
Domain Adaptation of Population-Based of
Bolted Joint Structures for Loss Detection of

Tightening Torque

Samuel da Silva∗

Associate Professor
Universidade Estadual Paulista
Departamento de Engenharia

Mecânica, Ilha Solteira, SP, Brasil
Email: samuel.silva13@unesp.br

Marcus Omori Yano
Graduate Research Assistant,

Universidade Estadual Paulista
Departamento de Engenharia

Mecânica, Ilha Solteira, SP, Brasil
Email: marcus.omori@unesp.br

Rafael de Oliveira Teloli
Assistant Professor,

FEMTO-ST Institute,
CNRS/UFC/ENSMM/UTBM,

Department of Applied Mechanics,
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This paper investigates how to improve the performance
of a classifier of tightening torque in bolted joints by apply-
ing transfer learning. The procedure uses vibration mea-
surements to extract features and to train a classifier using
a Gaussian Mixture Model (GMM). The key to enhancing
the surrogate model for torque loss detection is considering
the bolted joint structures with more qualitative and quan-
titative knowledge as the source domain, where labels are
known and the classifier is trained. After applying a do-
main adaptation method, it is possible to reuse this trained
classifier for a target domain, i.e., a set of different limited
data of bolted joint structures with unknown labels. Four
different bolted joint structures are analyzed. The new ex-
perimental tests adopt a wide range of torque in the bolts
to extract the features with the respective labels under safe
or unsafe tightening torque. All combinations of possible
source or target domains are considered in the application
to demonstrate whether the method can aid the detection of
the loss of tightening torque, reducing the learning steps and
the training sample. A guidance list is discussed based on

∗corresponding author

this population-based SHM of bolted joint structures.

1 Introduction
Bolted joint structures are widely used to provide struc-

tural strength and adequate stiffness [1], in addition to vibra-
tion damping [2]. It is therefore important to ensure the cor-
rect tightening torque in each joint. Unfortunately, a direct
measure in each bolt may not be possible, either because of
the large number of sensors required because of access dif-
ficulties, e.g., offshores in deepwater. Thus, several contin-
uous monitoring methods for classifying each bolt’s torque
have been proposed in the last few years [3–5]. Among these
methods, the ones based on low-frequency vibration are af-
fordable and benefit from the same instrumentation used for
regularly monitoring the structural health condition [6].

The methodology often applied considers a controlled
shaker to excite a broad spectral frequency assuming a wide
range of tightening torques, also controlled by a torque
wrench. Feature extraction is performed using the vibra-
tion data sets, and the features are applied to train classi-
fiers. Once these structural health classifiers are estimated,



they can be applied to assess the structural condition of the
same bolted joint structure. As features, the modal parame-
ters, time, or frequency aspects are widely used to perform
this training or to correlate with tightening torque variations.
Miguel et al. [7] demonstrated these ideas in a bolted joint
structure named Orion beam [8]. This structure is formed
by two aluminum beams joined by three bolts. The trans-
missibility function between the acceleration of the input ex-
citation and the velocity at the beam’s free end is used to
extract a combination of natural frequencies as features. A
Gaussian Mixture Model (GMM) was able to separate the
states between two classes: safe torque (healthy) and unsafe
torque (damaged). After learning a Kriging model, this sur-
rogate model quantified the level of the tightening torque by
stochastic interpolation. The results were acceptable with an
adequate confidence level, considering the low level of tight-
ening torque in cNm.

Unfortunately, these classifiers tend to fail when used
in other similar bolted structures, and it is not feasible to
generalize them. An alternative lies in retraining the clas-
sifiers with new data sets from these other structures, which
can be expensive and require a lot of time. Transfer learn-
ing is an attractive methodology that has proven to be ef-
fective when applied in these scenarios to allow the reuse
of the same previously trained classifier [9]. The idea is,
from a source structure, i.e., a system containing a broad data
set with known labels, to transfer the knowledge to a target
structure with unlabeled conditions or insufficient data to as-
sess its structural integrity. This methodology can provide a
learning stage that reduces the dimension of the feature space
and classifies similar structures adequately. Transfer learning
via domain adaptation transforms source and target data sets
to a latent space, minimizing the distance between both data
sets [10].

