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Abstract
Ultrasonic-guided waves help monitor the health of thin-walled structures. However, damage tests on materials like
carbon fiber-reinforced plastics are impractical and costly. Instead, numerical modeling is suggested to create hybrid
datasets for machine learning training, integrating data from numerical and experimental tests. This paper presents a
Bayesian-driven framework to compensate for limited experimental data regarding Lamb wave propagation in composite
plates. Using Bayesian inference, the framework refines a numerical FE model, considering observed uncertainties and
employing Markov-Chain Monte Carlo simulations and the Metropolis-Hastings algorithm. A neural network fast-tracks
these simulations, leading to a model that reflects the uncertain experimental setup. This model then generates data
to augment true experimental data. Finally, a 1D deep convolutional neural network is trained on a hybrid dataset to
analyze Lamb wave signals and assess damage. Comparing training strategies shows the hybrid approach proposes
the most accurate damage size predictions.
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Introduction

Structural health monitoring (SHM) has evolved from
heuristic condition assessments, offering real-time moni-
toring systems that detect early anomalies or damage in
aerospace, civil, or mechanical structures. As described by
Farrar et al.1, damage entails changes compromising the
structure’s performance and safety. Two core SHM methods
exist: (i) the physics-based approach, using inverse problem
techniques and finite element (FE) models to understand
physical relations, and (ii) the data-based approach, which
relies on machine learning algorithms to interpret structural
behavior from past data, mainly when physics-based solu-
tions are impractical due to accuracy or efficiency limits.
Available algorithm options include K-nearest neighbor2,
support vector machines (SVM)3, and artificial neural net-
works (ANNs)4,5. Among these, neural networks imple-
mented in various architectures like Multi-Layer Perceptron
(MLP), Long Short Term Memory (LSTM), and Convo-
lutional Neural Network (CNN) have found applications
in domains like image classification and natural language
processing. In the domain of SHM, a particular focus has
been placed on assessing plate-like structures using Lamb
waves.

Lamb waves are a form of ultrasonic-guided elastic
waves that travel through thin plates and laminates. They
have been key for SHM in evaluating the operational
conditions of plate-like structures. Due to their ability to

propagate over long distances, they are suitable for local
inspections, such as detecting fatigue6, corrosion7, and
assembled joints8, as well as for assessing large-scale
structures in the aerospace industry9. This work focuses on
Lamb wave propagation in composite structures10. However,
analyzing composite materials presents inherent challenges
owing to their natural heterogeneity and the myriad layout
possibilities affecting wave propagation patterns. Further
complexities arise as the physical properties of composites,
such as elasticity and shear moduli, shift with environmental
factors, primarily temperature, and relative humidity11,12.
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A comprehensive exploration of Lamb wave theory, its
experimental implementations, and its significance in SHM
is delivered by Mitra et al.13.

Among the various network architectures utilized for
Lamb wave signal analysis, CNNs have gained prominence
in recent years14,15. CNNs are a feed-forward ANN
architecture consisting of layers that alternate between
convolutional and sub-sampling operations. They excel in
detecting patterns in input data with minimal preprocessing
required before input. Consequently, they are categorized
based on the type of input layer they use. In the case of 2D
networks, bi-dimensional arrays, such as images, serve as the
input, whereas in uni-dimensional networks, 1D arrays, such
as time series, are employed. Both networks can handle input
signals with multiple parallel channels, such as RGB (Red,
Green, and Blue) channels in images or multiple parallel
series in the case of 1D time series. Several studies have
proposed using CNNs for Lamb wave analysis, focusing on
2D networks.14–17.

However, one major limitation of using 2D CNNs in Lamb
wave applications is the requirement to convert the temporal
signals to 2D arrays using some algorithms, e.g., Continuous
Wavelet Transform16. In contrast, 1D CNNs have the
advantage of working directly with the time series data of
Lamb waves, eliminating the need for hand-crafted features
or applying transformation algorithms. Recent works have
used variations of 1D CNN architecture to analyze raw
discrete time-domain Lamb waves and detect damage on
thin metallic plates18–23 and on composite structures24,25.
Kyraniaz et al.26 presents a comprehensive discussion about
1D CNN structures and applications.

The reliability of a machine learning algorithm is limited
by the amount and quality of the data utilized in its training
stage. As it is not feasible to intentionally damage most
structures and measure their behavior under all potential
damage scenarios and environmental conditions, even in
laboratory settings, creating specimens with predetermined
and characterized damage types and locations is impractical.
Conversely, when machine learning algorithms are trained
with limited data, their ability to generalize on unseen data
after the training stage may be compromised. To overcome
this, hybrid training strategies integrate supplementary data
derived from physics-based restrictions and/or mathematical
models into the training process of machine learning
algorithms27,28.

Modeling guided wave propagation in composite struc-
tures is an intense field of research, and several methods
are available in literature29,30. The FE method stands out
among available approaches due to its relative ease of imple-
mentation and commercial codes with extensive element
libraries readily available. As the FE method assumes a full
3D displacement field, it can accurately capture the wave-
front propagation in complex structures31. These methods
usually have a very fine mesh density to simulate high-
frequency signals or small model features on the structure.
They are updated with experimental data (when available) to
account for environmental conditions’ variations and address

experimental dispersion. FE model updating techniques can
be categorized into deterministic and stochastic (or prob-
abilistic) approaches32. Deterministic updating approaches
involve formulating a minimization problem and seeking
optimal values for physical parameters. Several authors have
used deterministic FE models to replicate and produce Lamb
wave data for SHM purposes. These works usually consider
or define a value or range of values for numerical properties
and add stochastic noise to address measurement varia-
tions20,33–36. Contrarily, Bayesian inference can be used to
gather information about a posterior probability distribution
of model parameters based on prior knowledge, experimental
data, and a likelihood function and account for uncertainty in
the model’s predictions. The advantage of this approach is to
directly incorporate the variability of experimental data into
the numerical model to render it stochastic. The Bayesian
updating framework has been extensively used in damage
detection, model updating, and system identification37–41.
Previous studies have applied Bayesian inference to com-
posite structures subjected to Lamb wave excitation, using
methods like LISA and Wave and Finite Element assisted
surrogate models42,43, and Ferreira et al.44 used Bayesian
inference to update a FE model using a neural network
surrogate model.

This paper introduces a novel data-driven methodology
for monitoring the condition of composite structures using
Lamb waves, employing a 1D CNN trained on data sourced
from a Bayesian stochastic FE model. It represents the
effort to utilize data from a Bayesian-calibrated FE model
specific to Lamb wave propagation for training a machine
learning model to assess damage in composite structures
subjected to variable temperatures. The Bayesian inference
updates the FE model in restricted experimental data,
deploying a Markov-Chain Monte Carlo (MCMC) technique
combined with the Metropolis-Hastings sampling algorithm.
Throughout this updating procedure, surrogate models built
on MLP neural networks are leveraged to decrease the
computational time demanded by the MCMC iterations.
Opting for a stochastic FE model to create training data has
multiple benefits: it reduces the experimental requirement for
a damage quantification algorithm development, accelerates
the training process, and can boost accuracy in data-
scarce scenarios by providing a richer dataset for learning.
Harnessing the broad generalization abilities of machine
learning algorithms and the statistical sense of Bayesian
inference for model adaptation, a stochastically updated
model emerges as a sturdy data foundation for training
machine learning SHM algorithms. By integrating insights
from the stochastic FE model during training, the machine
learning algorithm can exploit the FE model’s inherent
uncertainty and generalize across unobserved experimental
data. This methodology empowers a 1D CNN to discern
core characteristics from the FE model, thus enhancing its
predictive accuracy, particularly when trained on a limited
experimental dataset.

