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Abstract
Reducing tire rolling resistance and energy loss is a topic of interest to the tire industry. Understanding and modeling
these phenomena are essential to approach this problem and propose robust solutions. This work suggests a
reduced-order model based on the Bouc-Wen model to simulate internal variables from viscoelastic constitutive laws.
Furthermore, sensitivity analysis is performed on the Bouc-Wen parameters to evaluate their influence on the system
response and capture the full range of possible values that improve the predictive ability of the reduced-order model.
This task is accomplished by calculating the Sobol’s indices estimated from a Polynomial-Chaos expansion. Once the
range of feasible model solutions is established, the reduced-order model is calibrated through Bayesian inference.
Finally, the uncertainties are propagated, and the reduced-order model is validated using data of viscoelastic internal
variables from the finite element approximation of a steady-rolling tire. Satisfactory results are obtained, as the reduced-
order model can simulate viscoelastic internal variables with a reduced computational cost for some branches of
interest. Its responses are in agreement with the experimental data.

Keywords
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Introduction

Nowadays, it is necessary to improve sustainable practices
in both academic and productive sectors to reduce
environmental impacts. Due to the rise of the sustainability
mindset in businesses, state regulations, and consumer
requirements, the automobile industry has sought to develop
technologies aiming to improve vehicle performance,
minimize fuel consumption and reduce pollutant emissions.
In addition, with the increase in the electric vehicle fleet,
the participation of particulate matter generated from brakes
and tire wear in pollutant emissions has become important
(Oroumiyeh and Zhu 2021; Tonegawa and Sasaki 2021). In
this context, improving tire performance is also fundamental.

In a rolling tire, the mechanisms of energy loss have been
known for a long time: the hysteresis within the viscoelastic
material, the friction between tire and road, and the drag
force (Walter and Conant 1974). All these mechanisms of
energy loss contribute to the tire rolling resistance, which
can be considered as a force that opposes the vehicle motion
and is responsible for a significant amount of fuel energy
consumption (Hall and Moreland 2001). Most of the rolling
resistance is due to hysteresis loss, which depends on the
construction of the tire, its material, and external variables
such as vehicle speed, wheel load, inflation pressure, etc.
(Walter and Conant 1974). Currently, the tire industry is still
working on new solutions to reduce the rolling resistance
while also improving other tire performance, e.g., improving
handling, grip, comfort, and durability, and reducing wear

noise. To achieve this, it is crucial to modify the factors that
affect the rolling resistance, and it is not worth designing
a new tire, doing some tests, and repeating this procedure.
Therefore, a robust tire model can be helpful to investigate
how the uncertainties in tire properties affect the rolling
resistance in the model by increasing or decreasing its value.

In the literature, there are several approaches to model a
tire. Pacejka (2012) categorizes these approaches into four
types: experimental data only, similarity methods, and simple
and complex physical models. The finite element method
considers physical complexities and is commonly adopted by
the tire industry for modeling the rolling motion (Ghoreishy
2008). The article of Le Tallec and Rahler (1994) is an
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example of the finite element approximation of a pneumatic
tire in a steady-state rolling motion. Viscoelasticity is
described by constitutive laws, which are internal variables
whose evolution is governed by nonlinear differential
equations. Nowadays, it is still challenging to characterize
the viscoelastic material considering its particularities, such
as time-varying properties and energy dissipation. Even
with good results, the finite element method can be time-
consuming, and the high computational cost motivates the
investigation of alternative modeling methods, e.g., the
article of Brancati et al. (2011) develops an analytical model
of dissipated energy based on a hysteresis model.

Due to model complexity and the presence of nonlinear-
ities in structural dynamics problems such as the viscoelas-
ticity in the modeling of the tire, it is worth analyzing the
construction of reduced-order models as an alternative to
the complete numerical model (full-order model) to reduce
computational time while retaining model accuracy (Sullivan
et al. 2022). Unlike the surrogate models based on the
definition of response surface (Alizadeh et al. 2020), the
reduced-order model is based on physical simplifications of
the complete numerical model and depends on the influential
parameters that translate these simplifications. The compu-
tational time is reduced, and some physical aspects of the
complete model are preserved. In this sense, the present
work simulates viscoelastic internal variables by solving a
computationally less-expensive reduced-order model. Such
a model is constructed based on these variables’ hysteretic
behavior, saving computational time with minor loss of
information concerning the full-order finite element model.
One of the problems encountered in Bouc-Wen parameter
optimization lies in finding sets of parameters that per-
form similarly. Thus, regarding the parameter identification
scheme to compute the Bouc-Wen parameters, a sensitivity
analysis is first conducted to establish the full range of
feasible model solutions. This paves the way for inferring
the reduced-order model parameters via Bayesian inference,
gathering knowledge from the available data of the full-
order model. This approach’s great advantage is obtaining
a representative but straightforward model to describe the
hysteresis effect in tires within the Bayesian framework.
Although this paper addresses the rolling tire problem, the
reduced-order model and its parameter calibration strategy
can be extended to other systems that involve hysteresis
and are computationally expensive to run with finite element
models, such as jointed structures (Teloli et al. 2021, 2022;
Miguel et al. 2022) and bit-rock interaction of a drill (Real
et al. 2019).