Recently, population-based transfer learning was pro-
posed through domain adaptation methods to mitigate the di-
vergences between the probability distributions of data sets
collected from different structures, allowing the classifier’s
generalization in the structural integrity evaluation. Differ-
ent applications have been reported using transfer learning
and domain adaptation in the SHM context, from mitigating
temperature effects in impedance signatures [11] to improv-
ing the training for damage detection in bridges using hy-
brid data with a combination of numerical and experimental
data [12], also including statistic alignment to make robust
classifiers on unbalanced data in SHM of bridges [13], in-
complete data of a population of aircraft tailplanes [14], and
others.

Yano et al. [15] applied a domain adaptation method in
a numerical model (source) and experimental data from a
building structure with three floors (target). The numerical
model was utilized as the source domain since several nu-
merical simulations provided a significant data set to train
and recognize different structural conditions. Modal parame-
ters are used as features to compute a damage index and then
evaluate the structural condition. The results have shown that
the domain adaptation method improves the classifier’s per-
formance and regression for damage detection and quantifi-

cation steps compared to the analysis performed in the orig-
inal space. This is the scenario in most real-world cases,
where it is expensive or impossible to fully understand the
situation using experimental data without a long-term histor-
ical measuring campaign.

Ritto et al. [16] showed an offshore application for
drilling purposes that reuses data to aid in validating dy-
namic predictions for different drill string configurations and
scenarios of length and diameter. The performance of three
domain-adaption methods was compared: transfer compo-
nent analysis (TCA), maximum independence domain adap-
tation (MIDA), and geodesic flow kernel (GFK). A torsional
model was used as the source domain, with the friction local-
ization labels known to train a classifier to localize the tor-
sional friction. During the drilling, geometrical parameters
are altered, and the same classifier is transferred to other tar-
get domains, i.e., unlabelled conditions. The classifier’s per-
formance is enhanced when the domain adaptation is imple-
mented to reuse previous knowledge in the source domain.

Digital twins (DT) aim to represent specific physical
systems, such as bolted joint structures, by considering phys-
ical, virtual, and connection parts [17, 18]. The key ingredi-
ents of DTs include physical systems and sensing, compu-
tational models that handle uncertainties, and model updates
as the physical twin changes over time [19]. Some authors
are exploring the use of DTs in structural health monitor-
ing (SHM) [20–23]. However, constructing a DT can be
challenging, especially when it requires long-term data and
significant time processing for complex dynamic systems.
In this context, transfer-learning approaches can be helpful
in extending the validity of DTs [16, 24], allowing previ-
ous knowledge to be reused to obtain new machine-learning
models. The case of bolted joints described in this paper is
an example that falls within this context. Thus, this paper
investigates the benefits of the transfer component analysis
(TCA) domain adaptation method [10] for detecting damage
in four different bolted joint beams. Specifically, three of the
beams have the same geometry, while the fourth has a dif-
ferent contact configuration. The experimental data used in
this study have not been published before and emulate the
gradual loss of tightening torque at the lap joint. The study
trains a prior damage classifier based on one of the struc-
tures (source) and then uses domain adaptation to reuse the
classifier for the remaining structures (targets). The results
show that this approach improves damage detection, espe-
cially when the targets are assumed to be unlabeled and have
incomplete data.

The paper is organized as follows: First, a background
on transfer learning is presented to the reader. The following
section summarizes a discussion on the population of bolted
joints used with the modal procedure computed to extract the
features used in the classification of the structural state of the
joint. Then, the experimental setup and the proposed dam-
age detection methodology are described. The results of the
tightening loss torque detection methodology are illustrated
for this set of structures. Finally, the final remarks and rec-
ommendations are discussed.



2 Background in Domain Adaptation and Transfer
Component Analysis
From the SHM perspective, features extracted from dif-

ferent structures present divergences between their distribu-
tions that prevent the classifier generalization from correctly
assessing the structural integrity. This exists mainly due
to differences in their framework and operational and envi-
ronmental conditions that can affect their structural behav-
ior [25]. Hence, domain adaptation is a compelling solution
to overcome the limitations of machine learning to investi-
gate different structures with the same model/classifier.

Machine learning and transfer learning algorithms differ
in some aspects. Simply put, using classical machine learn-
ing when one has a different setup is necessary to retrain the
algorithm to obtain a new model/classifier. The idea is to
calculate some features from a structure (source domain) in
the original space when the healthy state and damaged con-
dition, i.e., the safe and unsafe tightening torque, are com-
pletely labeled. A classifier trained in this condition usually
yields good results. Unfortunately, the accuracy of the same
classifier decreases if it is applied to another structure (target
domain) with incomplete and unlabeled states. This is the
case when a structure with another type of bolted connec-
tion is considered. Meanwhile, transfer learning proposes to
transfer the relevant knowledge from the source domain to
improve the performance of the target classifier, not requir-
ing estimating a new one from scratch.