The effectiveness of the suggested framework is gauged
across three distinct training contexts: exclusive experimen-
tal data, purely numerically generated data, and a combined
set of experimental and numerical data. This paper proposes
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two significant contributions. First, it outlines the forging of
a Bayesian data-driven machine-learning technique, drawing
from a stochastic FE model, to quantify damage magnitude
in composite structures under fluctuating temperatures. Sec-
ond, it delves into the interplay between experimental and
numerical data on the performance of a 1D CNN architecture
regarding both confidence intervals and prediction quality.

The structure of this paper is as follows. Section Problem
statement and theoretical background provides an overview
of the proposed framework, including the relevant theoretical
background. Section Methodology details the experimental
setup, the FE model, the surrogate modeling strategy, and
the datasets utilized during the 1D CNN training rounds.
Subsequently, in section Results, Bayesian inference is
applied to update the FE model, the hyperparameters of the
1D CNN are tuned, and the proposed Bayesian data-driven
machine learning strategy is evaluated in terms of accuracy
and the impacts of temperature variations. Finally, section
Discussions engages in discussions about the results, while
section Conclusions presents the final remarks and suggests
potential directions for future research

Problem statement and theoretical
background

This section describes the main parts of the proposed
Bayesian data-driven framework to quantify damage size on
a composite structure. The proposed framework consists of
two parts i) stochastic FE model development and ii) 1D
CNN training and evaluation. Fig. 1 presents the proposed
framework used for this work. The first step comprises a
stochastic updating of a FE model using Bayesian inference
through MCMC simulations with the Metropolis-Hastings
sampling algorithm. A sensitivity analysis using Sobol
indices and a surrogate modeling strategy defines the relevant
parameters and speeds up the MCMC rounds. Following the
updating process, a 1D CNN is trained with datasets from
three different strategies: (i) only experimental data, (ii) only
numerical data, and (iii) a hybrid combination of both. The
proposed 1D network is applied after a binary classification
to assess the presence or absence of damage45,46 Therefore,
it does not evaluate the structure in a damage-free situation,
it is used to quantify damage in a scenario in which damage
is already detected. Section Experimental setup expands this
discussion.

The proposed framework is grounded on the following
assumptions and considerations:

1. The experimental dataset made available by da Silva
and Paixao47 is used as an experimental setup, and it is
considered that no material property is known a priori.

2. The experimental database is divided into training and
test datasets. The test dataset is used only at the end
to evaluate the performance of the machine learning
algorithms.

3. The training dataset is used to update the material
properties of a FE model, using the framework
proposed by Ferreira et al44.

4. The FE model accounts for the experimental results
variability through variations in material properties;
therefore, there is not a unique value for a given
property. Instead, there is a Probability Density
Function (PDF) for each significant parameter.

5. A Bayesian inference process using MCMC simula-
tions and the Metropolis-Hasting sampling algorithm
is effective in sampling posterior PDFs from uniform
prior distributions.

6. The FE model can be used to simulate other conditions
inside and outside the range of damages in which it is
calibrated.

7. A surrogate model, based on neural networks, can
replace the FE model to reduce the time required for
the MCMC rounds.

8. A 1D CNN is implemented to quantify damage in a
structure with detected damage.

9. A 1D CNN can gather features of the raw data series. It
can be trained using experimental data, numerical data,
or a hybrid combination of both, comprising three
different types of datasets.

10. The proposed strategy is evaluated by comparing the
performance of machine learning algorithms trained in
the three types of datasets.

11. The network performance is evaluated using a test
dataset not used during the Bayesian inference process
or the training stage.

Stochastic FE model development

This work uses the Bayesian updating framework proposed
by Ferreira et al.44 to obtain a stochastic FE model
for Lamb wave propagation under varying temperatures.
Figure 2 presents the proposed strategy, divided into two
main steps: an initial deterministic updating step and a
stochastic updating procedure. The deterministic updating
is based on a variation of the least-squares method. In
contrast, the stochastic updating procedure is composed of
a sensitivity analysis using Sobol indices followed by an
MCMC simulation using the Metropolis-Hastings sampling
algorithm to sample the posterior probability function of
the main parameters of the model, i.e., those that influence
the model output the most. The framework is applied for
multiple temperatures, enabling the construction of a model
capable of emulating a complete experimental dataset across
a range of temperatures.

- Deterministic updating procedure.

A modified variant of the least-squares method is
employed for the deterministic updating of input parameters.
The formulation of this method is detailed by Bud et
al.48, and it displays a multi-loss optimization technique
designed to minimize several loss functions derived from
model outputs. To realize this goal, the influence of each
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Composite structures

Stochastic FE model development

Bayesian inference
Lamb wave signals
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Figure 1. Proposed Bayesian-driven framework for stochastic FE model updating, data generation, and machine learning
algorithm training and evaluation.
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Figure 2. Stochastic FE model updating process.

input parameter on the loss functions is linearized, and
partial derivatives relative to each parameter are numerically
computed. Two residuals are established as loss functions:
the squared norm of the disparity between experimental
and numerical signals and the cross-correlation between
the signals. Table 1 elucidates the definitions of both
residuals. It is important to highlight that while the equations
provided appear continuous, they are executed through
discrete numerical computations. The aggregate residual is
characterized as the summation of the individual residuals.

Residual Equation

RNORM RNORM =

∫ t2

t1

[y(t)− x(t)]2dt∫ t2

t1

x(t)2dt

.

RXCOR RXCOR = 1− rxy,
Table 1. Residuals used in the updating process

- Sobol indices

Sensitivity analysis is conducted to discover the effects
of model parameters, called random input variables, on
quantities of interest that form the model response. A
sensitivity analysis is performed using Sobol indices to
quantify each parameter’s influence on the model’s behavior.
The model parameters are perturbed within a defined range,
and metrics defined to quantify the input parameters’ effect
on the model’s response are evaluated. The first-order Sobol
index measures the proportion of variance in the metrics that
can be attributed to a single parameter.

Suppose the response of the mathematical model is given
by:

Y = M(Θ), (1)

where Θ = (θ1, θ2, . . . , θk) is the vector containing the k
input variables, and Y is a scalar quantity. For simplification
purposes, the input parameters are considered uniformly
distributed with support π(Θ) ∼ U(0, 1). The sensitivity
analysis using Sobol indices considers the decomposition of
the model’s response Y in terms of increasing dimensions:

Y = M0 +

k∑
i=1

Mi (θi) +

k∑
i<j

Mij (θi, θj) + . . .

+M1...k (θ1 . . . θk) ,

(2)

where the constant M0 corresponds to the mean value
E(Y ) of the model output. The integral of each summation
above has zero means, then all the terms in Eq. (2) hold
the orthogonality property. Consequently, these terms can
be calculated using the conditional expectations M0. Thus,
the terms Mi(θi) and Mij(θi, θj) are the conditional mean
values for the parameters i and ij (i ̸= j)49, respectively:

Mi(θi) =

∫ 1

0

· · ·
∫ 1

0

M (Θ) dΘ∼i −M0, (3)
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Mij(θi, θj) =

∫ 1

0

· · ·
∫ 1

0

M (Θ) dΘ∼ij −M0−

Mi(θi)−Mj(θj),

(4)

where the notation ∼ i indicates that parameter θi is
excluded. As the model response from Eq. (1) is also a
random variable, the conditional expectation variance can
be considered a summary measure of sensitivity. Thus, one
can compute the first-order Sobol indices that quantify the
additive effect of each input parameter separately on the total
variance:

Si =
V ar[Mi(θi)]

V ar[M(Θ)]
, (5)

This first-order index represents each input parameter’s
main contribution to the model output variance50. The
second-order Sobol indices that quantify the interaction
effects between two input parameters are defined as:

Sij =
V ar[Mij(θi, θj)]

V ar[M(Θ)]
. (6)

In this work, the first and second-order Sobol indices are
analyzed to evaluate the influence of each input parameter
in the FE model response. For this, the UqLab framework
has been used51. Two metrics are defined based on the Lamb
wave package, as depicted in Fig. 3: (i) the time of flight
(TOF), and (ii) the maximum amplitude of the wave package.
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Figure 3. Metrics used at sensitivity analysis

- Bayesian inference

Due to the intrinsic variability present in physical
systems, such as variations in geometry, environmental
conditions, and material properties, it is impossible to
eliminate uncertainty, even with comprehensive data. This
type of uncertainty, irreducible uncertainty, cannot be fully
captured or accounted for. To address this variability in
the parameters of the computational model, this study
employs the Bayesian paradigm as a statistical inference tool
for the problem of model calibration. Bayesian inference
is a probabilistic framework that allows for the iterative
updating of prior beliefs about a model or hypothesis based

on observed data. It involves the application of Bayes’
theorem, which describes the mathematical relationship
between prior knowledge, a likelihood function, and the
posterior distribution. The prior distribution defines the
initial beliefs, or knowledge, about the system of interest; the
likelihood functions quantifies the probability of observing
data given different input parameters; and the posterior
distribution combines the prior and the likelihood to provide
an updated belief about the model. Using Bayesian inference,
it is possible to incorporate new evidence in the model. It
also facilitates the quantification of uncertainty in model
parameters through PDFs.

In a Bayesian inference process, two assumptions are
introduced: (i) as the model parameters are random variables,
a prior distribution π(Θ) for the set of input variables
Θ is proposed based on the deterministic model updating
procedure; (ii) Bayes’ theorem is employed to update the
before a posterior distribution, gathering information from
random data observations (D). The posterior PDF π(Θ|D)
is given by:

π(Θ|D) =
π(D |Θ)π(Θ)

π(D)
, (7)

in which π(D |Θ) is the likelihood function and the
denominator π(D) is the marginal, a normalization constant
that guarantees the definition of a PDF with integral equal to
unity. By considering a uniform prior distribution, Eq. (7) is
simplified to π(Θ|D) ∝ π(D |Θ), i.e., the updated posterior
PDF is proportional to the likelihood distribution.

Assuming that the model predictions DM(Θ) are
corrupted by an additive decorrelated Gaussian noise of zero
mean and variance σ2

ε , the analytical expression for the
likelihood function is given by:

π(D|Θ) ∝ exp

(
−1

2

(
D −DM(Θ)

)T (D −DM(Θ)
)

σ2
ε

)
,

(8)
with T superscript meaning transpose operation. To sample
the posterior density function, the MCMC/Metropolis-
Hastings algorithm is considered52. The random variables
Θ are limited to the interval [Θmin,Θmax], whose current
state is symmetrically normalized as Θ′ = (1− x)Θmin +
xΘmax ; x is a random variable ∈ [0, 1] that represents
generated candidates for the posterior distribution. These
candidates are sampled from a normal distribution with
standard deviation σp. This hyperparameter controls the
random walk step to avoid the chain becoming static and,
simultaneously, to allow the parameter space to be properly
explored. Therefore, σp is adjusted to obtain an acceptance
rate of candidates from 40 to 50 %. Only 80% of the Monte
Carlo simulations are considered in the final stationary
Markov chain (burn-in of 20%).

Overview of neural networks

In this work, two architectures of neural networks are used,
the MLP and the CNN. The former is used as a surrogate
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model instead of the FE model, while the latter is used as a
regression algorithm.

Multilayer perceptron MLP consists of a series of intercon-
nected layers of neurons that receive the information from
the previous layer neurons, process it then pass it forward.
Assuming a training dataset with dimension M ×N , where
M is the number of points per array, and N is the number
of samples on the dataset, the l-th sample vector is repre-
sented by x(l) ∈ R1×M . In a supervised learning scheme, the
expected output for a training sample is represented by y(l) ∈
RP×1, where P is the number of outputs. The objective of
the neural network is to map the function F : x(l) → y(l).
A neural network with at least one hidden layer can act as
a universal approximator53 and Fakih et al.54 demonstrated
the feasibility of neural networks as a surrogate model to
simulate Lamb waves in aluminum structures.

This mapping is achieved through the training process, in
which the parameters ΘNN of the network are updated using
a set of sample pairs (X(l),Y (l)) through a minimization
problem of a loss function L(ΘNN ) = L(F(X,ΘNN )−
Y ). The half-mean-squared error is used as a loss function
in regression problems.

Considering the kth unit (or neuron) of the ith layer, it
receives the output xij from each jth unit of the (i-1)st layer.
The values xij are then multiplied by a weight wijk, and
these products are summed. A bias bij is added to the result,
and then an activation function (T ) is applied to the result
that is propagated for the next layer. The activation function
is responsible for adding non-linearity to the system, and it
can assume multiple forms, such as sigmoid, ReLU, leaky
ReLU, or tanh functions.

xi+1,k = T

 m∑
j=1

wikjxij + bij

 . (9)

The training stage involves feeding the network with
labeled input data and adjusting its internal parameters
to minimize the difference between predicted outputs and
true labels. As this process consists of a multivariate
optimization, ΘNN is not necessarily unique and can
produce multiple networks that fit the data. To encode
the preference for certain sets of weights and remove part
of this ambiguity, it is common to add a regularization
loss in the form of: R(ΘNN ) = λ

∑
i

∑
j (ΘNN )ij , in

which λ is a regularization parameter. This is commonly
called L2 regularization, and it induces the optimization
algorithm to select models with smaller parameters. This
regularization strategy also impacts reducing overfitting, as
highly specialized networks, with concentrated parameters
are penalized over the ones with a more uniform
weight distribution. A forward propagation stage generates
the predicted output throughout the training process,
subsequently compared to the actual output to calculate
the loss. Backpropagation is then performed to update
the network parameters by computing gradients and

applying optimization algorithms. This process is iterated
for multiple epochs involving forward pass, loss calculation,
backpropagation, and parameter updates. Finally, the trained
network is evaluated on a test set to address its performance.

Convolutional neural network CNNs have a significant
advantage over traditional ANNs because they can inte-
grate feature extraction and classification tasks within a
single framework. Unlike conventional machine learning
approaches that often involve preprocessing steps and rely
on hand-crafted features, which can be sub-optimal and
computationally demanding, CNN-based methods directly
extract “learned” features from raw data, thereby maximizing
accuracy. Kiranyaz et al.55 presents an extensive discussion
about 1D CNN and exemplifies this network structure with
various applications. In the field of SHM using Lamb waves,
Shao et al.19 proposed a multi-level damage classification
technique of aircraft plate-type structures using a 1D-CNN.
Rai and Mitra18 introduced a multi-headed 1D-CNN and
evaluated a transfer learning strategy using a deterministic
2D FE model and two similar AL-5052 plates. Pandey
et al.20 employed the Local Interpretable Model-Agnostic
Explanations (LIME) with a 1D CNN to interpret the clas-
sifications of the model in terms of damage feature contribu-
tions.

