function consists of projection operators onto the dressed state popula-

tions and coherences. This causes all fast time dependencies to be stored in the exponentials

and the density matrix. Due to small coupling strength, and with the assumption that tran-

sition frequencies are in the optical regime, the timescale for the evolution of the density

matrix is significantly larger than that for the decay of the correlation functions. This

justifies the use of the Markov approximation.

H. Paraxial approximation

A pencil-like geometry for the pump laser is assumed such that only a narrow cone of

wavevectors Σk, for forwards (R) and backwards (L) components, contributes to the ASE

modes. The electric field operator for a single mode Ê(µ)(r⃗, t) is therefore expanded as:

Ê(µ)(r⃗, t) =
[
E

(µ)+
R (r⃗, t)eik⃗0·r⃗ + E

(µ)+
L (r⃗, t)e−ik⃗0·r⃗

]
e−iω0t − H.c. , (21)

where k⃗0 is the forward propagating wavevector along the axis of Σk and E
(µ)+

k̂
(r⃗, t) is a

slowly varying operator. This treatment is similar to the description of ASE for the case

of homogeneously broadened three-level atoms in a rod-like geometry47. We assume that

the atomic density is large enough that the dipole operator is now a continuous function

15



of position. Furthermore we assume in a small volume Vr with radius r centered at any

point R⃗, the ωjc
−1r ≫ 1, and the dipole correlation function and the atomic density varies

trivially. We introduce the volume-averaged dipole in a small vertical slice of the cylindrical

medium S+
j;I′(R⃗i, t) = n(R⃗i)

∫
Vr(R⃗i)

dV
′
σ+
j;I′(R⃗

′
, t). The interaction terms between pairs of

atoms are assumed to contribute negligibly to the dynamics and are ignored. The equation

for the density matrix element in the dressed state basis reads

d

dt

〈
σΛaΛb

(R⃗a, t, t)
〉
I′
=
∑
ml

Γab;ml
1 (R⃗α, t)

〈
σΛmΛl

(R⃗a, t, t)
〉
I′

−
∑
l

Γab;l
2 (R⃗α, t)

〈
σΛaΛl

(R⃗a, t, t)
〉
I′

−
∑
l

Γab;l
3 (R⃗α, t)

〈
σΛlΛb

(R⃗a, t, t)
〉
I′

+
∑
k̂1,k̂2

I(µµ
′)(k̂1, k̂2, R⃗α, R⃗α, t)

×

(∑
ml

Bab;ml
1 (µ, µ′, R⃗α, t)

〈
σΛmΛl

(R⃗a, t, t)
〉
I′

+
∑
ml

Bab;l
2 (µ, µ′, R⃗α, t)

〈
σΛaΛl

(R⃗a, t, t)
〉
I′

+
∑
ml

Bab;l
3 (µ, µ′, R⃗α, t)

〈
σΛlΛb

(R⃗a, t, t)
〉
I′

)
.

(22)

We define the two-point field correlation function as I(µµ
′)(k̂1, k̂2, R⃗1, R⃗2, t) =〈

E
(µ)−
k̂1,I′

(R⃗1, t)E⃗
(µ′)+
k̂2,I′

(R⃗2, t
′)
〉
. The term R⃗1,2 is the average polarization vector of the ∓

field component and k̂1,2 ∈ {L,R}. We use the paraxial approximation formalism described

in Ref. 47 to derive the radiative transport equation[
∂

∂t
+ c
(
k̂1 · ∇R⃗1

+ k̂2 · ∇R⃗2

)
−i

c

2k0
∇2

⊥

]
I(µµ

′)(k̂1, k̂2, R⃗1, R⃗2, t) =
∑
x⃗,ij

Aij;ml
µµ′ (x⃗, t) ⟨SΛmΛl

(x⃗, t, t)⟩I′

+
∑

q̂∈{L,R}

∑
x⃗,ij

δµµ′ ⟨SΛmΛl
(x⃗, t, t)⟩I′

×
[
Kij;ml(q̂ → k̂1, k̂2, x⃗, t)I

(µµ)(q̂, k̂2, R⃗1, R⃗2, t)

+Kij;ml(k̂1, q̂ → k̂2, x⃗, t)I
(µµ)(k̂1, q̂, R⃗1, R⃗2, t)

]
,

(23)
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where ∇⊥ is the gradient operator transverse to k̂1,2 and Aij;ml
µµ′ (x⃗, t) is given by

Aij;ml
µµ′ (x⃗, t) =

∫
Σk

∫
Σk′

d3k d3k′ g
(µ)∗
k⃗;i

(x⃗)g
(µ′)

k⃗′;j
(x⃗)

×
∑
l′

∫ ∞

0

dτ

[
Ci∗

l′l(t)C
j
ml′(t)e

−i(ωk−ωk′−ωij+λl′l−λl′m)t ei(ωk′−ωj+λl′m)τ

+ Ci
ml′(t)C

j∗
l′l (t)e

i(ωk−ωk′−ωij−λl′l+λl′m)t e−i(ωk′−ωj−λl′m)τ

]
.