In 2010, Pan et al. [10] proposed a domain adaptation
method called transfer component analysis (TCA) to reduce
the divergences between the features determined based on
the data sets collected. The main idea is to determine a
nonlinear function φ(·) that maps the features from source
(Xs) and target (Xt) domains to a subspace, named repro-
ducing kernel Hilbert space (H ), where the divergences be-
tween their marginal distributions are reduced (P(φ(Xs)) ≈
P(φ(Xt))).

The distance between the marginal distributions of the
source and target features is determined through the maxi-
mum average discrepancy (M ), which defines the average
squared distance between features from source and target
structures after their mappings to the subspace. This distance
metric can be written as:

M (P(φ(Xs)),P(φ(Xt))) =
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In this case, a kernel matrix (K) is applied for the proba-
bility distance estimation due to the lack of label knowledge
from the target domain and the complexity of determining
the mapping function. So, the maximum mean discrepancy
can be defined as M (P(φ(Xs)),P(φ(Xt))) = tr(KL), where
the L matrix can be described as:

Li j =
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The features embedding into the reproducing kernel

Hilbert space is carried out based on a low-rank empirical
kernel matrix K̃ = KWWT K, which uses a transformation
matrix W to infer the mapping into a m-dimensional space
(m <<< ns +nt ). Then, the distance can be rewritten as:

M (P(φ(Xs)),P(φ(Xt))) = tr(WT KLKW) (3)

The reduction of the estimated distance in equation (3)
results in the mitigation of divergences between the marginal
distributions from the structures analyzed. Also, it is neces-
sary to preserve the properties of the attributes after perform-
ing their inference to the latent space. Therefore, TCA leads
to an optimization problem that can be written as

min
W

tr(WT KLKW)+µ tr(WT W)

subject to WT KHKW = I
(4)

where the first term is the distance metric M , and the regu-
larization is represented in the second term with µ > 0 as the
trade-off parameter. In addition, the data variance is repre-
sented by WT KHKW, where H = I− ( 1

ns+nt
)1 is the center-

ing matrix, I is the identity matrix, 1 is a matrix of ones.
In this case, the Lagrange multipliers can be used to

solve this minimization problem that leads to a straight-
forward eigenproblem determination. Then, the eigenvalue
problem can be written as:

[(KLK+µI)−1KHK]W = λW (5)

where the transformation matrix W is determined by the
m leading eigenvectors, which infers the features mapping
based on Q = KW.

It is worth noting that deep learning models are com-
monly used to solve complex problems where simpler clas-
sifiers may not be effective. In our study, we employed a
Gaussian Mixture Model (GMM) as a classifier, which has
already been validated in previous publications for differ-
ent purposes and has demonstrated superior performance for
outlier detection when compared to other classifiers. Our
contribution lies in applying transfer learning to combine this
previously validated classifier with four different beams, en-
abling us to effectively detect outliers in each beam’s behav-
ior. For more details, readers are invited to refer to our recent
publication [7].

3 Vibration-based Tightening Torque Loss Detection
This section explains the experimental setup of the sets

of bolted joint structures investigated and the binary classifier
algorithm to detect the state of the connection.

3.1 Orion beam
Figure 1 introduces the experimental setup. The test

bench consists of the Orion beam, which has been presented



as a benchmark in Teloli et al. [8]. The beams are made of
duraluminium with 200 x 30 x 2 [mm] dimensions. The tests
were conducted considering the structure in the clamped-free
condition. For this, one of the beams had a length of 40 mm
attached to a solid aluminum block which, in turn, is directly
coupled to the shaker’s excitation axis (see Fig. 1(a)). In the
nominal version of the Orion beam, the lap-joint consists of
three M4 bolts (a central bolt and two external) spaced along
a length of 30 mm and connected by contact patches that re-
tain the contact in a square area of 12× 12 mm2 (see Fig.
1(c), flat-patch assembly) with an extra thickness of 1 mm.
The patches are only present on the beam connected to the
shaker. A detailed description of the structure and the exper-
imental protocol are available in Teloli et al. [26].

