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Abstract5

This paper presents a new framework for stochastic updating of a finite element model for a composite

plate, considering the influence of temperature on Lamb wave propagation. The framework involves deter-

ministic updating to optimize mechanical properties and stochastic updating to derive probability density

functions for key parameters. It utilizes sensitivity analysis and Bayesian inference with Markov-Chain

Monte Carlo simulations and the Metropolis-Hastings sampling algorithm. This paper proposes a machine

learning surrogate model based on artificial neural networks to improve computational efficiency. This sur-

rogate modeling approach allows parallelized Monte Carlo simulations, reducing updating time significantly

without compromising the accuracy of the resulting probability density functions for model parameters.

These advancements show a promising way to enhance composite plate modeling and Lamb wave propaga-

tion studies, providing a more efficient and accurate approach to verify and validate finite element models

with potential applications in engineering simulations.

Keywords: Lamb wave, Bayesian calibration, Sobol indices, Surrogate model, operational and

environmental variations

1. Introduction

Lamb waves are ultrasonic-guided elastic waves widely used for structural health monitoring (SHM) and

assessing plate-like structures in various applications. Due to their ability to travel long distances, Lamb10

waves find applications in local inspections (fatigue [1], corrosion [2], bonded joints [3]) and large-scale

structures such as aerospace components [4]. This work focuses on Lamb wave propagation in composite

structures [5], facing challenges from material heterogeneity and the influence of temperature and humidity

on physical properties [6, 7].

1 Corresponding author: carlos.cimini@gmail.com
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Guided wave propagation simulation in composite structures is an active research area with various15

methods available, including semi-empirical and numerical [8, 9]. Among numerical methods, the finite ele-

ment (FE) method stands out for its accurate representation of wavefront propagation in complex structures

[10]. However, high-frequency simulations or modeling small features require very fine mesh density, leading

to computationally expensive models. To achieve a desirable degree of fidelity and consider environmental

variations, FE models must be updated with experimental data [11].20

Stochastic updating approaches, like Bayesian updating [12], consider uncertainties during calibration

and are widely used in various works [13, 14, 15, 16]. Previous studies have applied Bayesian inference to

composite structures subjected to Lamb wave excitation, using methods like Local Interaction Simulation

Approach (LISA) and Wave and Finite Element (WFE) [17, 18]. However, the Bayesian inference process

can be computationally expensive, necessitating surrogate modeling techniques [19, 20, 21, 22, 23, 24, 25].25

This paper proposes a framework for stochastic calibration of a FE model for Lamb wave propagation

in composite structures, including temperature effects. It combines deterministic and stochastic updating,

utilizing a modified least-squares method and Bayesian inference with Markov-chain Monte Carlo (MCMC)

simulations [26]. To reduce computational time, this paper proposes an approach consisting of a machine

learning a surrogate model based on artificial neural networks (ANNs), which can be trained using paral-30

lelized Monte Carlo simulations. The proposed approach efficiently updates the FE model for Lamb wave

applications, considering temperature influences [17, 18].

This work enhances Lamb wave research in composite structures subjected to environmental variations,

providing a systematic framework incorporating experimental uncertainty into FE models. The ANN sur-

rogate model accelerates updating, maintaining accuracy in the resulting probability density functions for35

model input parameters. The paper’s structure includes sections on the proposed framework, experimental

setup, model updating application, final remarks and future work directions.

2. Problem statement and methodology framework

As a novelty contribution, this paper presents a framework for applying Bayesian inference to obtain

a stochastic FE model for Lamb wave propagation under varying temperature. Additionally, the work40

proposes the use of a machine learning surrogate model based on ANN to considerably reduce the time

required for the MCMC rounds. The work also evaluates the impact of the surrogate model on the posterior

distribution sampled by the MCMC, along with database size and simulation time for training the surrogate

model.

The proposed framework for stochastic calibration of a FE model for Lamb wave propagation on a45

composite plate is performed for multiple temperatures, aiming to construct a model capable of emulating

the whole experimental dataset. The framework lays its foundation on the following assumptions and
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considerations:

1. The database made available by da Silva et al. [27] is used as an experimental setup, and it is considered

that no material property is known a priori.50

2. All effects imposed by temperature on measured signals are incorporated at the material level.

3. A set of material properties is obtained among various possibilities using a deterministic updating

procedure with a modified version of the least-squares method [28]. The deterministic version of

model parameters provides the necessary information for the stochastic updating procedure.

4. A sensitivity analysis using Sobol indices to identify the key parameters that significantly impact the55

model results and should therefore be included in the Bayesian inference process.

5. A Bayesian inference process using MCMC simulations and the Metropolis-Hastings sampling algo-

rithm is used to sample posterior probability functions from uniform prior distributions.

6. The classical FE model-based approach is replaced by a machine learning surrogate model approach

based on neural networks to reduce simulation time.60

The complete strategy is presented in Fig. 1, and the underlying theoretical foundations are discussed

in the subsequent subsections.
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Figure 1: Proposed framework with deterministic and stochastic updating. MCMC illustration adapted from Jin et al. [29].
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2.1. Deterministic updating procedure

This work uses a modified version of the least-squares method to perform a deterministic updating of

input parameters. The method formulation is presented by Bud et al. [28], and it is a multi-loss optimization65

technique that aims to minimize multiple loss functions calculated from the model outputs. To achieve this

objective, the impact of each input on the loss functions is linearized, and the numerical calculation of

partial derivatives concerning each parameter is performed. Three residuals are established to measure

the discrepancy between experimental and model signals. Note that although the equations presented are

continuous, they are implemented using discrete numerical computations.70

The first residual evaluates the squared norm of the difference between the experimental and numerical

signals. This residual can quantify differences in amplitude and phase between the signals, and it is calculated

according to the equation:

RNORM =

∫ t2

t1

[y(t)− x(t)]2dt∫ t2

t1

x(t)2dt

. (1)

where x(t) is the experimental signal and y(t) is the numerical signal.