(24)

The spontaneous emission contribution is integrated over the cone in momentum space

that contains wave-vectors that remain in the cylindrical medium and contribute to ASE.

The remaining wavevectors are considered to have escaped from the medium and do not

contribute to the evolution of the paraxial ASE modes. Kij;ml(q̂ → k̂1, k̂2, x⃗, t) and

Kij;ml(k̂1, q̂ → k̂2, x⃗, t) are the scattering probabilities for the mode with wavevector q̂ to

scatter into the mode with wavevector k̂1,2 respectively through virtual transitions between

dressed states Λm and Λl. This corresponds to stimulated emission processes and is derived

from Eq. (18) using the dressed state expansion of the atomic operators Eq. (20).

The paraxial approximation equations for the dressed state atomic matrix and the ra-

diative equations for the field correlation effectively model the dynamics of an ASE field

in a cold random atomic gas, under the approximation that interatomic scattering plays

little to no effect. The gain condition that results in ASE can be derived by calculating all

the coefficients that depend on the dressed state configuration and determining the choices

of parameters, including the pump field and detuning, that result in the right-hand side

of Eq. (23) being greater than zero in the steady state. The choice of parameters can be

informed by looking at the gain mechanisms, and the above section on the probe field gain

accounts for how dressed state inversions and coherences contribute.

I. Gain analysis

We define the specific intensity Iei(r⃗, t, k̂, ω) which describes the rate of radiative transfer

at point (r⃗, t) for the field with polarization ei and wavevector k⃗ emitted from a unit area

through a unit solid angle. A simplified model for Iei(r⃗, t, k̂, ω) is given under the assumption

of small optical amplification of the spontaneous emission field, steady state atomic dynam-

ics, and no Doppler and collision-caused frequency redistribution and broadening effects.
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FIG. 9: Graph of absorption value over the entire spectrum of radiation for the orthogonally

polarized (to the pump) field (seeded by the probe) versus the pump Rabi frequency. The 87Rb

Fg = 2 → Fe = 3 system is used with parameters Γ = 1.0, (a) ∆p = 0 and (b) ∆p = 0.5Γ. The

probe field frequency that corresponds to the minimum absorption feature varies with ∆p and Ωp.

Gain is only observed when the one-photon detuning is non-zero (red area).

For
∂Ix(r⃗, t, ŷ, ω)

∂t
= 0, the radiative transfer equation has the form17

∂Ix(r⃗, t, ŷ, ω)

∂y
= η(r⃗, t)− χ(r⃗, t)Ix(r⃗, t, ŷ, ω), (25)

η(r⃗, t) and χ(r⃗, t) are the spontaneous emission contribution and the stimulated absorption

term. In the homogenous steady-state atomic medium limit with atom density nA,

η(r⃗, t) = nA
ℏω0

4π
A (ω0) gE (ω) = nA

c |µx|2

12πϵ0

(ω0

c

)4 ∫ ∞

0

dτ
〈
d+x,H (τ) d−x

〉
e−iωτ , (26)

χ(r⃗, t) = nA
ℏω0

4π
B (ω0) gA (ω) = nA

ℏω0

4π

(
π2

cℏ

(ω0

c

)−3

A (ω0)

)∫ ∞

0

dτ
〈[
d−x , d

+
x,H (τ)

]〉
e−iωτ ,

(27)

where gA/E(ω) is the absorption/emission spectral line shape function, and A(ω0), B(ω0)

are the Einstein coefficients for spontaneous emission and stimulated emission respectively48.

The solution to Eq. (25), using boundary condition Ix(0, t, ŷ, ω) = 0, is given by,

Ix(r⃗, t, ŷ, ω) =
gE (ω)

gA (ω)

(
ℏω3

0

π2c2

)(
1− e−χ(ω)x

)
. (28)

18



2 4 6 8 10
0

1

2

3

4

5

Iz(0) (mW/cm2)

〈I
x
(ω
,L

)〉
ω
(µ

W
/
cm

2
/
sr
/
H
z)

FIG. 10: Graph of averaged specific intensity of the orthogonally polarized radiation copropagating

with the pump field versus the pump field intensity. The 87Rb Fg = 2 → Fe = 3 system49 is used

with ∆p = 0.5Γ. The cell length is L = 0.1m and the atomic density is nA = 1.6× 1014m−3.

The absorption spectral response as a function of the Rabi frequency of the pump field is

shown in Fig. 9(a) for the resonant (∆p = 0) and Fig. 9(b) for the detuned case (∆p = 0.5 Γ).