Towards this background, the paper is organized as
follows: firstly, a problem statement is established. Then,
the dataset containing the right Cauchy–Green deformation
tensor and viscoelastic internal variables data from the
finite element approximation of a steady-rolling tire is
introduced. Next, a reduced-order model is suggested to
approximate the hysteretic behavior of the viscoelastic
internal variables based on the Bouc-Wen model. Then, the
methodologies to infer the parameters of the reduced-order
model from the dataset and perform a sensitivity analysis
are presented. The results of this work are investigated
by comparing the responses of the reduced-order model
to the viscoelastic internal variables from the dataset.

Finally, conclusions, contributions, and perspectives for
future inquiry are addressed.

Problem Statement
This work aims to simulate viscoelastic internal variables
from a computationally expensive finite element approxi-
mation using a reduced-order model, which, in turn, is less
computationally expensive to evaluate at first but with an
accuracy penalty. Data of viscoelastic internal variables from
a finite element approximation of a steady-rolling tire is
used. To face this problem, the Methodology of this work
is structured as follows:

• First, the reduced-order model and an error measure
to evaluate the difference between the reduced-order
model responses and viscoelastic internal variables
data are defined;

• Second, a global sensitivity analysis is performed to
identify the parameters of the reduced-order model
that influence the error measure the most. The
sensitivity analysis is performed using Sobol’ indices,
and the parameters whose Sobol’ indices are negligible
are considered as constant quantities;

• Third, Bayesian inference is performed to calibrate the
parameters of the reduced-order model that influence
the error measure the most;

• Finally, uncertainties are propagated into both error
measure and reduced-order model responses.

The reduced-order model is less computationally expen-
sive, and obtaining viscoelastic internal variables becomes
simpler than a finite element procedure involving nonlinear
equations.

The Full-Order Model
It is important to stress that the complete development
of the finite element model of the tire under analysis
is beyond the scope of this work. Confidentiality terms
protect further details of material properties, dimensions,
and geometry. Nevertheless, this section aims to overview
the finite element model addressed. The dataset is generated
during the computation of a finite element approximation
of a pneumatic tire in a steady rolling motion. A standard
procedure approximates the continuous problem by coupling
the equilibrium equations governing the steady rolling
motion and the constitutive laws governing the viscoelastic
material behavior (Le Tallec and Rahler 1994). Due to the
nonlinear differential equations that govern the evolution of
internal variables, convenient choices of internal variables
should be made in terms of differential operators during
this standard finite element procedure. Fancello et al. (2006)
provide a general framework for constitutive viscoelastic
models in which the elastic and viscous potentials derive
from a generalized Kelvin-Maxwell model. Le Tallec and
Rahler (1994) describe viscoelasticity by choosing the
specific free energy potential as a function of three state
variables: temperature, right Cauchy-Green deformation
tensor, and viscoelastic internal variables. In short, the
dataset covered here gathers data from two of these state
variables: the right Cauchy-Green deformation tensor C
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and the viscoelastic internal variables A form a generalized
Maxwell model. The viscoelastic internal variables A are
rank 2 symmetric positive-definite tensors (Le Tallec and
Rahler 1994).

The theoretical representation of the generalized Maxwell
model consists of the parallel association of various Maxwell
branches. In addition, each Maxwell branch consists of the
series association of elastic and viscous elements. Figure 1
is a general representation of this viscoelastic constitutive
model, in which C is the right Cauchy-Green tensor and
Ab the viscoelastic internal variables in a Maxwell branch
b. The complete numerical model is defined as a generalized
Maxwell model containing N = 10 Maxwell branches. By
analyzing the dataset, it was found that there is no dynamic
behavior in the higher order branches. For this reason, the
branches of interest in this work are the Maxwell branches
from b = 1 to 4 in Fig. 1.

 

 
 

 

 
 

 

 
 

 
Figure 1. The complete numerical model is the generalized
Maxwell model containing N = 10 Maxwell branches. The
branches of interest are those from b = 1 to 4.

The Reduced-Order Model
For one of the branches of interest in Fig. 1, the component
C = C(t) of the right Cauchy-Green deformation tensor and
its corresponding viscoelastic internal variable A = A(t) are
both time series. Therefore, C(t) is assumed to be the sum
of three terms: a linear elastic term k A(t) in which k is a
elasticity coefficient; a viscous term c Ȧ(t) in which c is a
damping coefficient; and the hysteresis output Z(t). In this
work, Z(t) is represented by the Bouc-Wen model. A survey
on the Bouc-wen model can be found in Ismail et al. (2009).