The second residue is based on the cross-correlation between the signals, and it is calculated as:75

RXCOR = 1− rxy, (2)

where rxy is the cross-correlation between the input signals and the signal with zero delays. This measure is

only sensitive to changes in the shape and frequency of the signal, which is one of its main advantages. The

third residual is the difference between the power spectra of the signals. This index is particularly useful for

detecting delays and frequency shifts in the signals, and it is calculated as follows:

RPSD =

∫ f2

f1

[Y (f)−X(f)]2df∫ f2

f1

X(f)2df

. (3)

where X(f) is the power spectra density of the experimental signal and Y (f) is the the power spectra density80

of the numerical signal.

The final residual is defined as the weighted sum of the individual residuals:

RTOTAL = k1 RNORM + k2 RXCOR + k3 RPSD. (4)

where k1, k2, and k3 are adjustable weights assigned to each residual. These weights allow for controlling

the relative importance of each metric in the outcome of the least-squares method.
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2.2. Stochastic updating procedure85

2.2.1. Sensitivity analysis

Sensitivity analysis is conducted to discover the effects of model parameters, called random input vari-

ables, on quantities of interest that form the model response. Suppose the response of the mathematical

model is given by:

Y = M(Θ), (5)

where Θ = (θ1, θ2, . . . , θk) is the vector containing the k input variables, and Y is a scalar quantity. For90

simplification purposes, the input parameters are considered uniformly distributed with support π(Θ) ∼

U(0, 1). The sensitivity analysis using Sobol indices considers the decomposition of the model’s response Y

in terms of increasing dimensions:

Y = M0 +

k∑
i=1

Mi (θi) +

k∑
i<j

Mij (θi, θj) + . . .

+M1...k (θ1 . . . θk) ,

(6)

where the constant M0 corresponds to the mean value E(Y ) of the model output. The integral of each

summation above has zero means, then all the terms in Eq. (6) hold the orthogonality property. Conse-95

quently, these terms can be calculated using the conditional expectations M0. Thus, the terms Mi(θi) and

Mij(θi, θj) are the conditional mean values for the parameters i and ij (i ̸= j) [30], respectively:

Mi(θi) =

∫ 1

0

· · ·
∫ 1

0

M (Θ) dΘ∼i −M0, (7)

Mij(θi, θj) =

∫ 1

0

· · ·
∫ 1

0

M (Θ) dΘ∼ij −M0−

Mi(θi)−Mj(θj),

(8)

where the notation ∼ i indicates that parameter θi is excluded. As the model response from Eq. (5) is also a

random variable, the conditional expectation variance can be considered a summary measure of sensitivity.100

Thus, one can compute the first-order Sobol indices that quantify the additive effect of each input parameter

separately on the total variance:

Si =
V ar[Mi(θi)]

V ar[M(Θ)]
, (9)

This first-order index represents each input parameter’s main contribution to the model output variance

[31]. The second-order Sobol indices that quantify the interaction effects between two input parameters are

defined as:105

Sij =
V ar[Mij(θi, θj)]

V ar[M(Θ)]
. (10)

In this work, the first-order Sobol indices are analyzed to evaluate the influence of each parameter, and

their values are calculated through Monte Carlo simulations. For this, the UqLab framework has been used

[32].
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2.2.2. Bayesian inference

Physical systems have inherent variations, e.g., geometry, environmental conditions, material properties,110

etc. Thus, even the most complete data set cannot eliminate this uncertainty, so-called irreducible. To

include this type of variability in the parameters of the computational model, this work adopts the Bayesian

paradigm as a statistical inference tool for the model calibration problem. Two assumptions are introduced:

(i) As the model parameters are random variables, a prior distribution π(Θ) for the set of input variables

Θ is proposed based on the deterministic model updating procedure; (ii) Bayes’ theorem is employed to115

update the before a posterior distribution, gathering information from random data observations (D). The

posterior density function (PDF) π(Θ|D) is given by:

π(Θ|D) =
π(D |Θ)π(Θ)

π(D)
, (11)

in which π(D |Θ) is the likelihood function, and the denominator π(D) is the marginal likelihood: it is a

normalization constant that guarantees the definition of a probability density function with integral equal

to unity. By considering a uniform prior distribution, Eq. (11) is simplified to π(Θ|D) ∝ π(D |Θ), i.e., the120

updated posterior PDF is proportional to the likelihood distribution.

Assuming that the model predictions DM(Θ) are corrupted by an additive decorrelated Gaussian noise

of zero mean and variance σ2
ε , the analytical expression for the likelihood function is given by:

π(D|Θ) ∝ exp

(
−1

2

(
D −DM(Θ)

)T (D −DM(Θ)
)

σ2
ε

)
. (12)

With T superscript meaning transpose operation. The MCMC/Metropolis-Hastings algorithm is considered

to sample the posterior density function. The random variables Θ are limited to the interval [Θmin,Θmax],125

whose current state is symmetrically normalized as Θ′ = (1 − x)Θmin + xΘmax ; x is a random variable

∈ [0, 1] that represents generated candidates for the posterior distribution. These candidates are sampled

from a normal distribution with standard deviation σp. This hyperparameter controls the random walk

step to avoid the chain becoming static and, at the same time, to allow the parameter space to be properly

explored. Therefore, σp is adjusted to obtain an acceptance rate of candidates 40 ∼ 50 %. Only 80% of the130

Monte Carlo simulations are considered in the final stationary Markov chain (burn-in of 20%).