The Qutip function library was used to calculate the spectrum using a fast Fourier transform

of the two-time correlation function, Eq. (11), in the field interaction picture where the

Hamiltonian is time independent. Under the resonance condition, we see that there is no

gain for any value of the Rabi frequency. Meanwhile, non-zero detuning provides gain for

certain values of the pump field Rabi frequency, as shown by the red area in Fig. 9(b). We

define the set of frequencies in this area as the gain island Sg = {ω| gA(ω) < 0,Ωp ≤ 5}.

The intensity of the generated field averaged over the frequency range within the gain

island is shown in Fig. 10 as a function of the pump field intensity for the 87Rb D2 F = 2 →

F = 3 transition with nA = 1.6× 1014m−3, ∆p = 0.5 Γ and x = 0.1m. The Rabi frequency

corresponding to the maximum gain in the gain island in Fig. 9 (b) is equal to ΩG ≈ 2.5Γ.

The maximum intensity of the ASE field similarly results for Ωp = ΩG with the frequency

peak at ω = ω0 +
√
Ω2

G +∆2
p.

III. DEGENERATE MIRRORLESS LASING

In this section, we study a prototypical system in which directional emission was predicted

and observed to occur at the same frequency and orthogonal polarization as those of the
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excitation light.

Consider the eight-level system of the D2 (5
2S1/2 → 52P3/2) line in

87Rb. The 52S1/2 and

52P3/2 states are split into hyperfine structure components with total angular momentum

Fg = 2, 1 and Fe = 3, 2, 1, 0 respectively. We consider the Fg = 1 → Fe = 2 transition. In

the absence of magnetic field, the ground state is three-fold and the excited state is five-fold

degenerate.

FIG. 11: The degenerate 8-level system interacting with a linearly polarized pump field in z-

direction (a) and linearly polarized probe field in the orthogonal direction (b). The numbers given

in parenthesis are the numbers corresponding to the levels as they appear in the Hamiltonian.

Pump light linearly polarized in the z-direction induces the transition between magnetic

sublevels with the same quantum numbers: mg = me. On the other hand, circularly polar-

ized light induces transition between energy level with different magnetic quantum numbers

depending on the direction of polarization. This is due to the principle of angular momen-

tum conservation, as the sum of angular momenta of the light and the atom should remain

constant. If Eσ− and Eσ+ represent the right and left circular polarization components of

the light, a superposition of the two components chosen here as the probe gives linearly
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polarized field in the x̂ direction

Ex =
i√
2
(Eσ− + Eσ+) , (29)

where the overall phase factor is chosen for consistency with standard definitions.

A. Population Dynamics

The interaction of the mutually orthogonal linearly polarized pump and probe fields

with atoms is depicted in Fig. 11. The pump field polarized along the quantization axis

z couples the ground and excited states satisfying the condition ∆m = me − mg = 0,

as shown in Fig. 11(a). The orthogonally polarized probe field couples states satisfying

∆m = me −mg = ±1, see 11(b).

The field-interaction Hamiltonian is given by:

H =
ℏ
2



2∆pr −iΩ21(pr) 0 0 0 0 0 0

iΩ21(pr) 0 Ω23(p) 0 iΩ25(pr) 0 0 0

0 Ω23(p) 2(∆p +∆pr) −iΩ43(pr) 0 0 0 0

0 0 iΩ43(pr) 0 Ω45(p) 0 iΩ47(pr) 0

0 −iΩ25(pr) 0 Ω45(p) 2(∆p +∆pr) −iΩ65(pr) 0 0

0 0 0 0 iΩ65 0 Ω67(p) iΩ68(pr)

0 0 0 −iΩ47(pr) 0 Ω67(p) 2(∆p +∆pr) 0

0 0 0 0 0 −iΩ68(pr) 0 2∆pr



,

(30)

where ∆p = ω0 − ωp and ∆pr = ω0 − ωpr are pump and probe detunings, respectively, and

Ωij(p,pr) are the Rabi frequencies for transitions between i and j sublevels corresponding to

either the pump or the probe field. The Rabi frequencies are given by

Ωij(p,pr) = −Ep,prµij

ℏ
= −Ep,pr ⟨Fg mg|er|Feme⟩

ℏ
, (31)

with the interaction strengths characterized by the dipole matrix elements between a ground

state |Fg mg⟩ and an excited state |Feme⟩. To simplify the calculation of Rabi frequencies,

the matrix elements are expressed in terms of the 3-j symbol so that the angular momentum
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dependence can be factored out:

⟨Fg mg|er|Feme⟩ = ⟨Fg| |er| |Fe⟩ (−1)Fe−1+mg ×
√
2Fg + 1

Fe 1 Fg

me q −mg

 , (32)

where ⟨Fg| |er| |Fe⟩ is the reduced matrix element, independent of the magnetic quantum

numbers and q is the index of r in the spherical basis. Note that the reduced matrix element

will be the same for all transitions. The pump (probe) reduced Rabi frequency Ωp (Ωpr) can

now be defined in terms of the reduced matrix element, such that

Ωp,pr = −Ep,pr ⟨Fg| |er| |Fe⟩
ℏ

. (33)