The system of first order differential equations in Eq. 1
defines the reduced-order model:Ȧ(t) =

1

c

(
C(t)− k A(t)−Z(A, Ȧ)

)
Ż = α Ȧ− γ |Ȧ||Z|ν−1Z − δ Ȧ|Z|ν ,

(1)

where the input C(t) is completely determined from the
dataset*. For certain initial conditions, A|t=0 = A0 and
Z|t=0 = Z0, the output responses A(θ) and Z depend only
on the set of parameter θ = {c, k, α, γ, δ, ν}; the α, γ, δ and
ν are the parameters of the Bouc-Wen model. Eq. 1 can be
solved numerically by a classic Runge-Kutta method.

Both damping c and elasticity k coefficients are strictly
positive parameters. It is worth noting that the Bouc-Wen
model is phenomenological, and its parameters α, γ, δ, and ν
do not necessarily have a physical sense. Ismail et al. (2009)
indicate conditions on the Bouc-Wen model parameters for
physical and mathematical consistency, e.g., the Bouc-Wen

model fulfills the second law of Thermodynamics if and
only if ν > 0, γ > 0 and −γ ≤ δ ≤ γ. Moreover, the
Bouc-Wen model is bounded input-bounded output stable
and consistent with the motion of physical systems if α > 0,
γ + δ > 0 and γ − δ ≥ 0. Such parameter conditions
are adopted in the calibration methodology to ensure model
consistency. Therefore, the following section presents a high-
level overview of the methods that are contained in the
identification framework proposed.

The Parameters Calibration Methodology
The Bouc-Wen model has the advantage of accommodating
real hysteresis loops by choosing an appropriate set of
parameters (Ismail et al. 2009). For this reason, problems
involving the Bouc-Wen model are typically parameter
estimation problems, as the example described in Jiang et al.
(2020).

A representative set containing several inputs is selected
from the dataset (due to the formulation of the right Cauchy-
Green tensor, the same setting is applied to all branches). In
this single set, the inputs differ from each other in maxima
and minima values, derivatives, etc. A logical approach is
to identify a reduced-order model for each of these inputs
in a branch of interest. However, this would substantially
increase the complexity of the problem and the number of
parameters to be identified. Therefore, the strategy adopted
by this work lies in defining a unique reduced-order model
that best forecasts viscoelastic internal variables for a branch
of interest considering the whole set of different inputs.
To compare the discrepancies between the outputs of the
reduced-order model with the internal viscoelastic variables
independently of inputs, an error measure that evaluates
these differences is defined.

Equation 2 defines the scale factor Ā, where ADS is a
viscoelastic internal variable from the dataset and Nout is the
number of sampling points of the time series:

Ā =
1

Nout − 1

Nout∑
l=2

∣∣∣∣ADS
l −ADS

l−1

∣∣∣∣, (2)

and Eq. 3 defines E, the mean absolute scaled error (MASE)
that measures the difference between the selected outputADS

from the dataset and A(θ):

E(θ) =
1

Nout

Nout∑
l=1

∣∣∣∣ADS
l −Al(θ)

∣∣∣∣
Ā

. (3)

Hyndman and Koehler (2006) suggests that the MASE is
the best available measure of forecast accuracy in situations
where there are very different scales, including close to zero
or negative data. Equation 4 is simply the mean between the
Nin error measures, where each Ej(θ) corresponds to the
evaluation of a reduced-order model response:

Ē(θ) =
1

Nin

Nin∑
j=1

Ej(θ). (4)

∗This parameter is assumed to be an input variable in the model and is
therefore known for the whole range of analysis
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Equation 4 also defines the loss function of an opti-
mization problem. The optimal solution of this optimization
problem is indicated in Eq. 5:

Ê = Ē(θ̂), θ̂ = arg min
B
Ē(θ), (5)

where θ̂ is the optimal set of parameter in the set of feasible
solutions B that minimizes the error measure between
the selected viscoelastic internal variables ADS from the
dataset and the reduced-order model responses A(θ). After
introducing a metric capable of assessing the performance of
the reduced model, the next subsection introduces the global
sensitivity analysis for evaluating the Bouc-Wen parameters.

Each of the following methods has its canonical notation
in the literature. The continuation of this paper respects these
canonical notations, and redundancies may be related to this.

Global sensitivity analysis and PCE-based
Sobol’ indices
Global sensitivity analysis (GSA) refers to a set of
mathematical techniques that quantifies the influence of the
input parameters on the response of interest of a system. The
GSA can be defined among other techniques by the variance
decomposition method, which aims to decompose the output
variance as the sum of each input variable’s contributions
or combinations. Sobol’ indices is a variance decomposition
method defined in Sobol (1993) that engineers have recently
explored. Its central idea is to determine the expansion of a
computational model into the sum of increasing dimensions
and the rapport of the partial variances of these terms
concerning the model’s total variance.