3. Experimental application and FE model

3.1. Experimental setup

The experimental setup shown in Fig. 2 consists of a 500 x 500 x 2 mm3 carbon fiber reinforced

polymer (CFRP) plate with 10 layers of plain weave fibers. The plain weave fibers are oriented along the135

plate borders’ directions. Four PbZrTi (Lead Zirconate Titanate - PZT) SMART Layers from Accelent

Technologies, each with a diameter of 6.35 mm, are bonded to the plate using epoxy resin. PZT 1 is the
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actuator, while PZT 2, PZT 3, and PZT 4 are sensors. Due to the dispersive nature of Lamb waves, the

experiments are performed with a uniform excitation frequency across all tests, targeting a specific segment

of the Lamb wave frequency-thickness spectrum. When considering the multimodal characteristic of Lamb140

waves, Wang and Yuan [8] suggest that for a plate of this nature, excitation of higher-order modes (A1, S1,

A2, etc.) is expected to occur above 500 kHz. Therefore, the excitation signal is a 5-cycle sinusoidal wave

modulated by a Hanning window, with an amplitude of 35V and a central frequency of 250 kHz, aiming to

excitate only S0 and A0 modes . The output is recorded with a sampling frequency of 5 MHz over a 100 µs

window using a NI USB 63533 from National Instruments and an oscilloscope DSO7034B from Keysight. A145

comprehensive exploration of this experimental setup is presented by França [33].
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Figure 2: Experimental setup. Adapted from da Silva et al. [27]

Data acquisition is performed at controlled varying temperature ranging from 0◦C to 60◦C in increments

of 10◦C with a thermal chamber from Thermotron. For each temperature, 100 tests are repeated for

statistical characterization. Figure 3 shows one experimental measurement for each temperature from 0◦C to

60◦C. The experiments are also performed in progressive damage scenarios [27], with mass added to the region150

shown in red in Fig. 2. However, the present study only considered the plate in its undamaged condition.

The dataset is publicly available in the GitHub2 repository CONCEPT: CarbON-epoxy CompositE PlaTe.

3.2. FE model

A FE model is implemented using ABAQUS/ Explicit. The plate is modeled using continuum shell

elements (SCR8). These elements are designed to discretize a three-dimensional body rather than just155

representing a surface like traditional shell elements. Continuum shells have only displacement degrees of

2https://github.com/shm-unesp/DATASET_PLATEUN01
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Figure 3: Experimental results for temperatures from 0◦C to 60◦C. (a) Complete signal PZT 2; (b) complete signal PZT 3;

(c) zoom at first signal package PZT 2; and (d) zoom at first signal package PZT 3.

freedom, use linear interpolation, and include effects of transverse shear deformation and thickness change.

Additionally, they are based on first-order composite theory and can be stacked to improve the accuracy of

the through-thickness response.

The composite material is implemented in the FE model using ply-based properties. The layup is modeled160

as an orthotropic laminate property with three integration points per lamina. The discussion on the base

properties and material considerations can be found in Section 4.1.

The spatial and temporal resolution of the model greatly affects the stability of the simulation. According

to Moser [34], a spatial resolution of at least 20 nodes per wavelength is necessary to ensure stability. This

can be written as le = λmin/20, where λmin is the minimum wavelength expected at the model and le is165

the characteristic length of the mesh. Additionally, to prevent numerical instability, the time step must be

based on the maximum expected frequency in the simulation, with a recommended value of ∆t = 1/(20fmax),

where ∆t is the time step and fmax is the maximum frequency expected at the model. For an input frequency

of 250 kHz, both these considerations result in a mesh with an element size of approximately 2 mm and a

maximum time increment of 0.2 µs. However, further stability investigations of the model found that a time170

increment of 0.1 µs is needed to account for mesh irregularity around the PZT regions, ensure convergence,

and keep the simulation time reasonable. The simulation window is set to 0.1 ms as this is the time necessary

to capture the first two wave packets from Fig. 3.

Figure 4 presents the FE model. To facilitate the generation of a structured mesh for the entire plate,

the plate is divided into several smaller rectangular regions, as shown in Fig. 4a. The area where the PZT175
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actuators and sensors are attached to the plate is specifically modeled with a circular mesh. As proposed

by Gresil et al. [35], the excitation signal is applied as eight self-balancing forces around this region, as

depicted in Fig. 4b. To obtain the output signal, the integrated strain results within the sensor region are

used and transformed to voltage as suggested by Sirohi and Chopra [36]. The region between PZTs 1 and 2

is modeled with a circular mesh to account for damage addition in future model versions. However, in the180

present work, this region has the same element, materials, and conditions as the rest of the plate.

PZT1

PZT2PZT3 PZT4

(a) (b)

Figure 4: Finite element model. (a) Model partition for mesh generation and (b) PZT-1 showing excitation signal

The FE model is implemented using a series of Python routines that run within the Abaqus software,

allowing for parametric simulation of the system. A code layer is also implemented using MATLAB and

Windows command prompt, enabling direct control over Abaqus through the command line. This archi-

tecture made possible a complete automation of the pre-and post-processing steps of the simulation inside185

MATLAB’s workspace. It also facilitated the usage of multiple machines to parallelize the Monte Carlo

simulations.