Any population in the excited state decays to the ground sublevels satisfying the selection

rules, ∆m = 0,±1. The decay is characterized by the branching ratio. Considering that the

total decay rate of the excited state is Γ, the density matrix equation is given by

d

dt
ρ = − i

ℏ
[H,ρ]− Γ

2

3∑
k=1

(
σ+

k σ
−
k ρ+ ρσ+

k σ
−
k − 2σ−

k ρσ
+
k

)
, (34)

where σ+
k and σ−

k are the raising and lowering operators for decay channels with ∆m = 0,

∆m = −1 and ∆m = +1 denoted by k = 1, 2, 3, respectively.

First, consider that the population is initially distributed equally in the ground sublevels

and a cw pump field, linearly polarized in the z-direction, is applied. It induces population

transfer with ∆m = 0. Consequently, the states with |me| = 2 do not obtain any population.

The combined process of strong pumping and decay moves populations to sublevels with

lower magnetic numbers and eventually brings the system into a steady-state. A useful

quantity called saturation parameter, denoted by S, can be defined in terms of the reduced

Rabi frequency, spontaneous decay rate and detuning

S =
Ω2

p

Γ2

4
+∆2

p

. (35)

As mentioned earlier, the frequency parameters are expressed in units of Γ and time param-

eters in the units of 1/Γ. An example of the time evolution of the populations for S = 36 is

shown in Fig. 12(a). Initially, populations are equally distributed among the three ground

degenerate levels. As the system reaches the steady-state, a population inversion between

|me| = 0 and |mg| = 1 levels has been achieved. The one-photon resonance, ∆p = 0, is

favorable for achieving population inversion at lower peak Rabi frequency.
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(a) Evolution of populations for S = 36
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(b) Steady-state populations vs saturation

FIG. 12: The evolution of populations for S = 36, (a), and the steady-state populations vs satura-

tion parameters (b) in the presence of linearly polarized pump field. Under the combined effect of

strong pumping and decay, the populations tend to move towards the hyperfine levels with lower

magnetic numbers. While there is no inversion of population between the mg = 0 and me = 0

levels, there is a population inversion between |mg| = 1 and me = 0 levels. Since the pump is

linearly polarized, the |me| = 2 levels are not populated at all. Here, ∆p = 0 and Γ = 1.0 in both

(a) and (b).

In Fig. 12(b), the steady-state populations vs. saturation parameter are depicted. The

population inversion is achieved for values of S > 4.0, implying a strong pumping is needed

for inversion to occur. The pump field is taken here to be in resonance with the transition

in both figures 12(a) and 12(b). Taichenachev et al.50 have derived equations for the steady

state populations in a system with jg = j to je = j + 1 energy levels, coupled resonantly to
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a pump field. Those steady state equations were derived under the condition that the time

derivatives of the density matrix elements are zero. They were used in Ref. 25 to calculate

populations vs. saturation parameter for the Fg = 2 → Fe = 3 and Fg = 3 → Fe = 4

transitions in 87Rb and 85Rb respectively. Figure 12 shows the populations obtained from

the exact solution of the Liouville von Neuman equation with relaxation; they are in a good

agreement with the ones obtained using steady state equations from50 for the Fg = 1 →

Fe = 2 case.

B. The probe field gain

Our objective is to find the conditions for positive gain for probe light polarized orthog-

onally to the pump field. To achieve this, an equation for amplification (or absorption) of

the field is derived from the density matrix equation. Every atom that is de-excited from

the upper state emits a photon, which means

− d

dt
n(ρex) =

d

dt
np , (36)

where ρex stands for the population of the excited state manifold ρex =
∑

i=1,3,5,7,8 ρii ; n

and np are the atom and photon densities, respectively. Only the photons that are spon-

taneously emitted within the solid angle Φ will contribute to the intensity in both forward

and backward directions. Considering this, the equation for the photon density is written

to account for photons emitted due to stimulated and spontaneous emissions separately

np = nst
p +

Φ

4π
nsp
p . (37)

The light intensity is related to the photons density by I = npcℏω where c is the speed of

light and ℏω is the energy of a photon. In Eq. (34), one can identify that the first term is

related to stimulated photons generation while the second term to spontaneous emissions.