Generally speaking, letM be a mathematical model and
X a random input vector gathering k independent input
parameters. M describes a scalar output of interest Y of a
physical system:

Y =M(X) , X = {X1, X2, . . . , Xk} . (6)

According to Sobol (1993), Y can be defined by the
decomposition into sums of different dimensions. For
simplification purposes, the following equations will assume
that the input parameters are uniformly distributed and the
support of X is DX = [0, 1]k. Therefore, Y can be also
written as:

Y =M0 +

k∑
i=1

Mi (Xi) +

k∑
i<j

Mij (Xi, Xj) + . . .

+M1...k (X1 . . . Xk) .

(7)

All terms of this expansion can be computed through
integrals. The first term M0 is a constant equal to the
expected value:

M0 =

∫
DX

M (X) dX. (8)

The other terms Mi(Xi) and Mij(Xi, Xj) are the
conditional mean values for the parameters i and ij (i 6= j),
respectively:

Mi(Xi) =

∫ 1

0

· · ·
∫ 1

0

M (X) dX∼i −M0, (9)

Mij(Xi, Xj) =

∫ 1

0

· · ·
∫ 1

0

M (X) dX∼ij −M0−

Mi(Xi)−Mj(Xj).

(10)

The notation ∼ i indicates that parameter Xi is excluded.
Eq. 7 has the property of orthogonality in terms of
conditional means as defined by Homma and Saltelli (1996),
and it is possible to define the Sobol decomposition in
terms of conditional variances (Sobol 1993). Thus, one can
compute the first-order Sobol’s indices that quantify the
additive effect of each input parameter separately concerning
the total variance:

Si =
V ar[Mi(Xi)]

V ar[M(X)]
, (11)

and the second-order Sobol’ indices that quantify the
interaction effects between two input parameters:

Sij =
V ar[Mij(Xi, Xj)]

V ar[M(X)]
. (12)

Higher-order Sobol’ indices are equally defined, and they
take into account the interaction effects of various input
parameters.

Monte Carlo simulation can compute Sobol’s indices,
although it has a high computational cost due to the
low convergence rate. An alternative way to calculate
Sobol’s indices is constructing a surrogate model based
on Polynomial-Chaos Expansion (PCE), which reduces the
processing time and computational cost while maintaining
model accuracy. Applications of the PCE for computing the
Sobol’ indices can be seen in Crestaux et al. (2009) and Palar
et al. (2018) and Sudret (2008) presents a review on GSA
using PCE.

Based on PCE expression, the scalar output of interest Y
can be rewritten as:

Y ≈
∑
α∈A

yαψα(X), (13)

where ψα represents multivariate polynomials that are
orthonormal in relation to the joint probability density
function fX , yα are unknown deterministic coefficients
and A is a truncation criterion, where A ⊂ NM is the
set of selected multi-indices of multivariate polynomials.
The coefficients can be determined through the least angle
regression method.

The statistics of an uncertain output response Y can be
determined using PCE. Therefore, the mean and the variance
are defined, respectively, by:

M0 = y0 and V̂ ar(Y ) =
∑
α∈A

y2
α. (14)

Therefore, the Sobol indices can be directly determined
with minor computational effort through the PCE coeffi-
cients. Thus, the first and second-order Sobol’ indices are,
respectively:

SPCEi =
∑
α∈Ai
α 6=0

y2
α

/∑
α∈A

y2
α, (15)
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SPCEij =
∑
α∈Aij
α6=0

y2
α

/∑
α∈A

y2
α. (16)

Thus, the Sobol indices are computed via a PCE-based
surrogate model to verify the influence of the reduced-order
model parameters on the error measure.

The Cross-Entropy method
To verify how uncertainty in the parameters of the reduced-
order model propagates into its response through Bayesian
inference, a necessary ingredient is to learn the a priori
distributions of each parameter. Thus, it is obtained from
initial results considering the Cross-Entropy (CE) method
as an optimization procedure for minimizing the objective
function 5.

The CE method translates a rare event simulation problem
into an optimization problem, and this method can be treated
as a two-step iterative process:

• First, random samples are generated according to a
given probability distribution is determined feasible
region;

• Then, the statistics, i.e., the mean and variance of a set
composed of the best performing samples, are used to
refine the probability distribution parameters.

Among other applications, the CE method can be
used to solve continuous optimization and combinatorial
optimization problem (De Boer et al. 2005). Additional
information about its theoretical framework and practical
considerations about the optimization method can be found
in Rubinstein and Kroese (2013).

The central idea of the CE method is based on importance
sampling technique and variance minimization. At first,
let X ∼ f be a random variable with probability density
function (PDF) f and let H(X) be a function. The expected
value of H(X) is:

µf = Ef{H(X)} =

∫
B
H(x)f(x)dx. (17)

Let g also be a PDF. The expected value of H(X) f(X)
g(X) is:

µg = Eg
{
H(X)

f(X)

g(X)

}
=

∫
B
H(x)

f(x)

g(x)
g(x)dx. (18)

The importance sampling estimator µ̂g is:

µ̂g =
1

Nk

Nk∑
k=0

H(xk)
f(xk)

g(xk)
, X ∼ g, (19)

where the term on the right defines W (x) = f(x)
g(x) the

likelihood ratio. The quality of the estimator µ̂g depends on
the PDF g. The optimal importance sampling PDF ĝ∗ is the
one in which the variance of µ̂g is minimal.