4. Model updating framework: experimental application

4.1. Deterministic updating

The goal of the deterministic updating process is to bring the response signal of the FE model (y(t))190

for sensors 2 and 3 as close as possible to the experimental results (yEXP(t)), by adjusting the mechanical

properties of the materials. The textcolorredFE model is symmetric concerning the horizontal and vertical

axes, resulting in identical signals from PZTs 3 and 4. For this reason, only the PZT-3 signal is considered

along with PZT-2 in the adjustment of mechanical properties. As the composite plate used in this work

is obtained from a research project in partnership with a Brazilian aerospace company, which could not195
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disclose the specific material or fabrication process used due to intellectual property agreements, the only

information provided is that the plate is made of a prepreg aerospace-grade carbon fiber with 10 layers in

a plain weave configuration [33]. Thus, the initial range of values for the mechanical properties had to be

determined by literature review, as detailed below.

The mechanical behavior of the materials is modeled using the classical laminate theory, where each layer200

is considered an orthotropic material. As such, Young’s modulus in two perpendicular directions in the plane

(E1 and E2), Poisson’s ratio (ν12), shear moduli in and out of a plane (G12 and G23, respectively), and

density (ρ) had to be determined. It is necessary to establish an initial search range for these parameters.

This range is determined based on information from the literature for plain weave carbon/epoxy systems,

with the main sources being the Composite Materials Handbook (CMH) [37] and the work of Paiva et al.205

[38]. Table 1 presents the limits, initial and optimal values used for the following mechanical parameters:

E1, E2, ν12, G12 and ρ.

Table 1: Parameters limits and initial values utilized for the deterministic updating procedure, including resultant optimal

values

Parameter Min Max Initial Value Optimal Value

E1 [GPa] 60.0 80.0 70.0 61.2

E2 [GPa] 60.0 80.0 70.0 61.2

ν12 0.05 0.15 0.10 0.075

ρ [Kg/m3] 1550 2250 1800 1620

G12 [GPa] 5.00 15.0 7.50 10.25

G23 [GPa] 4.00 6.00 5.00 5.00

As a simplification, it is assumed that the values of E1 and E2 for plain weave fibers are equal. The values

presented in Tab. 1 are used as reference and adjusted using the iterative process based on least-squares

method described in Bud et al. [28]. In each iteration, the model is initially simulated with the value of the210

properties from the former iteration. The residual between the experimental and model signals is calculated

by Eq. (4). Next, each property is individually perturbed to determine the partial derivatives of the model

response relative to inputs. The perturbation value is initially set to 5% and reduced over the optimization

process to minimize system instability as the optimal values are approached. This process is repeated until

the value of the residue converges. Only the first wave package in each channel is considered for the fitting.215

In the case of PZT 2, the second package shown in Fig. 3 represent edge reflections.

The oscillatory nature of the wave signal results in the residuals having multiple local extrema throughout

the simulation range. For instance, if the simulated wave is one wavelength in advance or retard concerning

the experimental data, the residual gives a local minimum. To mitigate this, the weights k1, k2, and k3
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in Eq. (4) are adjusted. Empirical testing has shown that weighting these parameters as 0.2, 0.4, and 0.3220

can reduce the likelihood of becoming trapped in local minima, resulting in a better output signal. Also,

intermediate solutions that give physically unrealistic properties are disregarded. Table 1 presents the initial

and estimated values for the physical parameters of the material, whereas Fig. 5 compares the model results

before and after the adjustment process. It is possible to observe that the adjustment process improved

both the phase and the amplitude of the signals from PZTs 2 and 3.225
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Figure 5: Comparison between experimental ( ) and numerical results with initial ( ) and optimal ( ) parameters. (a) Signal

from PZT 2; and (b) signal from PZT 3

Note that all parameters are well accommodated within the proposed ranges. For out-of-plane, the shear

modulus G23 maintained its initial value even after optimization. Its variation within the established range

does not influence the model performance - therefore, this parameter is kept fixed at 5 GPa in subsequent

steps.

4.2. Stochastic updating230

4.2.1. Sobol analysis

Following the deterministic adjustment, a sensitivity analysis is performed using Sobol indices to quantify

each parameter’s influence on the model’s behavior. The parameters E1, ν12, G12, and ρ are perturbed

around the optimal deterministic values presented in Tab. 1. This perturbation is performed with 300 Monte

Carlo simulations, in which model input parameters are sampled from an uniform distribution centered at235

the optimal values and bounded by ±20% limits. Two scores are defined to quantify the effect of the input

parameters on the response of the model: the time of flight (TOF) and the maximum value of the envelope

(AMP) of the first wave packet, as shown in Fig. 6a.

The first and second orders of Sobol indices are shown in Figs. 6b and 6c, respectively. Note that the

parameters with the greatest impact on the results are E1 and G12, mainly affecting approximately 70%240

and 55% of the variance related to TOF and amplitude, respectively. The sensitivity analysis indicates that
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Figure 6: Sobol indices analysis. (a) TOF and AMP metrics; (b) first-order Sobol indices; and (c) second-order Sobol indices

ν and ρ have smaller influences when compared to E1 and G12. The combinations of parameters also have

a negligible effect, with νG12 representing approximately 5% of the total variance related to the amplitude.

Therefore, ν and G12 can be considered determined quantities, and their values are assigned based on the

optimization results from Tab. 1, i.e., ν = 0.075 and ρ = 1620kg/m3. The remaining parameters are245

considered undetermined, and updating their posterior probability distributions and gathering information

from experimental data containing environmental variation is necessary. In summary, small intrinsic vari-

ations associated with uncertainties in the experimental data, which cause a slight change in the response

pattern for the same test conditions, can influence the values identified for these parameters. Therefore,

it demonstrates that in the presence of uncertainties in the experimental data, deterministic estimation of250

these parameters cannot be generalized - they must be treated as random variables.