Considering this fact and making use of equality dz = cdt, the coupled equations for the

propagation of the pump and the probe fields are written as

d

dy
Iz = −αzIz +

Φ

4π
nℏωΓz,

d

dy
Ix = −αxIx +

Φ

4π
nℏωΓx,

(38)
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where

αz = − nω

2cϵ0Ez0

∑
i=1,3,5,7,8

i[µz,ρ]ii ,

αx = − nω

2cϵ0Ex0

∑
i=1,3,5,7,8

i[µx,ρ]ii ,

Γz =
∑

i=1,3,5,7,8

Γ

2
(σ+

1 σ
−
1 ρ+ ρσ+

1 σ
−
1 − 2σ−

1 ρσ
+
1 )ii ,

Γx =
∑

i=1,3,5,7,8

∑
k=2,3

Γ

2
(σ+

k σ
−
k ρ+ ρσ+

k σ
−
k − 2σ−

k ρσ
+
k )ii .

(39)

Here, µz and µx are the matrices with dipole elements corresponding to the transitions of

pump and probe fields respectively.

µz = µ23 |2⟩⟨3|+ µ45 |4⟩⟨5|+ µ67 |6⟩⟨7|+H.c. ,

µx = i
(
µ21 |2⟩⟨1|+ µ25 |2⟩⟨5|+ µ43 |4⟩⟨3|+ µ47 |4⟩⟨7|+ µ65 |6⟩⟨5|+ µ68 |6⟩⟨8|

)
+H.c.

(40)

The spontaneous decay factors Γz and Γx are given by

Γz = Γ
(
b32ρ33 + b54ρ55 + b76ρ77

)
,

Γx = Γ
(
b12ρ11 + b34ρ33 + (b52 + b56)ρ55 + b74ρ77 + b86ρ88

)
,

(41)

where bij are the branching ratios corresponding to the transitions between i and j states.

They read

b32 = b76 = 1/2 , b54 = 2/3 ,

b12 = b86 = 1 ,

b34 = b74 = 1/2 ,

b52 = b56 = 1/6 .

(42)

The second term of Eq. (38) gives the contribution to the change in intensity due to spon-

taneous emission of photons of energy ℏω by n atoms per unit volume being in the excited

state and decaying to respective ground sub-states connected by z-polarized or x-polarized

light. Since the spontaneous decay can be assumed to be isotropic, the factor Φ/4π accounts

for the fraction of spontaneously emitted photons into solid angle Φ. The solutions of Eqs.

(38) are

Iz(y) = Iz0e
−αzy − Φ

4π
nℏωΓz

(
e−αzy − 1

αz

)
,

Ix(y) = Ix0e
−αxy − Φ

4π
nℏωΓx

(
e−αxy − 1

αx

)
,

(43)
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FIG. 13: The geometry of the elongated medium responsible for amplified spontaneous emission

whose emission solid angle at both ends of the medium is denoted as Φ.

where Iz0 = Iz(0) and Ix0 = Ix(0). In the absence of contribution from spontaneous emission,

the amplification (or absorption) of the probe field is determined by the absorption coefficient

αx. To analyze this coefficient, it is useful to take the partial trace of the commutator∑
i=1,3,5,7,8

i[µx,ρ]ii = 2
(
µ21Re[ρ12] + µ25Re[ρ25] + µ43Re[ρ34]

+ µ47Re[ρ47] + µ65Re[ρ56] + µ68Re[ρ68]
)
.

(44)

Because of the symmetry in the system, ρ21 = ρ68, ρ25 = ρ65 and ρ43 = ρ47; the previous

equation can hence be reduced to∑
i=1,3,5,7,8

i[µx,ρ]ii = 4
(
µ21Re[ρ12] + µ43Re[ρ34] + µ65Re[ρ56]

)
. (45)

The sign of the absorption coefficient αx is opposite to the sign of the quantity in Eq. (45).

For the probe field to be amplified, αx needs to be negative. In Fig. 14, the real and

imaginary parts of three relevant coherences ρ12, ρ34 and ρ56 are plotted for Ωp = 3.0 Γ

assuming a negligible probe intensity. Figures 14 (a) and 14 (b) correspond to the resonant

case (∆p = 0), and 14 (c) and 14 (d) correspond to the detuned case ∆p = 0.1 Γ. The

sum of the real parts of coherences is negative in both cases, leading to the coefficient

αx being positive. The positive value of the real part of coherence ρ56 between inverted

magnetic sublevels reduces the overall negative value of the sum, thus reducing the degree

of absorption. The present case implies that there is no gain in the medium. Note that all

imaginary parts are zero in the resonant case. In the detuned case, imaginary parts have

non-zero values. However, they do not contribute to the absorption coefficient but to a

change in phase of the electric field.

To analyze how detuning impacts the absorption coefficient αx, it is useful to define

a quantity called frequency offset given by δ = ωpr − ωp = ∆p − ∆pr. The absorption
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FIG. 14: Coherence between states connected by the probe field. In (a) and (c), ∆p = 0, and in

(b) and (d), ∆p = 0.1Γ. When the pump field is in resonance, imaginary parts of all the coherences

are zero. In the presence of detuning, non-zero imaginary parts contribute to a phase change of

the field.

coefficient for the degenerate system of Fg = 1 → Fe = 2, considering a very weak probe

field Ωpr = 10−3Ωp, is plotted as a function of δ in Fig. 15(a). Here, the pump field frequency

is in resonance with the atomic transition frequency, ∆p = 0. The absorption coefficient is

always positive in this case indicating the absence of gain. The peak absorption occurs at

the frequency of the probe field in the resonance with the atomic frequency, ∆pr = 0.