The Kullback-Leibler divergence denotedD(g, h) offers a
measure of how different a chosen PDF h is with respect to
the reference PDF g. It is defined as follows in Eq. 20:

D(g, h) = Eg
{

ln
g(X)

h(X)

}
. (20)

The PDF f(·;v) determined by the hyper-parameters
vector v is chosen. As it is shown in Kroese et al. (2013),
the minimization of D(ĝ∗, f(·,v)) leads to Eq. 21, with
ĝ∗ ∝ Hf(·;u):

v∗ = arg max
w

Ew
{
H(x)W (x;u,w) ln f(x;v)

}
. (21)

Finally, for Xs ∼ f(·;w) and W (xs;u,w) = f(·;u)
f(·;w) , v̂ is

the hyper-parameter vector that approximates to the optimal
importance estimator (minimal variance):

v̂ = arg max
w

1

Nk

Nk∑
k=0

H(xk)W (xk;u,w) ln f(xk;v).

(22)
Some assumptions are made in the sequence about the

function H(x). For rare event simulation and optimization
problems, H(x) = 1J(x)≥ε where 1J(x)≥ε is the indicator
function and J(x) is an objetive function. Specifically, in this
work:

H(θ) = 1Ē(θ)≥ε =

{
1 if Ē(θ) ≥ ε
0 if Ē(θ) < ε.

(23)

The expected value of the indicator function is the
probability of the event Ē(θ) ≥ ε to occur.

µ = E
{

1Ē(θ)≥ε
}

= P{Ē(θ) ≥ ε}, (24)

and its importance sampling estimator µ̂g is:

µ̂g =
1

Nk

Nk∑
k=0

1Ē(θ(k)))≥ε. (25)

Cunha (2021) intuitively describes the computational
algorithm of the CE method through the following steps:

1. Initialize: Choose initial hyper-parameters values µ̂0

and σ̂2
0 , and v̂0 = {µ̂0, σ̂

2
0}. Set level counter l = 1;

2. Sampling: Generate Nk independent and identically
distributed (iid) samples from the standard multivari-
ate Gaussian distribution:

θ(1), . . . ,θ(Nk) ∼ N
(
µ̂l−1, σ̂

2
l−1

)
;

3. Select: Evaluate the objective function for each sample
and sort the Nk results in order:

Ē(θ(·)) ≤ · · · ≤ Ē(θ(·)).

The called elite sample set E gathers the NE < Nk
samples that better performed;

4. Update: Compute estimators:

µ̃l =
1

NE

∑NE
s=1 θ

(s) (26)

σ̂2
l =

1

NE

∑NE
s=1

(
θ(s) − µ̃l

)2
; (27)

5. Smooth: Apply the smooth updating schema:

µ̂l := a · µ̃l + (1− a) · µ̂l−1; (28)

6. Return θ̂ = µ̂l if the stopping criteria σ̂2
l < εmax is

reached. Otherwise, increase level counter by 1 and
return to the second step.
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Operationally, the hyper-parameters vector v̂ in Eq. 22 can
be estimated via maximum likelihood estimation method.
The use of the standard multivariate Gaussian distribution
(Botev 2016) on the sampling step of the CE method
simplifies the estimation of v̂ and the hyper-parameters can
be computed directly by Eqs. 26 and 27.

Despite its mathematical formulation, the CE method can
be easily implemented, and only few parameters that are
pretty intuitive are needed: given the PDF f(·;v), the total
number of samples Ns, the number of samples NE in the
elite sample set, a stopping criterion εmax and the maximum
of iteration level lmax.

To the sequence, Ê can be computed using Eq. 5 and
the parameters of the reduced-order model are considered
as random quantities. Their distributions are inferred via
Bayesian inference.

Bayesian inference

Bayesian inference approach is a straightforward strategy
to quantify uncertainties (Gelman et al. 2013). A set of
parameter is considered as a random input vector x and the
methodology to infer its distribution is based on the Bayes’
theorem in Eq. 29:

π(x|Ê) =
π(Ê|x)π(x)

π(Ê)
, (29)

where π(x) is the prior distribution of the set of parameters
x; π(Ê|x) is the likelihood function of Ê given a set
of parameters x at hand; and π(x|Ê) is the posterior
distribution of the set of parameters x given Ê. The
denominator π(Ê) is the marginal likelihood: it is a
normalized constant so the posterior distribution defines a
probability density function with integral equal to the unity.
In this case, Eq. 29 can be simplified into:

π(x|Ê) ∝ π(Ê|x)π(x). (30)

The prior distribution π(x) can be interpreted as the
knowledge degree about x before any evidence. It is
classified based on its influence on the posterior distribution,
and an example of a diffuse – or non-informative – prior is
a Uniform prior distribution. In this case, Eq. 30 can also be
simplified into:

π(x|Ê) ∝ π(Ê|x). (31)

One assumes that Ê is the MASE measure Ē(θ) from the
reduced-order model plus a discrepancy term ε that is the
source of uncertainty:

Ê = Ē(θ) + ε. (32)

It is supposed an additive Gaussian discrepancy with mean
µε = 0 and unknown variance σ2

ε . Thus, ε ∼ N (0, σ2
ε ) and:

π
(
Ê|x = {θ, σ2

ε }
)
∼ N

(
Ê| Ē(θ), σ2

ε

)
. (33)

In the case of independent and identically distributed (iid)
observations, the likelihood function is defined as:

π
(
Ê|x

)
=

N∏
i=1

π
(
Êi|x

)
=

1√
2πσ2

ε

exp

(
− 1

2

N∑
i=1

(
Êi − Ē(θ)

)2
σ2
ε

)
.

(34)

After Eqs. 31 and 34, the posterior distribution can be
finally defined as follows:

π(x|Ê) ∝ 1√
σ2
ε

exp

(
− 1

2

N∑
i=1

(
Êi − Ē(θ)

)2
σ2
ε

)
. (35)

To determine the posterior distribution π(x|Ê) of
parameters x given Ê is not always trivial. Usually, Monte
Carlo simulation is used to approximate the solutions. This
book is a review on Monte Carlo methods (Kroese et al.
2011).

The Metropolis-Hastings algorithm is a Markov chain
Monte Carlo (MCMC) method based on the construction
of a Markov chain such that the future state x(k+1) of the
chain depends only on its current state x(k) and a transition
probability distribution T

(
x(k+1)| x(k)

)
. In the presence of

a sufficient number of unbiased samples, the sequence of
random variables X = {x(0),x(1),x(2), ...} represents the
posterior distribution π(x|Ê).

π
(
x(k+1)|Ê

)
π
(
x(k)|Ê

) =
T
(
x(k+1)|x(k)

)
T
(
x(k)|x(k+1)

) . (36)

The procedure for generating the future state x(k+1) is a
two-stage process: the first stage is to generate a candidate
x(∗) that depends only on the current state x(k) of the
Markov chain; the second stage is to accept or reject x(∗).
To this end, it is necessary to compute the acceptance
probability a according to Eq. 37 where K

(
x(∗)|x(k)

)
is the

proposed probability distribution.

a = min

{
1,
π
(
x(∗)|Ê

)
K
(
x(∗)|x(k)

)
π
(
x(k)|Ê

)
K
(
x(k)|x(∗)

)}. (37)

Then, a random number u ∼ U(0, 1) is generated from a
Uniform distribution with parameters 0 and 1. If u < a, the
candidate x(∗) is accepted and x(k+1) = x(∗). Otherwise, if
u ≥ a, x(∗) is rejected and x(k+1) = x(k).

The random walk Metropolis algorithm is a particular
case of the Metropolis-Hastings algorithm. In it, a symmetric
Gaussian distribution with variance σ2 is proposed to
generate the candidate x(∗) (Saadi et al. 2011) yielding:

a = min

{
1,
π(x(∗)|Ê)

π(x(k)|Ê)

}
. (38)

The following steps summarizes the random walk
Metropolis algorithm:

cInitialize the counter and assign initial value x(0);
Generate a candidate x(∗) ∼ N (x(k), σ2); Compute
the acceptance probability a

(
x(∗),x(k)

)
and generate

a random number u ∼ U(0, 1); Does u < a? If
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positive, accept the candidate and x(k+1) = x(∗). If
negative, reject and x(k+1) = x(k); Increment the
counter and return to the second step.

This article adopted some strategies while implementing
the Metropolis-Hastings algorithm to accelerate the con-
vergence of the Markov chain (Saadi et al. 2011). A first
feature is the total number of generated samples: the Markov
chain must be large enough to adequately represent the
distributions of the parameters respecting the law of large
numbers. The second one is the acceptance probability rate
ā = Na

Nk
that is the ratio between the number of accepted

samplesNa and the total number of generated samplesNk. ā
is controlled by the random walk step σ: on the one hand, if
the jump from one sample to the other is too large, ā is small,
and the chain keeps static; on the other hand, if the jump from
one sample to the other is too small, ā is big, and the chain
needs more time to go through the parameters space. Saadi
et al. (2011) consider an optimal ā between 40% – 50%. The
last feature is the burn-in: eliminating a defined number of
initials samples from the final result. This feature is essential
to eliminate biased results.