4.2.2. ANN-based surrogate model for Lamb wave propagation

As MCMC simulations are very time-consuming, it is proposed to use a surrogate model to replace

the FE model on random walking. Multiple techniques are available for surrogate modeling, such as the

Gaussian process, PCE, or ANN. The authors chose to work with neural networks. The surrogate model255

in this study is a multilayer perceptron ANN, used as an interpolation model inside the parameters search

space for the Bayesian inference process. The input layer consists of two neurons, representing the two

random variables E1 and G12, used as input to the surrogate model, and the output layer has 140 neurons

representing the time series output. The number of hidden layers (Fig. 7) is defined as two, with N2 and

N3 neurons at the first and second hidden layers.260

To train the surrogate model, the FE model is extensively simulated with properties sampled from

bounded uniform distributions E1 ∼ U
(
54, 66

)
[MPa] and G12 ∼ U

(
8.5, 11.5

)
[MPa] to generate 1024 sam-

ples. These bounds encompass the deterministic optimal values and offer sufficient margin to accommodate

variations in the physical properties with temperature. During training rounds, data are divided with a
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proportion of 80/10/10, i.e., 820 samples for training, 102 for validation, and 102 for testing. The input265

parameters are normalized between 0 and 1, and the output signal is normalized between -1 and 1 to improve

convergence. The model signal is truncated after the first wave package to reduce training time and the

amount of data needed for network convergence. This package has a group speed of 5920 m/s, within the

range expected for the first symmetric mode of a carbon/epoxy composite in frequency/thickness tested [8],

and the second package consists of its border reflection. Figure 8a-c shows the distribution of the sampling270

space population.
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Figure 8: Training (■), validation (■), and test (■) data distribution. (a) 2D dispersion; (b) E1 Histogram; and (c) G12

Histogram

The surrogate model is trained using the Stochastic Gradient Descent with Momentum (SGDM) al-

gorithm, and the network loss on validation data is employed as the stopping criterion for training. The
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discrepancy between the output of the surrogate model and the full-order FE model is the error metric

guiding the learning process. At regular intervals, the training algorithm assesses the validation data, and275

if the loss on the validation data ceases to decrease or begins to increase, the training process is halted.

The performance of the proposed surrogate model is influenced by its hyperparameters, such as the

number of neurons in the hidden layers, activation functions, initial learning rate, and the amount of

available training data. N2 and N3 are defined through an exploratory search within 50 to 300 neurons

per layer. Figure 9 presents the root mean square error (RMSE) concerning the number of neurons in280

the second and third layers. The RMSE is not significantly influenced by N2, remaining stable with 50 or

more neurons. In contrast, the number of neurons N3 has a greater influence on the RMSE, with the error

stabilizing with 200 or more neurons. Therefore, an architecture with 50 neurons for N2 and 200 neurons

for N3 is defined.
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Figure 9: Training (■) and test (■) RSME as a function of the number of neurons on (a) the second layer; and (b) third layer

The training process is repeated with varying sample sizes to evaluate the network’s convergence regard-285

ing the training data. Figure 10 demonstrate that the RMSE decreases on both the training and test data as

the number of training samples increases and eventually converges. Additionally, note that approximately

500 samples are the minimum required for the surrogate model to converge, i.e., less than the 820 samples

used.

Figure 11 presents the results from the surrogate model compared to the FE model in three values of290

E1 and G12 randomly selected from the test data. In these three samples, the surrogate model’s response

replicated the FE model’s response without noticeable differences. Additional tests showed that this behavior

is repeated throughout the entire training range.

In summary, the main advantages of the surrogate model are (i) its computation speed and (ii) the

possibility of parallelizing the data-gathering step across multiple computers. For instance, each simulation295

using the FE model takes two to three minutes on a typical PC with an Intel core i7 CPU (3,0 MHz and
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Figure 11: Results for surrogate model performance on test data compared to FE model. (a) Subspace of surrogate model

training and test data with two randomly selected test samples highlighted for model evaluation; (b) and (c) represents PZT

2 signals for samples 1 and 2, respectively; (d) and (e) represents PZT 3 signals for samples 1 and 2, respectively. On signal

graphs (b) to (e), full lines ( ) represent FE model predictions and circles (◦) represent ANN model results for the same

sampled properties

4 cores) and 16 GB of RAM, whereas the surrogate model takes less than a second to evaluate. The 1024

simulations used at the training step took around 30 hours to perform (without a parallelization scheme).

After training, the surrogate model can be used for interpolation purposes within the domain defined for

E1 and G12. In the current application, the same surrogate model can be used for all MCMC rounds at the300

temperature interval from 0◦C to 60◦C, reducing exponentially the amount of simulations and time required

for the Bayesian inference process.
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4.2.3. Bayesian updating

- E1 and G12 updating for 20◦C

The framework for stochastic updating proposed in section 2.2.2 is first applied to the experimental data305

collected at 20◦C. The updating procedure is conducted using FE and surrogate models in this particular

temperature condition. The outcomes of the two approaches are then compared, taking into account the

random walk performance and the updated posterior probability density function (PDF). This comparison

uses the surrogate model to assess the uncertainty introduced in the Bayesian inference process.

The prior probability distributions for the variables Θ = {E1, G12}T are defined as E1 ∼ U
(
54, 66

)
310

[MPa] and G12 ∼ U
(
8.5, 11.5

)
[MPa] to contain the optimal values obtained in the deterministic fitting and

allow a search range for the random walk algorithm. The initial value for each parameter is defined as the

center of the search range Θi = {60, 10}T . For the Markov Chain estimation, the variance of the likelihood

function is defined iteratively through rounds of the fitting algorithm, trying to ensure a stable acceptance

rate between 40 and 50%. As can be observed in Fig. 12, the behavior of the FE and surrogate models is315

similar throughout the evolution of the Markov chain.
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Figure 12: Comparison between the random-walk performance of the MCMC algorithm while searching for E1 and G12 using

the FE and surrogate models at 20◦C. (a) Random walk values for E1; (b) random walk values for G12; and (c) acceptance

rate for each strategy.