To find the output intensity of the generated field having linear polarization orthogonal

to polarization of the incident pump field we solve Eq. (38). Once the system is pumped to a

steady state, spontaneous photons generate light, which further gets amplified or absorbed
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FIG. 15: In (a), the probe field absorption in the case of resonance ∆p = 0 is plotted as a function

of the detuning δ for different pump detunings considering a very weak probe field, Ωpr = 10−3Ωp,

Ωp = 0.5Γ for Fg = 1 → Fe = 2 system. In (b), the output intensity of the field linearly polarized

in the x direction as a function of the pump field linearly polarized in the z-direction. The cell

length is L = 0.1m and the atomic density is nA = 1.16× 1016m−322.

depending on the contribution from the first term in Eq. (38). The output field intensity

for varying values of the pump field intensity is shown in Fig. 15(b). The output inten-

sity initially varies linearly and followed by saturation at higher intensities of the pump

field. The generated field intensity is built from two contributions: one coming from the

directional, stimulated coherent process due to induced polarization [first term in Eq. (38)]

and the second coming from the amplification of isotropic spontaneous emission [second
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term in Eq. (38)]. Population inversion present in the steady atomic state contributes to

the stimulated emission/absorption mechanism; yet is not enough to overcome overall losses

(absorption from non-inverted states) and hence does not lead to gain but only to a reduced

absorption. However, one should expect the output measurement of the generated field

having polarization perpendicular to the pump field to be nonzero owing to the isotropic

emission of spontaneously emitted photons. The intensity of this field depends on the Rabi

frequency and the pump field detuning. As an example for experimental realization, given

the decay rate is equal to Γ = 2π × 5.6MHz (87Rb F = 2 → F = 3), we propose using the

Rabi frequency equal to Ωp = 0.4 Γ, and the one-photon detuning equal to ∆p = 0.5 Γ.

IV. EXPERIMENTAL SITUATION

The idea of degenerate mirrorless lasing was born at the Institute for Physical Research,

in Ashtarak, Armenia23,25 and evolved into a fruitful collaboration with the University of

Mainz a few years later.

The principle idea, as discussed above, is that optical pumping redistributes the popula-

tion among the ground-state Zeeman sublevels. At sufficiently high light powers of a linearly-

polarized radiation, the population is partially transferred to the excited state, which, in the

case of an F → F+1 transition may result in population inversions between certain sublevels

of the ground and excited states. Due to the pencil-shaped geometry of the light-atom inter-

action volume, this inversion may, under right circumstances, result in directional emission

from the sample. In the case of degenerate mirrorless lasing, amplified spontaneous emission

is produced along or opposite to the pump-beam direction, with polarization orthogonal to

that of the pump.

Forward degenerate mirrorless lasing was detected both in Ashtarak and Mainz, showing

a typical threshold dependence of the outgoing beam on the incoming beam intensity. The

transitions for which we expected and observed the lasing are Fe > Fg cycling transitions

in the D2 line of rubidium, specifically, 85Rb Fg = 3 → Fe = 4 and 87Rb Fg = 2 → Fe = 3.

The intensity of the emission polarized orthogonally with respect to the incident light was

studied as a function of the pump intensity and magnetic field applied along the direction of

the pump-light polarization. Up to 1% conversion efficiency was observed at zero-magnetic

field, which approached to zero with the applied magnetic field. The width of this feature
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was about 15 – 100 mG (FWHM) depending on the pump intensity.

These findings22 are a strong indication of amplified emission in the forward direction, also

known as forward mirrorless lasing. In parallel, we detected degenerate four-wave mixing

(FWM), which makes the signal more complicated.

While forward mirrorless lasing is an interesting phenomenon, backward mirrorless lasing

is of greater interest, since it can be used for remote-detection magnetometry, for example

with laser guide stars51. Indeed, high directivity of the backward beam will significantly

facilitate recording of the return flux, which will make the distant remote sensing much

easier.

From the theoretical analysis presented in previous sections one can expect that the

mirrorless lasing should also take place along the pump beam in the backward direction.

It would seem that mirrorless lasing in the backward direction should be detected even

more easily than in the forward direction, since there is no strong background of pump

radiation, and also no contribution from the accompanying FWM. However, preliminary

experiments have revealed complexities that require further reflection and clarification.