A CNN performs a similar mapping F : x(l) → y(l) as
described for the MLP network, but it uses a sequence
of convolution and pooling operations. The first step is
the convolution operation, where a filter or kernel is
convolved with the input feature map. This operation can
be represented mathematically as Y = X ∗W , where Y is
the output feature map obtained by convolving the kernel
W with the input X. After the convolution operation, an
activation function is applied element-wise to introduce
non-linearity, resulting in an activated feature map Z. The
next step in a CNN is the pooling operation, which helps
reduce the spatial dimensions of the feature map while
preserving important information. Max pooling and average
pooling are commonly used pooling operations, where the
maximum value and the average within a pooling window are
selected, respectively. Multiple convolution+pooling layers
are usually applied in sequence to extract features with
increasing complexity from the input. Along the network,
normalization layers, such as Batch Normalization, can be
used to normalize the activations within a layer to address
the problem of internal covariate shift. By normalizing the
activations, normalization layers help stabilize and regularize
the learning process, enable faster convergence, and improve
the network’s generalization ability. Also, a dropout layer
can be applied to randomly drop some neurons during
training to zero. The main purpose of dropout is to prevent
overfitting and improve the generalization performance of
the network. By dropping out neurons, dropout layers help
create a more robust network that avoids relying too heavily
on specific connections. At the end of the network, the
pooled feature map is flattened and fed into one or more
fully connected layers, similar to an MLP network, and
the output layer of the CNN applies an activation function
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suitable for regression. Figure 4 depicts the 1D CNN used
for quantification.

This study utilizes 1D CNNs as quantification algorithms
trained with three distinct datasets: (i) an experimental
dataset representing a data-driven approach; (ii) a dataset
comprising exclusively numerically generated data; and (iii)
a dataset that combines experimental and numerical data
obtained from a stochastic numerical model.
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Figure 4. Structure of the 1D CNN used for damage
quantification.

Methodology

Experimental setup

The carbon fiber reinforced polymer (CFRP) plate used in
the experimental setup has dimensions of 500 x 500 x 2 mm
and comprises 10 layers of plain weave fibers oriented along
the plate borders directions. To detect the behavior of the
plate, four PbZrTi (Lead Zirconate Titanate - PZT) SMART
Layers with a diameter of 6.35 mm are bonded to the plate
with the help of epoxy resin. PZT 1 acts as the actuator,
and the remaining PZTs, namely PZT 2, PZT 3, and PZT 4,
serve as sensors. The excitation signal consists of a 5-cycle
sinusoidal wave with an amplitude of 35V and a frequency
of 250 kHz, modulated by a Hanning window. The output
signal is then recorded over a 100 µs window using a multi-
function input/output device NI USB 6553 from National
Instruments and an oscilloscope DSO7034B from Keysight
with a sampling frequency of 5 MHz. Figure 5a presents
the experimental setup. The data acquisition is conducted
under controlled temperatures, which are incrementally
increased in steps of 10◦C from 0◦C to 60◦C, using a
thermal chamber manufactured by Thermotron. The data is
statistically characterized by performing 100 repeated tests
at each temperature. The dataset is publicly available in the
GitHub* repository CONCEPT: CarbON-epoxy CompositE
PlaTe47.

Damage is simulated by adding mass to the plate, with
increasing diameter, ranging from 20 to 80 mm, with
increments of 10 mm. This mass addition simulates local
variation on the damping of the plate56 and allows reversibly

simulating damage. Overall, the dataset comprises 28
damaged conditions. Figures 5b to 5e show one experimental
measurement for each temperature from 0◦C to 60◦C and
diameter from 20 to 80 mm. Note in Figs. 5b to 5e
that the effect of damage is primarily the reduction of
the waveform amplitude. This reduction is temperature-
dependent, being more pronounced at low temperatures than
at high temperatures (refer to Figs. 5b and 5e). Conversely,
the temperature alone slightly influences the signal TOF46,
which can be seen comparing the outer signals from the
refered figures. Thus, determining whether this structure
has damage or not is summarized as an assessment of the
signal amplitude with respect to the baseline, which can be
implemented with an outlier detection. The difficulty of this
problem lies in quantifying the size of the damage, due to
the temperature influence in the signal attenuation related
to damage. Thus, the proposed 1D CNN is assumed to be
applied after a binary classification (presence or absence of
damage), and it does not evaluate the structure in a damage-
free situation.

Although representing a vast sample space of 0 to 60°C
and 20 to 80 mm, the database under study has few samples,
making it difficult to divide the data classically, such as
fractions of 70/15/15 or 80/10/10 for training, validation,
and testing, respectively. Divisions like these would result
in validation and test subsets with only 3 or 4 elements,
which makes it challenging to evaluate machine learning
algorithms during training and testing. Additionally, the
authors decided against using K-fold cross-validation to
ensure that there is a dataset that the model has never
encountered before. In the present work, it is proposed
to evaluate the gain of information from a stochastic FE
model filling the sample space with generated data under
conditions of sparse experimental data and the advantages
of the proposed Bayesian framework in these situations. To
comprehensively evaluate the performance of the proposed
Bayesian framework, the experimental data is arranged into
a scenario in which data could be feasibly collected at various
temperatures with minimal cost in a practical scenario,
as depicted in Tab. 2. This division simulates a common
laboratory situation in which the structure could be damaged
in limited conditions and tested at several temperatures.
This database allows for the evaluation of temperature
interpolation capacity in two ranges with different sizes -
from 10 to 30◦C and from 30 to 60◦C, as well as the analysis
of damage interpolation capacity between 30 and 70 mm,
and the study of the extrapolation capacity with damages of
20 and 80 mm.

FE model

An ABAQUS/Explicit FE model is used to simulate the
plate. The plate is modeled using continuum shell elements
(SCR8). These elements are designed to discretize a three-
dimensional body rather than just representing a surface like
traditional shell elements. Continuum shells solely possess

∗https://github.com/shm-unesp/DATASET_PLATEUN01
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Figure 5. Experimental setup: (a) data acquisition strategy; and results for progressive damaged conditions from 20 mm to 80 mm
at (b) 0◦C; (c) 10◦C; (d) 30◦C; and (e) 60◦C.

Damage diameter Temperature [◦C]
[mm] 0 10 30 60

0
20
30
40
50
60
70
80

Table 2. Data division between training ( ), validation ( ), test
( ), and undamaged ( )

displacement degrees of freedom, adopt linear interpolation,
and account for the impact of transverse shear deformation
and thickness alteration. Furthermore, they are founded on
first-order composite theory and can be stacked to enhance
the precision of the through-thickness response.

Figure 6 presents the geometry of the FE model. To
facilitate the generation of a structured mesh for the entire
plate, the plate is divided into several smaller rectangular
regions. The area where the PZT actuators and sensors are
attached to the plate is modeled explicitly with a circular
mesh. As proposed by Gresil et al.57, the excitation signal
is applied as eight self-balancing forces around this region,
as depicted in Fig. 6. To obtain the output signal, the
integrated strain results within the sensor region are used and
transformed to voltage as suggested by Sirohi, and Chopra58.
The region between PZTs 1 and 2 is modeled with a circular
mesh to account for damage addition. Damage is modeled as
a constant thickness circular disk with solid elements and a
tie interaction with the plate.

PZT1

PZT2PZT3 PZT4

Exci
tatio

n fo
ce

detail

Figure 6. FE model.

The analysis’s spatial and temporal resolution influences
the numerical simulation’s stability. Moser59 suggests that a
spatial resolution of no less than 20 nodes per wavelength
is essential to guarantee stability, which can be expressed
as le = λmin/20, where λmin is the minimum wavelength
anticipated in the model and le is the characteristic length
of the mesh. Furthermore, to avert numerical instability,
the time step must be determined based on the highest
anticipated frequency in the simulation, with a suggested
value of ∆t = 1/(20fmax), where ∆t represents the time
step and fmax denotes the maximum frequency expected in
the model. When the input frequency is 250 kHz, adhering
to both considerations leads to a mesh comprising element
sizes of approximately 2 mm and a maximum time increment
of 0.2 µs. However, further stability analyses of the model
reveal that the time increment of 0.2 µs is not sufficient to
ensure convergence, due to mesh irregularity surrounding the
damage and PZT regions. Additionally, reducing the time
increment to 0.10 µs allows the model to converge in most
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simulations, but divergence occurs in some combinations of
properties resulting in faster wave speeds. Fig. 7 presents
the results of a simulation with time increments of 0.10 µs,
0.075 µs, 0.05 µs, 0.04 µs, 0.03 µs, and 0.02 µs. Note that
the model results on Fig 7a are very similar. Additionally,
the TOF of the signal on Fig. 7b with a time increment of
0.05 µs, but the simulation duration increases exponentially
with the increment. Consequently, a time increment of
0.05 µs is selected because it effectively addresses mesh
irregularities, ensures convergence in all simulated scenarios,
and maintains a reasonable simulation duration.
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Figure 7. Convergence analysis of the FE model as a function
of the time increment : (a) wave packets, and (b) TOF and
simulation duration.