The random walk starts at the center of the search space for each parameter, and the Metropolis-Hastings

sampling algorithm generates a new set of samples iteratively by proposing slight changes to the current set.

Following the Metropolis-Hastings acceptance criteria, the proposed samples are accepted or rejected based

on their likelihood compared to the current values. After several iterations, and upon proper adjustment320

of the MCMC parameters such as variance and step size for each round, the algorithm converges to an

optimal region. This convergence is clearly illustrated in Figs. 12a and 12b. The algorithm continues to

sample from the posterior distribution within this stability region. In instances where the algorithm deviates
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significantly from the optimal region for the parameters, the proposed values become less likely to belong

to the posterior distribution. As a result, the Metropolis-Hastings sampling algorithm tends to return to325

the region where it is more likely to acquire valuable information. The initial portion of the samples, which

may exhibit transient behavior, can be discarded through a process known as ”burn-in.” This study sets the

burn-in at 20% based on the acceptance rate curve presented in Fig. 12c. Figure 13 compares the posterior

PDFs sampled for E1 and G12 using the Metropolis-Hastings algorithm.
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Figure 13: Comparison between distributions obtained using the FE and surrogate models at 20◦C. (a) A posteriori for E1;

(b) a posteriori for G12; and (c) two dimensional a priori and a posteriori distributions

The FE and surrogate models are evaluated using the values within the 99% confidence interval as330

depicted in the histograms in Figs. 13a and 13b. This procedure yields the confidence interval for the output

of the models. Figure 14 illustrates the confidence intervals for the signals obtained from the surrogate model.

Observations reveal that the confidence interval for the signal measured at PZT-2 is narrower than that of

PZT-3. This phenomenon can be attributed to the greater dispersion observed in the data obtained from

PZT-3, as shown in Fig. 3 along with a lower signal-to-noise ratio.335

Table 2 summarizes the results. Note that the surrogate model does not introduce significant differences

in the Bayesian inference process when compared to the results obtained from the FE model. In addition to

the results being similar, the proposed framework using the surrogate model is computationally efficient and

significantly reduces the time required for analyzing the Markov chains. A complete Markov-chain Monte

Carlo round with 1000 samples takes at least 32 hours using the FE model, excluding the initial parameter340

tuning phase. In contrast, the same algorithm with the surrogate model takes about 240 s, i.e., almost

500 times less than the FE model. Moreover, the surrogate model facilitates simulations of longer chains,

leading to increased points collected from the posterior probability distribution and enabling multiple tests

to evaluate the convergence of the method. The surrogate model introduces a main computational cost

related to the data required for training. However, this expense can be efficiently addressed by distributing345
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Figure 14: Experimental ( ), ANN model mean ( ), and model confidence interval ( ■ ) signal Comparison for 20◦C. (a)

PZT 2; and (b) PZT 3

the training simulations across multiple machines, thus reducing the overall time required. In contrast,

traditional MCMC simulations must be performed sequentially due to the sequential dependency of each

chain step.

Table 2: Mechanical parameters obtained for 20◦C

Model

FE ANN

Mean 61.25 61.24

Standard deviation 0.29 0.23

E1 [GPa] Coefficient of variation (CV) 0.47 0.37

1% Percentile 60.26 60.10

99% Percentile 61.97 61.62

Mean 10.29 10.32

Variance 0.14 0.09

G12 [GPa] Coefficient of variation (CV) 1.41 0.9

1% Percentile 9.92 10.11

99% Percentile 10.52 10.47

Time (s) 115000 240

- E1 and G12 updating from 0◦C to 60◦C

The same strategy used for 20◦C is applied to fit the FE model to the experimental data collected at350
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temperatures from 0 to 60◦C. However, these adjustments are only made using the surrogate model. The

Markov chain parameters are selected at each temperature to maintain an acceptance rate after convergence

of the algorithm between 30% and 50% at the end of approximately 4000 simulations. This is possible with

the surrogate model since each 1000 MCMC takes around 3 to 4 minutes. Table 3 presents the results for

E1 and G12, and Fig. 15 shows the sampled posterior distributions.355
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Figure 15: Confidence intervals for probability density functions of E1 and G12 with temperature. (a) 3D distribution for

E1; (b) 3D distribution for G12; (c) 2D distribution for E1; (d) 2D distribution for G12; (e) experimental results ( ) and

confidence intervals (■) for signal of PZT 2; and (f) experimental results ( ) and confidence intervals (■) for signal of PZT

3. C.I. represents the confidence intervals.
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Table 3: Mechanical parameters obtained for temperature range from 0◦C to 60◦C