For the analysis conducted in this paper, three specimens
of the Orion beam were manufactured, as illustrated in Fig.
1(b). These structures were called beam #1, #2, and #3. Al-
though these systems have the same nominal dimensions,
their vibration behavior is not necessarily the same due to
variations in the manufacturing process. This also motivates
the analysis carried out by this work. Notwithstanding, a
beam #4 was also proposed using the same components of
the other beams, but without using patches in the contact re-
gion. It has the same dimensions as mentioned above and
uses three bolts. Still, its main difference from the nomi-
nal Orion beam lies in the geometry of the contact interface,
where no patches are present. Contact is made directly be-
tween a flat-flat interface with an area of 30× 80 mm2 (see
Fig. 1(c), flat-flat assembly). This new joint configuration
used the subcomponents of beam #3, whereby the position
of the clamped beam is flipped concerning its centerline, thus
forming the flat-flat interface.

For all structures experimentally tested in this paper, a
white-noise Gaussian input at a controlled amplitude level of
4 m/s2 RMS was used as base excitation. The base motion
was conducted by a permanent magnetic shaker TIRA (TV
Model 51120). A Polytec vibrometer PSV-500 with a 3D
scanning laser is used to measure the velocity at the free end
of the beams. A DJB Konic Shear type A/20 piezoelectric ac-
celerometer monitors the acceleration at the base. A Bruel &
Kjaer 2626 accelerometer preamplifier is also employed for
signal conditioning. The experimental setup also includes a
National Instruments acquisition system composed of Com-
pactDAQ Chassis (NI cDAQ - 9134), C-Series Sound and Vi-
bration Input Module (NI-9263), and C-Series Voltage Out-
put Module (NI-9234).

The experimental campaigns are performed on eight sets
of 16 measurements for each structure after complete assem-
bly and disassembly, repeated on different days to obtain a
total of 128 realizations for each torque level. All four struc-
tures have the same assembly protocol. On the one hand, the
central bolt is fully tightened with a torque value of 80 cNm
during the experimental campaign. On the other hand, the
tightening torque applied on the external bolts ranges from
10 to 80 cNm with an increment of 5 cNm at each experi-
mental run. It is essential to point out that after tests, each
bolt’s tightening torque is checked by a Lindstrom MA500-1
torque wrench.

3.2 Proposed Methodology
Figure 2 illustrates the proposed methodology to detect

changes in the tightening torque of bolted joints using indi-
rect vibration signals. The modal parameters in frequencies
sensitive to the proposed changes are identified and extracted
from the spectral transmissibility signals - higher bending
modes, approximately around 700 and 1900 Hz since they
stress the lap-joint area more distinctly.

In the learning phase, a GMM is estimated using the
modal parameters over a labeled range of tightening torque
variations to cluster the reference/healthy conditions where
the torque is considered safe. Meanwhile, the binary classi-
fier evaluates the unlabeled validation data sets in the testing
phase. In this case, a threshold β is defined using a Chi-
square (χ2) hypothesis test to compare a score calculated by
Mahalanobis squared distance, named here by D . This clas-
sifier has already been proven helpful to this test-bed in pre-
vious applications [7, 27]. The readers can find more details
in these previous papers.

Figure 3 shows the domain adaptation of two generic
datasets of different bolted joint structures—the procedure
described in Fig. 2 can be applied in the same dataset. If a
different bolted joint structure is used, possibly a relearning
step is required with additional data, becoming prohibitive
at most times. A transfer learning procedure, generically
described in Fig. 3, can be applied in that situation. The
purpose is to map the features from the original to a latent
space, typically reducing the dimension. If this procedure is
well done, the same threshold can be used to cluster the data
in the target domain using the classifier learned in the source
domain.

4 Results
A set of four beams with bolted connections are used to

obtain the necessary data for the present investigation. Fig-
ure 4 illustrates the natural frequencies of the 4th, 5th, and
6th modes of the set of beams as a function of the tighten-
ing torque from the range of 80 cNm - 10 cNm for Beam #1.
These features are used for all four structures to compute a
damage index due to the high sensitivity to the modifications
of the tightening torque, as previously performed in Miguel
et al. [7]. Based on the results, it is possible to see super-
position in the upper quartile of the indices computed in the
change tightening torque and the lowest quartile (even the
median value). Between 80 and 60 cNm, the structure is
assumed to be in a healthy operating condition. The evolu-
tion of the natural frequencies as a function of the tightening
torque indicates that a pronounced change in the system’s
dynamics occurs from 25 cNm on (the rate of reduction in
the values of the features increases). Thus, the following is
established: the structure has a low damage level between
60 and 30 cNm but it can continue to operate. For smaller
values, the classifier should detect the change in structural
condition, i.e., indicate the presence of damage. Another im-
portant observation is that the dispersion of the same modal
parameters differs depending on the beam analyzed.