The composite material is implemented in the FE model
using ply-based properties. The mechanical behavior of the
materials is modeled using the classical laminate theory,
where each layer is considered an orthotropic material with
3 integration points per lamina. As such, Young’s modulus
in two perpendicular directions in the plane (E1 and E2),
Poisson’s ratio (ν12), shear moduli in and out of the plane
(G12 and G23, respectively), and density (ρ) had to be
determined. As a simplification, it is assumed that the values
of E1 and E2 for plain weave fibers are close, so they are
considered equal. The emulated damage mass is modeled as
an elastic material with Rayleigh damping, characterized by
two coefficients, α and β (Eq. 10). It can be observed that
in Rayleigh’s damping, α predominates at low frequencies,
while β dampens high frequencies

ξ =
αR

2ω
+

βRω

2
. (10)

The model accounts for temperature effects at the
material level. Initially, the elastic modulus in perpendicular

directions (E1 and E2), Poisson’s ratio (ν12), and shear
moduli in and out of the plane (G12 and G23) are
heuristically selected as factors affected by temperature
for the composite material. The Young modulus, Poisson
coefficient, and Rayleigh damping coefficients (α and β)
are considered temperature-dependent for the damage mass
simulation material. The specific mass of both materials
is considered constant with temperature but treated as an
uncertain quantity for both materials.

The FE model is implemented using a series of Python
routines that run within the ABAQUS Compiler. This setup
allows for the generation of parametric plate geometry,
creation of damage, and definition of the mesh. Additionally,
there exists a high-level code layer implemented in
MATLAB, providing direct control over Abaqus through the
MATLAB command line. The primary command function,
denoted as the main model in Fig. 8, integrates the property
generation routine, i.e., deterministic and stochastic routines.
The output is a trigger file written in Python. Through a
Windows system command, MATLAB commands ABAQUS
to construct the structure and generate a standard INP
file. This file is then interpreted by the ABAQUS Solver,
resulting in an ABAQUS OBD file. Subsequently, this file
is interpreted and converted into a text file, which can be
stored to build a dataset or read by MATLAB to update
properties through an automatic routine. This architecture
made possible a complete automation of the pre-and
post-processing steps of the simulation inside MATLAB’s
workspace to facilitate the Monte Carlo simulations.
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Figure 8. FE model code structure implementation.

Neural network surrogate model

To accelerate the time-consuming MCMC simulations,
the authors propose employing a surrogate model to
replace the FE-based model during the random-walking
process. Numerous surrogate modeling techniques have
been suggested to address the computational challenges
in Bayesian inference. Some of these techniques include
Gaussian process60,61, polynomial chaos expansion62,63,
radial basis function64, neural networks54,65, and others. This
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study uses a multilayer perceptron ANN as the surrogate
model44. It is an interpolation model within the parameters
search space for the Bayesian inference process.

The FE model is extensively simulated with properties
from a bounded uniform distribution to generate the
necessary training data in this strategy. The boundaries
are defined by the results of the deterministic updating
procedure, which increased by a margin of 5-20%,
depending on the uncertainty about the parameter to allow
a random-walk margin for the MCMC algorithm. The
model response is truncated after the first wave package
to reduce training time and data requirements for network
convergence. The neural network is trained with the
Adam algorithm and uses a dataset division with 80/10/10
proportions for training, validation, and testing sets. The
loss of the validation data serves as the stopping criterion
for training. The input variables are normalized between 0
and 1 to enhance convergence, while the output signal is
normalized between -1 and 1.

The input layer has M neurons representing the random
variables updated within the Bayesian inference process, and
the output layer contains 140 neurons representing the time
series output. The number of hidden layers is defined as two,
with the number of neurons N2 and N3 at the first and second
hidden layers selected through exploratory search. Figure 9
depicts the surrogate model structure.
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Figure 9. Architecture of the MLP used as surrogate-model.

Results

The results are divided into two subsections (i) the stochastic
FE model updating results and (ii) the training and evaluation
of the machine learning model. The former is further divided
into undamaged and damaged model updating, while the
latter is divided into 1D CNN structure definition, damage
quantification, and temperature effects.

Stochastic FE model updating

The updating procedure detailed in section Stochastic FE
model development is applied to the FE model in the
undamaged and damaged conditions. At the undamaged
condition, only the plate material parameters are updated
(E1, E2, ν12, G12, and G23) using experimental data ranging

from 0 to 60◦C. Conversely, for the damage condition, the
emulated damage mass material is updated (E, ν, α, and
β) using the available information for 0, 10, 30, and 60◦C.
Also, the updating procedure of the damage condition only
used the experimental signals for diameters of 30, 50, and
70 mm. The other damage diameters are used to evaluate the
performance of the proposed damage quantification strategy
at the testing phase.

Undamaged model updating The updating process for
the undamaged model is presented by Ferreira et al.44.
Table 3 presents the statistical properties for the mechanical
parameters and Figs. 12a to 12h showcases the sampled
distributions.

Damaged model updating Evaluating Eq. 10, one can
notice that α is responsible for the damping component
at low frequencies. Among the available parameters for
adjusting the damaged model, initial tests showed that this
damping component is insignificant to the model’s response.
As Lamb waves occur in ultrasonic ranges, specifically
250 kHz for the present study, only β is presented to be
relevant. Therefore, the damaged model has four adjustable
parameters besides the undamaged model: E, ν, β, and ρ
for the damage mass. The initial value of the mass density
was determined experimentally as 1750 kg/m3 and kept
constant with temperature. An initial estimate is based on an
exploratory search for the other parameters. Table 4 shows
the proposed range of values for the parameters of interest.
Note that, due to the uncertainty involved in the system, E
and β have a wide search range. The Poisson’s ratio is limited
to 0.45 to avoid potential issues with incompressibility in the
FE model.

The updating procedure requires simulating the model
with the three training diameters from Tab. 2 (30, 50, and
70 mm) at each parameter alteration. Moreover, adding
damping to the system reduces the minimum step required
for numerical stability to 0.05 µs. Consequently, the wide
range of potential values, combined with multiple damage
diameters, significantly increases the computational burden
of employing the FE model in an exploratory search strategy.
Therefore, an initial sensitivity analysis employing Sobol
indices is used. A Latin hypercube strategy with 200 samples
is constructed, encompassing the four parameters from Tab.
4 and considering the fixed central damage diameter value of
50 mm. The 30 and 70 damage diameters are not included
to keep the model’s variance only related to the material
properties.

Figure 10 presents the obtained first and second-order
Sobol indices. Note that E represents almost 70% of the
variance related to the signal’s amplitude, complemented by
25% from β. Conversely, the variance of the TOF metric
cannot be entirely addressed by individual parameters, as
the second-order Sobol indices show that the combination
Eβ is responsible for half of this metric variance. The
remaining parameters have negligible impact on the model’s
response; therefore, they are subsequently assigned fixed
values, namely 0.4 for the Poisson’s ratio and 1750 kg/m3 for
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Table 3. Mechanical parameters obtained for the undamaged model in the temperature range from 0◦C to 60◦C. Adapted from
Ferreira et al. 44

.