It was possible to record a non-diverging backward emission in Ashtarak with much lower

conversion efficiency (almost three orders of magnitude less than for the forward one) at

specific experimental conditions. The recorded radiation had an intensity threshold and was

sensitive to the applied magnetic field, similar to the forward case, but exhibited sharp sub-

Doppler features, which were not observed in the forward lasing. However, this result could

not be reproduced in Mainz, even with the same vapor cell and the same experimentalists.

These preliminary studies were useful in identifying the factors important for realization

of the backward mirrorless lasing. Among these factors are: (i) careful avoiding of residual

birefringence of the vapor cell windows; (ii) proper cancellation and control of the magnetic

field; (iii) presence (or absence) of a weak seeding radiation; (iv) broad spectral linewidth

of the pump laser.

The much lower conversion efficiency, as well as the narrow spectral features of the back-

ward radiation, should be associated with the competition between the emission and absorp-

tion in opposite directions by atoms with different velocities for different pump detunings

from Doppler-overlapped atomic transitions.

Further theoretical analysis and experimental studies are needed for complete under-

standing, as well as unambiguous and reproducible demonstration of backward degenerate
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mirrorless lasing.

V. CONCLUSIONS AND OUTLOOK

Degenerate mirrorless lasing is a beautiful phenomenon that has been realized experi-

mentally in the forward direction. However, in the case of backward directed emission, more

experimental work needs to be done. At the same time, theoretical guidance is needed to

guide and interpret the experimental work.

In this manuscript, we have reviewed the current status of the mirrorless lasing and

presented the work-in-progress developments in the general theoretical analysis, hopefully,

on the way to a comprehensive solution of the problem.
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Appendix A: Spontaneous emission modes

We use the formalism from29:

We define the field operator:

E
(µ)+
H (r⃗, t) =

i

(2π)3

∫
d3k a

(µ)

k⃗,H
(t)

√
hωk

2ϵ0
eik⃗·r⃗ε

(µ)

k⃗
, (A1)

and use the Heisenberg equations of a
(µ)

k⃗
(t):

ȧ
(µ)

k⃗,H
(t) = −iωka

(µ)

k⃗,H
(t)− i

∑
α,j

g
(µ)∗
k⃗,j

(R⃗α)σ
+
j,H(R⃗α, t) , (A2)

to get the following equation for the Heisenberg operator:

□2E
(µ)+
H (r⃗, t) =

1

(2π)3/2c

∑
α,j

∫
d3k

√
hωk

2ϵ0
g
(µ)∗
k⃗,j

(R⃗α)ε
(µ)

k⃗

× (ωk − ωj)σ
+
j,H

(
R⃗α, t−

|r⃗ − r⃗′|
c

)
eik⃗·r⃗.

(A3)

□2 is the D’Alembertian. The right hand side is the total current density, summing over

all atomic contributions. We use the Green’s function for the D’Alembertian to get the

integral:

E
(µ)+
j,H (r⃗, t) =

1

c

∫
d3r′

J+
j

(
r⃗′, t− |r⃗ − r⃗′|

c

)
|r⃗ − r⃗′|

,
(A4)

and obtain the general solution:

E
(µ)+
j,H (r⃗, t) =

√
h

2c2ϵ0(2π)3

∑
α,j

∫
d3r′

∫
dkdΩk

× g
(µ)∗
k⃗,j

(
R⃗α

)
k3(ωk − ωj)

k̂ × (k̂ × d̂j)

|r⃗ − r⃗′|

× σ+
j,H

(
R⃗α, t−

|r⃗ − r⃗′|
c

)
eik⃗·r⃗.

(A5)

In the far-field limit, the solution simplifies to:

E
(µ)+
j,H (r⃗, t) ∝

∑
α,j

ω2
j

c2
(r̂α · d̂j)r̂α − d̂j

rα

× σ+
j,H

(
R⃗α, t−

r

c

)
e−iωj(r̂·r̂j).

(A6)
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where r⃗α = r⃗ − R⃗α.

In the far field, each atom acts as a dipole antenna. In the case where we have many

atoms and they’re all stationary, a very complicated spatially constant interference pattern

emerges. However if the atom has a statistical velocity distribution and the number density

is high enough for collisions to be significant, the atomic medium behaves as a choatic light

source.

Appendix B: Paraxial approximation

The volume-averaged dipole operator S+
j;I′(R⃗i, t) = n(R⃗i)

∫
Vr(R⃗i)

dV
′
σ+
j;I′(R⃗

′
, t) is intro-

duced. The volume Vr(R⃗i), center at R⃗i) with radius r is chosen as our sampling region

where the atomic density matrix and the radiation fields vary trivially in Vr(R⃗i). We use it

to simplify the below quantity:

∫
Vr(R⃗i)

dV
′C(µ′)

j,l (r⃗, R⃗
′
, t, t′)ei(q⃗−k⃗′)·R⃗

= C(µ′)
j,l (r⃗, R⃗i, t, t

′)

∫
Vr(R⃗i)

dV
′
ei(q⃗−k⃗′)·R⃗.