Assuming Beam #2 as the source, Figure 5 shows the
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Fig. 2. Algorithm for detecting loss of the tightening torque based on vibration data in the source domain.

three natural frequencies considered as features, named X1,
X2, and X3 respectively, in the source domain. The central
bolt holds the torque of 80 cNm, whereas the external ones
were reduced to 25 cNm (damaged state). Once these data
are labeled in each condition, a classification algorithm can

be trained to assess the structural condition of the bolted
joint, i.e., if the tightening torque is under safe or unsafe
conditions. Here, a GMM can provide acceptable results
by training through 70% of healthy data, i.e., 448 samples
labeled in the healthy state; the other 30%, i.e., 192 obser-
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vations, are used to verify the ability of the classification to
give the correct assessment. Table 1 shows the training and
validation schedule of the classifier algorithm. Figure 6 il-
lustrates the score of the Mahalanobis squared distance. The
threshold line is computed by a Chi-squared (χ2) distribution
with a probability of false alarm of 5%. A good outlier de-
tection performance is achieved (as expected), with a false
positive rate of 1.9% and a zero false negative rate.

The question now is: may this trained classifier detect
the structural conditions of another structure with the same
type of damage? Beam #1 is chosen as the target, assuming
unlabeled conditions in each state of tightening torque. Fig-
ure 8 shows that the classifier trained on the source domain
data fails to classify the structural conditions of the target
domain. The damage condition is considered the same as
the previous training, i.e., 25 cNm. Thus, a TCA domain
adaptation is proposed for reusing the same GMM classifier
trained in the source domain. Before the TCA application, a
previous z-score normalization is performed in all data sets.
Thus, by applying the TCA with a liner kernel, the latent
space is obtained for both source and target domains. Fig-
ures 9 and 10 illustrate this transformation. The reduction
from 3D-features to 2D-features in the new latent space after
the TCA application is worth noting.

Figures 11 and 12 show that the same classifier trained
on the source data can be used in the target data, presenting a
satisfactory performance. In the latent space, the classifier’s
performance in the source beam tends to decrease due to an
increase in the false negative rate. However, the source labels
are known a priori and do not affect the correct assessment
of its structural condition. Also, the source beam works well
in the original space with the validation data. This is due
to the compression of the space of features. A possible lack
of some information and the high variability between the re-

sembles in different beams can affect the classification per-
formance in the latent space. The point to note is whether we
offer a classification on another beam without training for
this condition, and the classifier scores indicate a possibil-
ity of detecting some situations. The following results show
better performance of the classifier for smaller torque values
with an adequate confidence level. Comparing the target data
in a different beam, it is clear that the domain adaptation al-
lows us to reuse the same classifier keeping a reasonable ac-
curacy. The false positive rate in the target domain is 1.25%,
which is associated with the significant data variability influ-
encing the modal properties.

Note that the confidence levels on false positive and neg-
ative rates can also be influenced by choice of the structure
adopted as the source and/or target. Figure 13 summarize
the false positive and negative rates depending on differ-
ent sources and target beams, assuming levels of tightening
torque of 25, 20, and 15 cNm, respectively. Again, a classi-
fier is trained using the knowledge from the source beam and
applied to the target beams in the latent space. Based on the
results, some conclusions can be listed. Beam #2 as source
provided the best overall performance for detecting changes
in the tightening torque. This source beam also allowed an
adequate classification of the structural conditions of Beam
#4, which is a structure with a different contact area, espe-
cially for lower torque values, such as 20 cNm and 15 cNm.
Beam #2 presents more dispersion in the features space to
capture the trends and classify the tightening torque state.
On the other hand, beams #1 and #4, considered as a source,
have a high false alarm rate on the other targets, indicating a
lower performance of the classifier. Some aspects of the dis-
persion of the experimental data and contact interface con-
ditions contribute to elaborate a more detailed discussion on
this topic.



Fig. 4. Box plot of the natural frequencies for the source condition.

Table 1. Parameters for learning and validation.