Parameter Metric 0◦C 10◦C 20◦C 30◦C 40◦C 50◦C 60◦C
Mean [GPa] 61.46 61.44 61.30 61.06 61.00 60.80 60.67
Standard deviation [GPa] 0.191 0.207 0.190 0.215 0.195 0.214 0.225

E1 Coefficient of variation (CV) [%] 0.310 0.337 0.310 0.352 0.320 0.351 0.371
1% Percentile [GPa] 60.94 60.91 60.82 60.55 60.57 60.20 60.08
99% Percentile [GPa] 61.98 61.05 61.83 61.67 61.51 61.34 60.32
Mean [GPa] 10.56 10.38 10.26 10.06 10.11 10.01 9.82
Standard deviation [GPa] 0.116 0.124 0.108 0.114 0.103 0.131 0.121

G12 Coefficient of variation (CV) [%] 1.09 1.19 1.05 1.14 1.02 1.30 1.23
1% Percentile [GPa] 10.14 10.06 10.01 9.74 9.84 9.70 9.50
99% Percentile [GPa] 10.87 10.69 10.55 10.38 10.32 10.40 10.11

Parameter Minimum value Maximum value
E [MPa] 100 700

ν 0.35 0.45
1e-7 β 0.5 10

ρ [kg/m3] 1650 1850
Table 4. Search region for the damaged model parameters.

the mass density. E and β are considered undetermined, and
updating their posterior probability distributions is necessary
following the Bayesian inference procedure described in
section Stochastic FE model development.
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Figure 10. Sobol indices for the damaged model: (a) first; and
(b) second order. TOF (Time of Flight) and AMP (Amplitude)

To perform the MCMC random walks, a surrogate
model is proposed44. The FE model is simulated multiple
times using the uncertain properties sampled from a Latin
hypercube bounded by E ∼

(
100, 700

)
[MPa] and β ∼

1e−7
(
0.5, 10

)
, along with damage diameters of 30, 50, and

70 mm. Fig. 11 presents the RMSE with respect to the
number of neurons in layers 2 and 3, and with respect to
the number of samples used in the training phase. Note that
the error stabilizes near 0.5% when the second and third
layers have 100 and 200 neurons, respectively, and with 576

samples. The selected model has N2 = 100, N3 = 200 and is
trained with 1024 samples.
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Figure 11. Surrogate model RMSE in training and test data
with respect to: (a) number of neurons in the second layer; (b)
number of neurons in the third layer; and (c) samples used in
the training phase.

The ANN surrogate model underwent the Bayesian
inference process using MCMC with the Metropolis-
Hastings algorithm. For the Markov Chain estimation, the
variance of the likelihood function is defined iteratively
through rounds of the fitting algorithm, trying to ensure a
stable acceptance rate between 40 and 50%. The chain is
simulated over 4000 samples, and the first 20% samples are
discarded (burn-in). Figs. 12a to 12p present the sampled
PDFs for E1, G12, E and β. The PDF is obtained from
a kernel density estimate (KDE) applied to the MCMC
sampled data. Note that all material properties tend to reduce
their magnitude with temperature. Comparing the CFRP and
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the emulated damage mass, the latter has a greater variation,
with Young modulus and β damping coefficient average
values varying from 575 MPa and 3.9×10−7 to 475 MPa and
1.5×10−7, respectively.

Samples obtained using the MCMC process are consid-
ered a set that approximates the target distribution. These
obtained samples are then used as a surrogate PDF represent-
ing the target distribution and sample. Simulating the model
within its 99% confidence interval for the sampled properties
gives the model confidence intervals for the signals, as
depicted in Figs. 13a to 13d.

The application of the framework resulted in a Bayesian
updated FE model that can be simulated over all ranges
of temperatures and provide results with variability within
a confidence interval that encompasses the experimental
results. The model is a foundation for emulating the
experimental setup with and without damage. During the
data generation phase, given a temperature, the properties
can be sampled from the obtained PDFs. Then, the FE model
can be evaluated with the intended damage diameter.

1D CNN evaluation.

In the following subsections, the impact of the data
generated by the stochastic FE model in the proposed 1D
CNN is evaluated using three different strategies (i) only
experimental data, named EXP; (ii) only numerical data,
named NUM; and (iii) a combination of both types of data,
called hybrid training or HYB. The strategy for each dataset
preparation is presented at Datasets preparation, the model’s
structure is defined in the subsection 1D CNN structure
definition, and the data division strategies are evaluated
concerning the model’s accuracy and temperature effect on
sections Damage quantification and Temperature influence.

Datasets preparation The experimental and numerical
results must be pre-processed to generate the EXP, NUM,
and HYB datasets. The first pre-processing step consists
of selecting the first wave package of each k PZT in a
damaged condition and concatenating them into a vector
R1×kN . N is defined as 120 points encompassing the FE
model’s validation region, and k is equal to 3. Therefore, the
input signal has a length of kN = 360. Then, a reference
undamaged signal with dimension R1×kN is paired with the
damaged signal, creating a sample x(l) ∈ R2×kN . Finally,
each sample is paired with the scalar damage diameter,
also known as severity, represented by y(l) ∈ R1×1 and
normalized between 0 and 1, considering the range of 0 to
80 mm. The 1D CNN is trained to receive the x(l) array and
determine damage diameter y(l) related to it.

The training is performed with the EXP, NUM, and
HYB datasets. The EXP dataset is composed only of
experimental data. There are 100 experimental signals for
each temperature and damage condition of Tab. 2, and the
damaged conditions are divided into training, validation, and
test subsets according to it. The undamaged signals for each

temperature are divided using the same proportion of the
damaged conditions, i.e., 2/1/4 and 1/2/4 for 0 and 10◦C,
respectively. Finally, each damaged signal is permuted with
all undamaged signals, expanding the available combination
of signals for training, validation, and testing. Table 5
summarizes the data division.

We chose this data partitioning strategy for two primary
reasons: (i) Segregating undamaged from damaged signals
before distributing them into training, validation, and test
datasets ensures entirely distinct subsets. This means no
overlap between these subsets, ensuring the neural network
is not exposed to test samples during training. (ii) Given
experimental uncertainties, two recorded signals under
identical conditions are never the same. Consequently, an
undamaged baseline can be contrasted with all damaged
signals for a specific temperature. By shuffling the baseline
within the same temperature bracket, we can diversify
available samples for training. For the creation of the
NUM and HYB datasets, the numerical signals are procured
from the stochastic FE model simulations at temperatures
of 0, 10, 30, and 60◦C. Diameters are randomly chosen
within the range of 20 to 80 mm. Undamaged signals are
sourced by sampling PDFs for 50 times per temperature
for the undamaged model. 500 diameters are randomly
chosen within the 20 to 80 mm range for damaged signals
at a specific temperature. PDFs of the properties are
then sampled for each diameter, followed by FE model
simulation. The permutation approach employed for the
EXP dataset is replicated. The NUM dataset comprises all
data derived from the numerical signals. In contrast, the
HYB dataset amalgamates the EXP and NUM datasets.
For diameters present in both the experimental and FE
model datasets meant for training, only experimental data
is incorporated into the HYB dataset. These datasets
subsequently inform the training phase of a 1D CNN
algorithm to assess damage size. Performance is gauged
using validation and test subsets sourced from the EXP
dataset. The distinguishing factor between these datasets is
the origin of training data; the HYB dataset integrates both
experimental readings and numerical data extracted from the
Bayesian stochastic FE model. To avoid data unbalance in
the HYB dataset, the number of experimental and numerical
samples are mantained equal.