0◦C 10◦C 20◦C 30◦C 40◦C 50◦C 60◦C

Mean 61.46 61.44 61.30 61.06 61.00 60.80 60.67

Standard deviation 0.191 0.207 0.190 0.215 0.195 0.214 0.225

E1 Coefficient of variation (CV) 0.310 0.337 0.310 0.352 0.320 0.351 0.371

1% Percentile 60.94 60.91 60.82 60.55 60.57 60.20 60.08

99% Percentile 61.98 61.05 61.83 61.67 61.51 61.34 60.32

Mean 10.56 10.38 10.26 10.06 10.11 10.01 9.82

Standard deviation 0.116 0.124 0.108 0.114 0.103 0.131 0.121

G12 Coefficient of variation (CV) 1.09 1.19 1.05 1.14 1.02 1.30 1.23

1% Percentile 10.14 10.06 10.01 9.74 9.84 9.70 9.50

99% Percentile 10.87 10.69 10.55 10.38 10.32 10.40 10.11

It is possible to notice a trend of reduction of material stiffness with increasing temperature, which is

consistent with the behavior of a carbon/epoxy laminate. The trend of the mean results is mostly linear,

as can be observed in Figs. 15c and 15d. The material’s elastic modulus starts at 61.46 GPa at 0◦C and

decreases with temperature to reach the value of 60.67 GPa at 60◦C, i.e., a variation of 1.3%. The shear

modulus presents the same trend, from 10.56 GPa to 9.82 GPa, with a variation of 7.0%. The higher360

reduction on the shear module can be explained by the viscoelastic nature of the epoxy resin, which is not

present in the carbon fiber. This larger variation for the values of G12 compared to E1 results in a greater

dispersion of the signals for PZT3, which, located 45 degrees from the excitation point, is more affected by

the material’s shear modulus.

The only exception to the observed trend in Figs. 15c and 15d is the value of G12 at a temperature365

of 30◦C, which appears as an outlier, displaying a lower value than that obtained at 40◦C. To investigate

this anomaly, the measured signals for PZT-2 were analyzed concerning temperature variations. Figure

16 shows a zoom near the peak of the first wave package from Fig. 3(c). The wave signals exhibited a

consistent trend of delay with temperature increase, except for the measurement at 30◦C, which deviated

from the expected trend. Subsequent investigation into the experimental setup indicated a potential is-370

sue with the temperature controller in the thermal chamber on the day of the experiment. The ambient

temperature fluctuated above 30◦C, and the ON-OFF control logic of the controller faced challenges in

maintaining an exact internal atmosphere of 30◦C. Despite this experimental anomaly, the proposed fitting

framework demonstrated robustness. It effectively captured the temperature trend in the experimental data

and accurately reflected it in the FE model.375
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Figure 16: Close-up of the experimental signal wave peaks from PZT-2 in the temperature range of 0◦C to 60◦C

5. Conclusions

This paper presents a framework that addresses the critical challenge of incorporating temperature effects

in Lamb wave simulations within composite structures, in the context of SHM applications. A stochastic

FE model capable of accurately simulating Lamb wave behavior under varying temperature was successfully

developed through Bayesian inference.380

A three-step process was employed in the framework: (i) initial adjustment, followed by a (ii) Sobol

sensitivity analysis, and (iii) a stochastic adjustment through Bayesian inference and MCMC simulations.

This framework has demonstrated its effectiveness in calibrating the FE model by considering uncertainties in

relevant mechanical parameters of the composite plate’s fiber/resin system. The model results are generated

within a confidence interval that align closely with experimental data.385

Incorporating temperature effects is a critical consideration while developing reliable SHM systems based

on Lamb waves due to their sensitivity to environmental conditions. The proposed framework was capable of

producing a FE model that simulates Lamb wave signals from 0 to 60 ◦C with the experimental dispersion.

An additional contribution of this work lies in introducing a machine learning-based surrogate model

within the Bayesian inference process. Leveraging the capacity of neural networks, the surrogate model390

significantly reduces the time required for MCMC rounds, thereby accelerating the posterior distribution

sampling process. In the demonstration case, the time required for the MCMC rounds reduced from,

approximately, 30 hours using the classical FE model-based approach, to less than 5 minutes when using the

surrogate model approach. This time reduction is achieved without compromising the FE model’s accuracy,

ensuring the reliability of the results.395

The integration of Bayesian inference and a machine learning surrogate model for model updating brings

us one step closer to practical SHM implementations for composite materials. The proposed framework

provides a solid foundation for reliable and accurate simulations and paves the way for constructing a robust
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SHM system suitable for practical, real-world implementation.

CRediT authorship contribution statement400

Leonardo Ferreira: Writing - original draft & editing, software curation, visualization, investigation,

validation. Rafael Teloli: Software curation, formal analysis, supervision, writing - review & editing.

Samuel da Silva: Experimental setup design, experimental tests, conceptualization, writing - original

draft, investigation, formal analysis, project administration. Eloi Figueiredo: Writing - review & editing,

formal investigation. Ionut Dragos: Software, writing - review & editing, formal investigation. Nuno405

Maia: writing - review & editing, formal investigation, project administration. Carlos Cimini: Writing -

review & editing, formal investigation, supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that

could have appeared to influence the work reported in this paper.410

Acknowledgments

The authors thank the financial support provided by Coordenação de Aperfeiçoamento de Pessoal

de Nı́vel Superior (CAPES/Brazil)-Finance Code 001 and CAPES/FCT grant number 2019.00164.CBM

and The Portuguese National Funding Agency for Science Research and Technology (FCT/Portugal) for

promoting the collaboration between Brazil/Portugal. Leonardo Ferreira acknowledges the funding from415

CAPES/Brazil grant number and 88887.647575/2021-00. Samuel da Silva is thankful for the Brazilian Na-

tional Council of Technological and Scientific Development (CNPq) grant number 306526/2019-0 and the

São Paulo Research Foundation (FAPESP) grant number 19/19684-3. Eloi Figueiredo acknowledges the

funding from FCT/Portugal through grant UIDB/ 04625/2020. Nuno Maia acknowledges the support of

FCT/Portugal, through IDMEC, under LAETA, project UIDB/50022/2020. Carlos Cimini acknowledges420
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[27] S. da Silva, J. Paixão, M. Rébillat, N. Mechbal, Extrapolation of ar models using cubic splines for damage progres-

sion evaluation in composite structures, Journal of Intelligent Material Systems and Structures 32 (2020) 284–295, doi:

10.1177/1045389X20963171. doi:10.1177/1045389X20963171.505

URL https://doi.org/10.1177/1045389X20963171

[28] M. A. Bud, I. Moldovan, L. Radu, M. Nedelcu, E. Figueiredo, Reliability of probabilistic numerical data for training

machine learning algorithms to detect damage in bridges, Structural Control and Health Monitoring 29 (7) (2022) e2950.