Figure 2 is an overview of the present Methodology
for calibrating the reduced-order parameters and simulating
viscoelastic internal variables. Instead of applying complex
techniques to construct the reduced-order model, the insights
of this Methodology are: 1) even treating a complex
nonlinear problem such as viscoelasticity, the reduced-order
model consists of a simple system of nonlinear differential
equations; 2) Sobol’ indices evaluate the importance of
the parameters, combined or individually, on the variability
of the responses. In addition, Sobol’s indices justify the
necessity to calibrate or not a parameter; 3) The cross-
entropy method guarantees convergence; 4) Both the cross-
entropy method and the Bayesian inference can be easily
implemented. In addition, Sobol’ indices can be evaluated
using open-sources libraries; 5) The reduced-order model is
calibrated using data that originated from a finite element
model, the standard model in the tire industry; 6) The same
approach used in this paper can be used to solve other
structural dynamics problems (e.g., friction models with a
population of sliders, such as the Iwan model (Segalman
2005)).

Results and Discussion
The calibration methodology is first applied to the first
branch of interest. The same procedure for inferring the
parameters of the reduced-order model was adopted for the
other branches. It is assumed that each parameter follows
a Uniform distribution U(a, b), with a its minimum and b
its maximum value. The limits are chosen so that the Bouc-
Wen model is physically and mathematically consistent. The
supports are indicated in Tab. 1.

A prior global sensitivity analysis is performed in order to
verify which reduced-order model parameter is influential.
To do so, a PCE-based surrogate model Ẽ(θ) is first built
and the PCE coefficients were computed using UQLab
metamodeling module based on sparse least angle regression
(Marelli et al. 2021). A comparison between responses Ē(θ)
and Ẽ(θ) can be seen in Fig. 3: the closer to the black
diagonal line, the more reliable the PCE-based surrogate

model is. In Fig. 3, both Ē(θ) and Ẽ(θ) were evaluated at
100 cross-validation sample points. It is worth mentioning
that the reduced-order model is not yet calibrated and it is
natural to observe in Fig. 3 high error measure values, e.g.,
Ē(θ) > 1. Table 2 contains additional information about the
validation of the PCE-based surrogate model.

Once the PCE-based surrogate model is validated, the
Sobol’s indices are computed with minor computational
efforts. This procedure allows drawing some conclusions
about the reduced-order model parameters before inferring
their distributions. Figure 4 shows the total and first-order
Sobol’ indices. On the one side, these results indicate that
parameters γ and δ have little influence on the error measure,
i.e., having less or more variability on these parameters does
not mean that the reduced-order model simulates viscoelastic
internal variables more accurately. For this reason, they are
considered as completely determined quantities and their
values are set to γ = 1000 and δ = 1000 so γ

γ+δ = 0.5. On
the other side, parameters c, α, k and ν have considerable
influence. Their variability requires attention, and they are
considered as unknowns.

Next, the optimization problem of Eq. 5 is solved using
the CE method. The CE parameters used in this step are
Ns = 100 samples, NE = 4 samples, lmax = 500 iterations
and εmax = 10−6. In addition, a smooth updating schema of
0.8 is also used. Table 3 contains the optimal parameters
of the reduced-order model of the Branch 1. In this case,
Ê = 0.3168 and these parameter values can be used for
deterministic simulation of viscoelastic internal variables.

However, it is also desirable to verify how the uncertainties
propagate into the responses of the reduced-order model. To
do this, the parameters c, k, α, ν and the variance σ2

ε of
the discrepancy are first calibrated using Bayesian inference.
The following procedure is adopted:

1.2.3.4.5.• The values of a and b of the Uniform prior distribution
U(a, b) were redefined because it was visually verified
that the range of values was too wide. The new bounds
are indicated in Tab. 4;

• In an iterative way: a Markov chain containing 104

samples were generated. Then, the random walk step σ
was manually adjusted so that the acceptance rate was
ā ≈ 40− 50%;

• After setting an acceptable random walk step value, a
Markov chain containing 105 samples was generated
and retained. No burn-in samples were eliminated.

Figure 5 shows the trace plots of parameters c, k,α,ν and
σ2
ε of Branch 1. In this figure, “Data” corresponds to the

105 samples in the Markov chain, and the red lines support
the Uniform distribution. The cumulative mean indicates
the convergence of the Markov chain. There is no need to
eliminate burn-in samples because the optimal parameters of
the CE method allow the Markov chain to start in a stable
region. Figure 5 also indicates that this Markov chain can
be used to determine the distributions of the parameters
of the reduced-order model. Moreover, Fig. 6 shows the
densities and cumulative densities of each one of these
parameters. In this figure, the continuous black lines are the
probability density estimates (EPDFs) based on a normal
kernel function, and the marked red lines are the empirical
cumulative distribution functions (ECDFs). It is interesting
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Figure 2. Methodology adopted to simulate viscoelastic internal variables.

Table 1. Uniform prior distribution U(a, b) of the reduced-order model parameters for global sensitivity analysis.

Support c k α γ [×103] δ [×103] ν
a 0 0.999 0 1 -1 1
b 0.01 1.001 1 10 1 3

Figure 3. Comparison between responses Ē(θ) and Ẽ(θ).
The disposition of the 100 cross-validation samples + indicates
that the PCE-based surrogate model is adequate.

Table 2. Validation of the PCE-based surrogate model.