(B1)

In the limit of high atomic number density, the condition q⃗ = k⃗′ is enforced as other

contributions average to 0 as only contributions where the wavevectors are approximately

the same survive phase averaging over the volume. With the paraxial approximation, the

dot product ε
(µ)

k⃗
· ε(µ

′)

k⃗′
≈ δ(µµ′). We assume the averaged dipole moment vector D⃗l(R⃗i) =∫

Vr(R⃗i)
dV

′
d⃗l(R⃗

′) averages out all fluctuations such that the z-dipole moment, D⃗z(R⃗i), is

oriented along the pump polarization axis. Ignoring the Langevin terms, Eq. (18) simplifies

to:

Rs(t)

= −δ(µµ′)

∑
jl,α;ν=±

∫ t

0

dt′(〈
(E

(µ)−
I′ (r⃗, t)E⃗

(µ)+
I′ (r⃗, t′)(d⃗l · ε(ν)x⃗ )Dj,l(R⃗i, t, t

′)
〉

+
〈
E⃗

(µ)−
I′ (r⃗, t′)E

(µ)+
I′ (r⃗, t)(d⃗∗l · ε

(ν)∗
x⃗ )D†

j,l(R⃗i, t, t
′)
〉)

,

(B2)

where Dj,l(R⃗i, t, t
′) is the dipole correlation function Eq. (19).
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The expectation of single atom dipole products
〈
σ+
l,I′(R⃗i, t)σ

−
m,I′(R⃗i, t

′)
〉
is expanded in

the dressed state basis in terms of operators, defined in the picture I ′, σΛrΛr′ (R⃗i, t, t
′) =∣∣∣Λr(R⃗i, t)

〉〈
Λr′(R⃗i, t

′)
∣∣∣ :

σ+
i,I′(R⃗α, t)σ

−
j,I′(R⃗α, t

′)

= −iℏ
∑
i,l,l′

∑
j,m

Ci
ll′(R⃗α, t)C

j∗
ml′(R⃗α, t

′)eit(ωi−ωj+λl−λm)

× σΛlΛm(R⃗α, t, t
′)ei(ωj+λm−λl′ )(t−t′) .

(B3)

Assuming the weak coupling approximation, the Markov approximation along with the

slow change of σΛlΛm(R⃗α, t, t
′), the coefficients Cmm′(t′) and the operators are dependent

only on time t. The time evolution of the expectation of these operators is given below (The

contribution of the stimulated emission and pair-atom terms are ignored):

d

dt

〈
σΛaΛb

(R⃗α, t, t)
〉

= − i

ℏ

∫ ∫
d3k d3k′ g

(µ)

k⃗,i
(R⃗α)g

(µ′)∗
k⃗′,j

(R⃗α)

×
∑
lm

Ci
la(R⃗α, t)C

j∗
am(R⃗α, t)e

it(ωi+λl−ωk)

×
∫ t

t0

dt′
〈
σΛaΛm(R⃗α, t, t)

〉
e−it′(ωj+λm−ωk′ ) .

(B4)

We now use the Markov approximation. From the standard methods of solving for the

spectral line shapes by solving the above equations for all dipole operators in Laplace space,

we can determine the power broadened spectral line shapes, fΛaΛm(ω
′, t), corresponding to〈

σΛaΛm(R⃗α, t, t)
〉
and the decay rate ΓΛaΛm(t). The spontaneous decay rates for the atomic

density matrices in the dressed state basis are given below:

Γab;ml
1 (t) =

∫ ∞

0

dτ

∫
d3k

∑
ij

(
Ci∗

bl (t)C
j
ma(t)g

(µ)∗
k⃗,i

g
(µ)

k⃗,j

e−i(ωij+λbl+λam)tei(ωk−ωj−λam)τ

+ Ci
ma(t)C

j∗
bl (t)g

(µ)

k⃗,i
g
(µ)∗
k⃗,j

ei(ωij+λbl+λam)te−i(ωk−ωj−λbl)τ
)
,

(B5)
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Γab;l
2 (t) =

∫ ∞

0

dτ

∫
d3k

∑
ijl′

(
Ci∗

l′l(t)C
j
l′b(t)g

(µ)∗
k⃗,i

g
(µ)

k⃗,j

e−i(ωij+λl′l+λbl′ )tei(ωk−ωj−λbl′ )τ
)
,

(B6)

Γab;l
3 (t) =

∫ ∞

0

dτ

∫
d3kd3k′

∑
ijl′

(
Ci

ll′(t)C
j∗
l′a(t)g

(µ)

k⃗,i
g
(µ)∗
k⃗,j

ei(ωij+λl′a+λl′l)te−i(ωk−ωj−λl′a)τ
)
.

(B7)
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