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stc.2950, doi:https://doi.org/10.1002/stc.2950.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.2950510

24

http://dx.doi.org/10.1016/J.YMSSP.2017.08.004
https://doi.org/10.1177/1077546315619264
https://doi.org/10.1177/1077546315619264
https://doi.org/10.1177/1077546315619264
http://dx.doi.org/10.1177/1077546315619264
https://doi.org/10.1177/1077546315619264
http://dx.doi.org/10.1016/J.YMSSP.2020.106802
http://dx.doi.org/10.1016/J.YMSSP.2020.106802
http://dx.doi.org/10.1016/J.YMSSP.2020.106802
https://www.sciencedirect.com/science/article/pii/S0141029614003848
https://www.sciencedirect.com/science/article/pii/S0141029614003848
https://www.sciencedirect.com/science/article/pii/S0141029614003848
http://dx.doi.org/https://doi.org/10.1016/j.engstruct.2014.06.028
http://dx.doi.org/https://doi.org/10.1016/j.engstruct.2014.06.028
http://dx.doi.org/https://doi.org/10.1016/j.engstruct.2014.06.028
https://www.sciencedirect.com/science/article/pii/S0141029614003848
https://www.sciencedirect.com/science/article/pii/S0888327015003726
http://dx.doi.org/https://doi.org/10.1016/j.ymssp.2015.08.011
https://www.sciencedirect.com/science/article/pii/S0888327015003726
https://www.sciencedirect.com/science/article/pii/S0951832020305093
http://dx.doi.org/https://doi.org/10.1016/j.ress.2020.107008
https://www.sciencedirect.com/science/article/pii/S0951832020305093
https://www.sciencedirect.com/science/article/pii/S0951832020307560
https://www.sciencedirect.com/science/article/pii/S0951832020307560
https://www.sciencedirect.com/science/article/pii/S0951832020307560
http://dx.doi.org/https://doi.org/10.1016/j.ress.2020.107256
https://www.sciencedirect.com/science/article/pii/S0951832020307560
https://doi.org/10.1177/1369433216643876
https://doi.org/10.1177/1369433216643876
https://doi.org/10.1177/1369433216643876
http://dx.doi.org/10.1177/1369433216643876
https://doi.org/10.1177/1369433216643876
http://dx.doi.org/10.1016/J.NDTEINT.2022.102626
https://www.sciencedirect.com/science/article/pii/S0888327016301893
https://www.sciencedirect.com/science/article/pii/S0888327016301893
https://www.sciencedirect.com/science/article/pii/S0888327016301893
http://dx.doi.org/https://doi.org/10.1016/j.ymssp.2016.06.007
http://dx.doi.org/https://doi.org/10.1016/j.ymssp.2016.06.007
http://dx.doi.org/https://doi.org/10.1016/j.ymssp.2016.06.007
https://www.sciencedirect.com/science/article/pii/S0888327016301893
https://www.sciencedirect.com/science/article/pii/S0888327021001552
http://dx.doi.org/https://doi.org/10.1016/j.ymssp.2021.107760
https://www.sciencedirect.com/science/article/pii/S0888327021001552
https://doi.org/10.1177/1045389X20963171
https://doi.org/10.1177/1045389X20963171
https://doi.org/10.1177/1045389X20963171
http://dx.doi.org/10.1177/1045389X20963171
https://doi.org/10.1177/1045389X20963171
https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.2950
https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.2950
https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.2950
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stc.2950
http://dx.doi.org/https://doi.org/10.1002/stc.2950
https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.2950


[29] S. S. Jin, H. Ju, H. J. Jung, Adaptive Markov chain Monte Carlo algorithms for Bayesian inference: recent advances and

comparative study, https://doi.org/10.1080/15732479.2019.1628077 15 (2019) 1548–1565. doi:10.1080/15732479.2019.

1628077.

URL https://www.tandfonline.com/doi/abs/10.1080/15732479.2019.1628077

[30] R. da S Raqueti, R. de O Teloli, S. da Silva, P. Bussetta, J. Americo Cunha, On the use of stochastic Bouc–Wen515

model for simulating viscoelastic internal variables from a finite element approximation of steady-rolling tire, Journal of

Vibration and Control 0 (0) (0) 10775463221125038. arXiv:https://doi.org/10.1177/10775463221125038, doi:10.1177/

10775463221125038.

URL https://doi.org/10.1177/10775463221125038

[31] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola, Global sensitivity520

analysis: the primer, John Wiley & Sons, 2008.

[32] S. Marelli, B. Sudret, UQLab: A framework for uncertainty quantification in Matlab, in: Vulnerability, Uncertainty, and

Risk, ASCE Reston, VA, 2014, pp. 2554–2563. arXiv:https://ascelibrary.org/doi/pdf/10.1061/9780784413609.257,

doi:10.1061/9780784413609.257.

URL https://ascelibrary.org/doi/abs/10.1061/9780784413609.257525

[33] A. d. A. França, Detecção e localização de danos em materiais compósitos aplicado em aeronaves utilizando redes neurais
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