Dataset Condition Samples Range of torque (cNm)

Learning Healthy 448 80,75,70,65,60

Validation Healthy 192 80,75,70,65,60

Validation Damaged 128 25

Figure 1(b) shows Beam #1 with black traces in the
external patches. Thus, these are apparent traces of the
wear caused by the friction between the surfaces. In previ-
ous work, this structure has undergone extensive experimen-
tal tests to characterize the nonlinear behavior of the Orion
beam. Therefore, although design and geometry beam #1 is
also an Orion beam, its dynamic behavior is different from
the other beams and is influenced by this wear damage on its
surface and the advanced time of its live cycle. These factors
indicate a possible reason why the classifier performs more
deficiently.

Beam #4 exhibits a greater amount of variability in its
data compared to the other structures. This is because the

presence of patches in Orion beams leads to a contact inter-
face that is concentrated only under the pressure cone formed
by each bolt’s contact area. As a result, Beam #4 has a non-
uniform pressure distribution that affects its variability more
significantly, especially when the tightening torque is lower.
These physical differences among the structures impact the
classifier’s performance, resulting in discrepancies between
beams used as source or target. Essentially, the classifier’s
ability to accurately distinguish between beams is affected
by the dispersion in the data. Therefore, any differences in
performance are more influenced by the classifier’s ability
than the TCA. Yano et al. [28] observed the similar effect
analyzing two sets of unbalanced data in a bridge comparing



Fig. 5. Source assumed as Beam #2 for the structural condition healthy (torque in the range of 80− 60 cNm) and damaged, when the
torque is around 25 cNm - original space.

Fig. 6. Damage index computed with source domain (Beam #2) in original space, where −− is the threshold. The false positive rate of
1.9%, and the false negative rate is zero.

unsupervised and supervised learning procedures, depend-
ing on the source and target bridge applied. A more suitable
classifier for each situation’s data core could enhance this
performance.

5 Final Remarks
This paper has investigated a domain adaptation method

called TCA for tightening detection in bolted joints. TCA
was able to expand the usability of classifiers, trained in
source data with known labels, to target data, with incom-
plete and unlabeled data, by mapping the features into a la-
tent space. However, the results show that the choice of the

source database is important.

In this paper, we had access to 4 data sets that could be
taken as source sets. A previous analysis shows that beam #1
had marks and that beam #4 had a completely different con-
nection interface from the others; therefore, it was already
expected that applying domain adaptation using these beams
would present higher false alarm rates. On the other hand,
beam #2 presents better conditions to be chosen as a source;
in particular, beam #2 presents better implementation due to
the high dispersion of the features using the same classifier.
Here, the classifier was performed using the target, assum-
ing only one tightening torque in each case once the TCA
is a one-to-one procedure, i.e., source data is combined with



Fig. 7. Target assumed as Beam #1 for the structural condition healthy (torque in the range of 80−60 cNm) and damaged when the torque
is around 25 cNm - original space.

Fig. 8. Damage index computed with target domain (Beam #1) in original space, where −− is the threshold. Classification failed using the
previously trained Algorithm with a dataset of the source domain (Beam #2).

target data.
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References
[1] Kim, J., Yoon, J.-C., and Kang, B.-S., 2007. “Fi-

nite element analysis and modeling of structure with
bolted joints”. Applied mathematical modelling, 31(5),
pp. 895–911.

[2] Lacayo, R., Pesaresi, L., Groß, J., Fochler, D., Ar-
mand, J., Salles, L., Schwingshackl, C., Allen, M.,
and Brake, M., 2019. “Nonlinear modeling of struc-



Fig. 9. Source assumed as Beam #2 for the structural condition healthy (torque in the range of 80− 60 cNm) and damaged, when the
torque is around 25 cNm - latent space.

Fig. 10. Target assumed as Beam #1 for the structural condition healthy (torque in the range of 80− 60 cNm) and damaged when the
torque is around 25 cNm - latent space.

tures with bolted joints: A comparison of two ap- proaches based on a time-domain and frequency-



Fig. 11. Damage index computed with source domain (Beam #2) in latent space, where −− is the threshold. The rate of false positive of
1.2%, and the rate of false negative is 7.0%.

Fig. 12. Damage index computed with target domain (Beam #1) in latent space, where −− is the threshold. The rate of false positive is
0.3%, and the rate of false negative is zero.
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Fig. 13. Performance of the classifier for different target domains assuming unsafe torque of (a) 25 cNm, (a) 20 cNm, (c) 15 cNm - latent
space. is the false positive rate, and is the false negative rate.
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