1D CNN structure definition The proposed 1D CNN
consists of three sequence blocks of convolution-pooling-
ReLU layers, followed by one fully connected layer, as
presented in Tab. 8. The three blocks of 1D Convolutions
+ ReLU layers aim to extract features from the time series.
The network has increasing filters along its dept, and the last
layers comprise a sequence of flattened, fully connected, and
regression layers. In this structure, the convolution part acts
as a low-level feature extractor, while the fully connected
part performs the regression based on such features. The
last layer is a regression layer with a single neuron that
predicts the diameter of the damage between 20 and 80 mm.
The error is quantified using the mean squared error, the
prediction, and the real value. The same structure is used in
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Figure 12. Results for stochastic updating procedure using 30, 50, and 70 mm damage diameters at 0, 10, 30, and 60◦C,
respectively, in the horizontal direction. (a) to (d) E1 distribution; (e) to (h) G12 distribution; (i) to (l) E distribution; and (m) to (p) β
bistribution. In the histograms, the colors represent: Sampled data ( ), Kernel Density Estimate (KDE) ( ) and Cumulative Density
Function (CDF) ( ).

Temperature 0 C 10 C 30 C 60 C

EXP

Undamaged signals 100 100 100 100
Damaged signals 700 700 700 700

Divide into Train Val. Test Train Val. Test Train Val. Test Train Val. Test
Undamaged 30 15 55 15 30 55 30 15 55 15 30 55

Damaged 200 100 400 100 200 400 200 100 400 100 200 400
Possible combinations 6000 1500 22000 1500 6000 22000 6000 1500 22000 1500 6000 22000

FE
Undamaged signals 50 50 50 50

Damaged signals 500 500 500 500
Possible combinations 25000 25000 25000 25000

Table 5. Experimental and FE model data division and number of samples.
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Figure 13. Model response for PZT at (a) 0 ◦C; (b) 10◦C; (c) 30◦C; and (d) 60◦C. In the graphs, the colors represent experimental
50 mm damaged signal ( ), model prediction for 50 mm with mean properties ( ) and confidence interval ( ).

all training scenarios to evaluate the data impact on the 1D
CNN’s performance.

The internal structure of the network is evaluated through
random search. For the first layer, two variables of interest
are considered: kernel width and the number of filters per
convolution. As the first layer is responsible for extracting
basic features from the raw signal, the second and third
kernel sizes are kept constant to reduce the hyperparameters
search space. However, the number of filters is increased
with the depth of the network; thus, the second and third
layers have 2x and 3x times the number of filters of the first
layer, respectively.

At the training stage, five hundred neural networks
are simulated with hyperparameters sampled within the
range: learning rate α ∼ U

(
0.1, 0.00001

)
, kernel size K ∼

U
(
3, 25

)
, and the number of filters N ∼ U

(
16, 32

)
. It is

worth noting that only odd numbers for the kernel size
are evaluated to maintain symmetry around the convolution
window. The adaptive moment estimation (Adam) training
algorithm is used. The other training hyperparameters kept
constant are presented in Tab. 6. Besides a maximum of 500
training epochs, early stop criteria are implemented to reduce
overfitting. The validation data from the EXP dataset is used
to evaluate (see Tab. 2) the loss and RMSE along the training
are interrupted if validation loss increases in two subsequent
epochs. The neural network structures are implemented on
the MATLAB Deeplearning toolbox. All training rounds are
carried out on a PC featuring AMD Ryzen 9 5950X CPU @
3.40 GHz, 16 GB RAM, and an Nvidia GeForce 2060 GPU
card using the GPU.

Training parameters
Optimizer Adam

β1 0.9
β2 0.999
ϵ 1E-8

L2 regularization factor 0.0001
Weight initializer He

Total epochs 500
Mini-batch size 128

Table 6. Fixed training parameters.

The results and hyperparameters for the three best-
performing networks are presented in Tab. 7 and are ordered

based on the validation data error for the network trained
with experimental data. The best networks exhibit similar
errors in the training of the numerical network, rendering this
criterion irrelevant to the selection process.

Figure 14 compares the networks of Tab. 7 during the
experimental and hybrid data training stage. Networks 1
and 3 have learning rates in the same order of magnitude
and the same kernel size, but network 1 has more filters.
A larger number of filters results in a network with
more parameters to train. Network 1 exhibits a higher
tendency for instability in the validation data after a certain
point, indicating overfitting to the training data. Network
2 encounters a similar stability issue and undergoes early
stopping. Conversely, when examining the curve for case
number 3, a more stable behavior throughout the training
process is observed, allowing for additional training rounds.

Consequently, the network architecture is selected based
on a trade-off between the error in experimental and hybrid
training, the tendency to overfitting, and the training time
required for the subsequent stages. Table 6 presents the
parameters for the selected network.

Damage quantification The selected network is assessed
using the EXP, NUM, and HYB datasets described in section
Datasets preparation. The learning rate is initially set as
0.001 to minimize instability and subsequently fine-tuned
throughout the process. An early stopping criterion based on
the validation data error from the EXP dataset is employed.
Training is stopped if the mean squared error decreases
for two consecutive epochs. Figure 15 shows the training
performance for each scenario.

The algorithm trained with the EXP dataset reaches a
training error approximately 20% lower than the validation
error, indicating overfitting to the training data. The
algorithms trained with the NUM and HYB datasets exhibit
comparable validation-to-training error ratios, although the
HYB-trained algorithm demonstrates lower absolute error
values. Furthermore, the algorithm trained with the HYB
dataset achieves a lower validation error faster than the other
two, which combined with the fact that the validation error
is similar in the EXP and HYB strategies, demonstrates the
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Hyperparameters Error at validation data
Network Learning rate Kernel size Number of filters EXP NUM HYB

1 0.06720 19 31 0.0283 0.0817 0.0884
2 0.00360 3 24 0.0317 0.0819 0.0733
3 0.05640 19 20 0.0412 0.0780 0.0493

Table 7. Parameters and results on validation data for the 3 best networks at hyperparameters tuning phase.
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Figure 14. Validation RMSE for the three best networks with
(a) EXP dataset; and (b) HYB dataset.

greater robustness of the algorithm trained with the inclusion
of data from the Bayesian stochastic FE model.

Table 9 summarizes the average results, with the model
trained using the EXP dataset as the reference for error
comparison. When evaluated on the test data, the model
trained with the HYB dataset exhibits an average RMSE
that is 87.5% of the model trained with the EXP dataset,
resulting in a 12.5% reduction in error. The HYB model
shows a 167% higher error on the training data than the
EXP model. However, this difference can be attributed to the
overfitting of the EXP model on the training data. Overfitting
may lead to the model fitting too closely to the training
data, resulting in poorer performance when faced with new,
unseen data. Overfitting metrics reveal that the EXP model
has validation/training and test/training ratios of 5.74 and
9.54, respectively, while the HYB model exhibits ratios of

Layer Type Kernel Stride
1 Input - -
2 1D convolution 19x20 1
3 Batch normalization - -
4 ReLU -
5 Max pooling - 2
6 1D convolution 10x40 1
7 Batch normalization - -
8 ReLU -
9 Max pooling - 2
10 1D convolution 10x60 1
11 Batch normalization - -
12 ReLU 5 -
13 Max pooling 2
14 Dropout 50% -
15 Flatten -
16 Fully connected -

Table 8. Network structure used for regression.
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Figure 15. Comparison between training ( ) and validation
RMSE (◦) for the EXP, NUM, and HYB training strategies.

2.16 and 3.11 for the same metrics. These findings suggest
that the algorithm trained with the HYB dataset possesses
superior generalization capabilities.