PCE degree Exp. Design LOO error
14 2, 000 5.7 · 10−3

to compare the Uniform distributions in black dashed line
with the EPDF: the distributions changes from the former to
the latter as new information is used to update the Bayesian

Figure 4. Prior global sensitivity analysis. Total and first order
Sobol’ indices of parameters γ and δ are negligible. Therefore,
they can be considered as determined quantities. Only
parameters c, k, α and ν are calibrated.

Table 3. Reduced-order model optimal parameters values
given by the CE method.

ĉ k̂ α̂ ν̂
0.0018 1.0000 0.1152 1.0220
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inference. From the inferred distributions, some conclusions
can be drawn:

• It is possible to notice that the samples are centered
around 0.002 and 1 for parameters c and k,
respectively;

• There is a higher tendency for parameter α to get
values between 0 and 0.2;

• There is a higher tendency for parameter ν to get
values close to 1.

Once the distributions of the parameters of the reduced-
order model are estimated, it is possible to proceed with
the propagation of uncertainties. For each branch of interest,
the distributions of the error measures were obtained after
performing this propagation. Figure 7 also shows the density
and the cumulative density functions of the error measures
E(θ). The continuous black lines are the EPDFs based on a
normal kernel function and the marked red lines the ECDFs.
In addition, the vertical dashed magenta lines indicate the
optimal error measures Ê, which were determined using the
CE method. On the one hand, from the observation of the
ECDFs, there is a high probability of having E(θ) ≤ 1 in
Branches 1 to 3. On the other hand, Ê > 1 in Branch 4.
Adopting this criterion, the calibrated reduced-order models
are suitable for simulating the viscoelastic internal variables
of Branches 1 to 3 and less suitable for Branch 4.

Finally, Fig. 8 shows for Branch 1 some of the responses
of the reduced-order model with uncertainties. The inputs
and initial conditions used to validate the reduced-order
model are not the same as those used during the calibration
procedure. This figure evidences the good agreement
between the reduced-order model responses and the data, as
the viscoelastic internal variables of the dataset are within
the 95% confidence interval in gray and are also close to the
stochastic reduced-order model mean, the dashed black line.

Conclusions

This work suggests a reduced-order model simulating
viscoelastic internal variables that describe the behavior
of viscoelastic structures. Michelin furnished data on the
right Cauchy-Green deformation tensor and viscoelastic
internal variables to carry out this work. These data were
generated during a finite element-based steady-rolling tire
approximation computation.

Rather than solving a physically complex finite element
model, an advantage of this reduced-order model is that it
simulates viscoelastic internal variables by solving a system
of nonlinear differential equations: the suggested reduced-
order model is based on the hysteretic behavior between the
components of the right Cauchy-Green deformation tensor
and viscoelastic internal variables. This system of nonlinear
differential equations is simpler to implement numerically,
and its computation is less expensive than a finite element
model.

An error metric is defined to evaluate the discrepancies
between the reduced-order model responses and data. Then,
a calibration procedure is proposed based on: 1) performing
a global sensitivity analysis by evaluating Sobol’ indices
from a PCE-based surrogate model; 2) obtaining the

Figure 5. Reduced-order model parameters and discrepancy
variance trace plots: ā ≈ 40%. There is no need to burn-in
samples.
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Table 4. Uniform prior distribution U(a, b) of the reduced-order model parameters and discrepancy variance for Bayesian inference.

Support c k α ν σ2
ε

a 0 0.9995 0 1 0
b 0.005 1.0005 1 3 0.1

Figure 6. Reduced-order model parameters and discrepancy variance estimated probability density functions (EPDF), Uniform
prior distributions and empirical cumulative distribution functions (ECDF).

optimal set of influential parameters using the Cross-
Entropy method; 3) estimating the distributions of influential
parameters through Bayesian inference. Some parameters of
the reduced-order model did not significantly influence the
variability of the error metric and were not considered in the
calibration procedure. The distributions of the error metrics
were estimated, and the reduced-order model is adequate
for simulating viscoelastic internal variables for the three
initial branches of interest. In addition, the uncertainties

were propagated through the viscoelastic internal variable
responses, and they are under the data.

Despite some efforts related to the calibration procedure,
it guarantees the reduced-order model that best forecasts vis-
coelastic internal variables. After this process, the reduced-
order model could simulate viscoelastic internal variables
considering uncertainties with reduced computational cost.
Obtaining a robust and cheaper computational model facili-
tates numerical simulations and research to get more robust
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Figure 7. Error measure estimated probability density function (EPDF) and empirical cumulative distribution function (ECDF). The
minimum error measure value Ê given by the CE method is indicated.

tires. In this sense, the results of this paper also contribute to
the advancement of research on computational models that
are more robust and with a reduced computational cost.

Availability of data and material
The MATLAB scripts used in the numerical simu-
lations are available in the following GitHub reposi-
tory: https://github.com/rafaelraqueti/UQ_
Bouc-Wen_calibration.git. The dataset used in this
work belongs to Michelin and is not available in this reposi-
tory.
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