Conversely, training with the NUM dataset has a
considerably higher error, as shown in Tab. 9. As this
algorithm is trained with only numerical data and validated
with experimental data for the early stopping criteria
throughout the training, the training process stops when it
starts to overfit the numerical data. Although the stochastic
FE model replicates most of the signal within the confidence
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interval, as seen in Figs. 13a to 13d, then the neural network
starts to learn the particularities of the numerical signal
and overfits after a certain training time. Additional tests
on the NUM dataset have revealed that the proposed 1D
CNN cannot effectively generalize when solely trained with
numerical data in this experimental setup. Consequently, this
model is not evaluated in the subsequent analysis.

Figure 16 compares the training strategies in terms
of damage quantification on the experimental data. The
confidence interval shown is derived from the 99%
percentile of predictions on the training data. The neural
network trained solely on experimental data exhibits a
narrow confidence interval closely aligned with the optimal
prediction region. However, this confidence interval does
not accurately reflect reality due to its limited training data.
All predictions for values in the test data lie outside the
confidence interval, indicating the low reliability of this
algorithm.

In contrast, the neural network trained with the HYB
dataset demonstrates a more reliable confidence interval,
as shown in Fig. 16a. Note that the confidence interval
is narrow around the training diameters of 30, 50, and
70 mm and widens as it deviates from these regions. The
network’s training data includes experimental realizations at
these diameters, leading to narrower confidence intervals. In
contrast, the stochastic model generates the potential signals
for other diameters in the analysis range. The neural network
predictions trained with hybrid data mostly fall within the
confidence interval, except for some predictions at 20 and
80 mm. These damages occur at the extreme ends of the
FE model’s validity range and in the extrapolation region
of the experimental data used during training. Figure 16b
shows that the neural network trained with the HYB dataset
exhibits smaller errors within the interpolation range of the
model. The error increases in regions near the validity limit
of the stochastic model, but the network trained with the
HYB dataset still shows less dispersion in its predictions.

Temperature influence Figure 17 displays predictions for
damage size with training using the EXP and HYB datasets,
divided by temperature. Upon evaluating the predictions, it
is noticeable that the 1D CNN trained using the HYB dataset
outperforms the one trained with the EXP dataset at all
temperatures within the interpolation range (between 30 and
70 mm). Nevertheless, the algorithm trained with the HYB
dataset exhibits lower error than the algorithm trained with
the EXP dataset and can provide a similar confidence interval
for multiple temperatures. Note that the model trained with
the EXP dataset only has access to a single experimental
condition for temperatures of 10◦C and 60◦C. Therefore, it
lacks a confidence interval at these temperatures.

Discussions

As depicted in Figs 16 and 17, the machine learning
algorithm trained with the proposed Bayesian data-driven
strategy exhibits lower error and can provide reliable
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Figure 16. 1D CNN predictions for experimental test data: (a)
Real and predicted damages along with confidence intervals
(CI); and (b) RMSE concerning real diameter.
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Figure 17. 1D CNN performance in different temperatures. CI
represents the confidence intervals.

confidence intervals. Observing the narrower confidence
interval at damage diameters where the experimental signal
is used at the training step is possible. At the same time, it
widens at diameters trained only with numerical data.

As the algorithm trained with the EXP and HYB datasets
has to learn from both sources, it is harder to overfit
the training data when compared to the model trained
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Training strategy EXP NUM HYB
Training RMSE (TR) [mm] 1.01 7.09 2.69

As EXP percentual 100% 705% 267%
Validation RMSE (VL) [mm] 5.77 9.46 5.83

As EXP percentual 100% 163% 101%
Test RMSE (TE) [mm] 9.59 12.3 8.38

As EXP percentual 100 128% 87.5%
Overfiting metrics

VL/TR Ratio 5.74 1.33 2.16
TE/TR Ratio 9.54 1.73 3.11
TE/VL Ratio 1.66 1.30 1.44

Table 9. Summary of the quantification results.

with the EXP dataset. The latter presents a smaller error
value on training data without a corresponding reduction in
validation and test data. Despite resulting in a final validation
error close to that observed in hybrid training, the ratio
validation/training error is much higher for experimental
training, indicating overfitting.

The region spanning from 30 to 70 mm corresponds to
the interpolation segment of the training data, whereas 20
and 80 mm denotes extrapolation. Notably, the average error
rises within the extrapolation regions. This can be attributed
to both the inherent challenges associated with extrapolation
and the proximity to the validity boundaries of the numerical
model, which underwent validation between 20 and 80 mm.

Conversely, the network trained with the NUM dataset
cannot achieve the same error level as the other two.
It performs poorly in all scenarios due to the stopping
criterion based on experimental data. Thus, it cannot train
for sufficient time to adjust to the training data before
the results diverge. For this network, the relaxation of the
stopping criterion, allowing for more extended training,
was evaluated. However, while the network improved
performance on numerical data, it considerably worsened
on experimental validation and testing data. Therefore, this
training approach proved unfeasible with the given database,
model, and training strategy.

Figure 17, note that the model exhibits superior
performance at lower temperatures than higher ones. This
phenomenon can be attributed to two factors. Firstly, the
effect of the simulated damage on Lamb wave propagation is
highly temperature-dependent due to the viscoelastic nature
of the material used to simulate the damage, and its influence
diminishes at higher temperatures. This reduction is mainly
due to reduced damping, as shown in Figs. 13a to 13d.
Secondly, the temperature range between the first three
experimental datasets spans 30 degrees, while the difference
between the 30 and 60-degree datasets is also 30 degrees.
This requires the 1D CNN to work across a wider range at
higher temperatures in addition to the reduced damage effect.

In situations with limited experimental data, algorithms
trained solely on experimental data cannot provide a
confidence interval, as was the case at 10◦C and 60◦C.
Conversely, the CNN trained with the HYB dataset
incorporates multiple potential signals generated by the

stochastic model within its confidence interval, enabling
the machine learning algorithm to establish its confidence
intervals based on numerical data. The confidence intervals
allow for greater confidence in the neural network’s results,
mitigate the black box nature typically associated with this
algorithm, and allow one to explore the algorithm predictions
across the proposed training scenarios.

Conclusions

The proposed Bayesian data-driven framework adeptly
identifies and integrates vital FE model input parameters
from experimental data while accounting for their inherent
uncertainties. As a result, the stochastic FE model completes
and enriches the existing dataset by providing simulated
samples where data might be sparse. Combined with the
potent generalization capabilities of CNNs, this approach
yields a model that stands out in accelerated convergence,
minimized validation and test errors, and superior resilience
to temperature variations.

The samples proffered by the framework can be
seamlessly merged during the training of machine learning
algorithms, thereby enhancing their precision in damage
quantification. As evidenced in the tests, the machine
learning algorithm trained using this model-enhanced data
achieved a 12.5% reduction in test data error compared to an
algorithm trained using only experimental data. Moreover,
this expanded dataset paves the way for establishing a
confidence interval for model predictions. This addition
significantly increases the reliability of results from the
neural network, a crucial feature given the network’s typical
”black-box” nature.

In complicated scenarios characterized by diverse damage
types and locations, the challenges faced by algorithms
trained only on experimental data intensify. Our proposed
framework demonstrates flexibility and efficiency in such
situations, capable of handling a range of damage sizes
and categories. The approach reduces the difficulty and
amount of required experiments in a multidimensional
landscape, offering an additional tool in situations where
exhaustive factor combination testing is untenable. An
example of a practical application could involve the
analysis of delamination damage in various positions within
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composite materials. Implementing the proposed framework
on experimental data collected from specific positions within
a delamination model integrated into a FE model enables the
simulation of multiple additional damages through Bayesian
updating. This approach trades machine time for substantial
savings in time and costs typically linked with experimental
setups.
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