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Abstract Hysteresis is a nonlinear dissipative phenomenon
present inmany structures, such as those assembled by bolted
joints. However, the approaches for identification are still
limited in the literature due to their complexity. Addition-
ally, there are also uncertainties held in bolted structures
caused to fluctuations in tightening torque and pressure dis-
tribution along the contact surface. Thus, this paper yields
a methodology for identifying a stochastic Bouc-Wen model
for bolted joints based on the harmonic balance method. Un-
fortunately, some challenges are encountered when apply-
ing conventional series approximation to hysteresis, caused
mainly by non-smooth behavior, which induces abrupt tran-
sitions between different motion regimes. In this work, pre-
vious adaptations were made to split the hysteresis loop in
smooth paths and then use a piecewise harmonic balance ap-
proach. In this way, it was possible to deal with a determinis-
tic identification problem based on minimizing the error be-
tween the Fourier amplitudes of an experimental signal and
those obtained through harmonic balance applying theCross-
Entropy optimization method. So, the results were extended
to a stochastic model by applying the Bayesian paradigm,
in which the maximized likelihood function was also based
on the harmonic balance amplitudes. This methodology was
demonstrated to identify Bouc-Wen parameters capable of
predicting hysteresis in the BERT benchmark, composed of
two aluminum beams jointed by a bolted joint in a cantilever
boundary condition. Evaluating the results in the time and
frequency domain and the nonlinear behavior through the
hysteresis loop, it can be concluded that the method was able
to identify an accurate stochastic Bouc-Wen model in pre-

L. P. Miguel0 · R. de O. Teloli1 · S. da Silva2
Department of Mechanical Engineering, São Paulo State University
(UNESP), Avenida Brasil 56, Ilha Solteira, SP, Brazil.
0E-mail: luccas.miguel@unesp.br
1E-mail: rafael.teloli@unesp.br
2E-mail: samuel.silva13@unesp.br

dicting the dynamics of bolted structures even taking into
account the probable uncertainties of the system.

Keywords harmonic balance method · hysteresis · Bayesian
paradigm.

1 Introduction

A representative number of assembled structures are con-
nected by bolted joints, which leads these elements to have
a substantial presence in the industry. The presence of these
joints reflects on the dynamic behavior of the structure, in
particular on its global damping and stiffness characteristics,
due to nonlinear contact interactions, e.g., friction, that take
place at the micro-scale of the joint area. The behavior of
these structures is commonly associated with the presence
of hysteresis, a nonlinear effect that relates inputs and out-
puts in a non-smooth way, induces delays, rate-dependent
or independent memory effects, and multiple solutions [35].
Moreover, due to slipping effects that occur when the joint
is subjected to pronounced vibration amplitudes, nonlinear
softening effects take place in the vicinity of resonance fre-
quencies.

There are approaches available in the literature to address
the dynamics of jointed structures. Finite element (FE) analy-
sis offers models with high fidelity in describing the contact
interface (when hundreds of degrees of freedom are taken
into account). However, the computational cost required to
simulate these models during a nonlinear regime of mo-
tion, especially in obtaining responses in the time domain, is
sometimes prohibitive when a dynamic response that spans
several oscillation cycles is desired. To reduce the efforts re-
lated to numerical simulations of FE models, several works
in literature have proposed the use of simplified joint models,
such as the Iwan model. This model stands out for its ability
to describe typical nonlinearities of bolted joints, such as
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softening stiffness and hysteresis contact forces, by using a
distribution of friction sliders. The popularization of such a
model is also directly related to its simplicity of implementa-
tion, offering the possibility to calibrate its parameters based
on experimental observations.

It is argued that any Iwan model can be represented by
an equivalent Bouc-Wen model, which is described by a set
of nonlinear differential equations and, due to its versatil-
ity, it is capable of representing several hysteresis loops in
the restoring force × displacement plane just by adjusting
its parameters properly. Applications of this model include
approximations of magnetorheological fluid dampers [18],
modeling of piezoelectric actuators [30], reconstruction of
hysteretic forces of seismic isolators [24], and others [14].
Concerning engineering problems involving joints, Oldfield
et al. [25] proposed using the Bouc-Wen model to adjust
the hysteresis loops yielded by a finite element model of
bolted joints. Fantetti et al. [11], in turn, replicated hysteresis
loops from a fretting test rig using a modified Bouc-Wen
model, which takes wear into account, to simulate the evo-
lution of contact parameters. Teloli et al. [34] put forward
the Bouc-Wen model to fit the experimental response of the
BERT benchmark, an experimental setup that consists of
assembling two beams by a double bolted joint. However,
compared to the Iwan model, there is a lack of contributions
involving the use of the Bouc-Wen model to characterize
contact interactions in bolted joints. One of the reasons be-
hind this fact is related to the difficulty in describing the
response of this phenomenological model through analytical
expressions since closed-form solutions are a useful tool in
parameter estimation and calibration procedures.

Based on the context presented, the paper’s main con-
tribution lies in using closed-form solutions to identify pa-
rameters that predict the response of bolted structures con-
sidering a reduced-order stochastic Bouc-Wen model. The
proposed procedure is mainly based on analytically approx-
imating the system’s response and its nonlinear restoring
force via Fourier series using the harmonic balance method
(HBM). The specific literature has already brought different
ways to overcome the challenging issues faced when ap-
proximating the output of hysteretical systems (which are
generally non-smooth systems) by smooth series, as HBM
aims. Among them, we have, for example, some works that
had done it applying the Galerkin method [37,23] or even an
incremental version of HBM [16]. Another way proposed by
Cameron and Griffin [6] is the Alternating Frequency-Time
(AFT) method, which aims to take advantage of working in
each domain inconvenient steps and thus iteratively moves
between them. In other works, variations of the AFT method
have also been applied to frictional systems [19] or even
combined with the HBM [40,39]. A new approach has also
been presented by Miguel et al. [21], in which a smoothing
procedure was previously carried out to the hysteresis force,

then achieving a piecewise HBM, which is employed in the
presentwork.Although theHBM-based procedure for identi-
fying a Bouc-Wen model using this smoothing approach has
already been proposed in Miguel et al. [22], this paper goes
further and expands the early deterministic model proposed
to a stochastic one through theBayesian paradigm. It was also
employed the harmonic amplitudes from the Fourier series as
identification metrics, as done in the deterministic method-
ology. Such model improvement proves to be quite relevant
because it predicts responses with statistical confidence for
bolted joints, which are known as a great source of uncer-
tainties due to possible variability in the assembly and the
contact surface dynamics [3]. Also, an updated connection
model with a reduced dimension that admits an analytical
solution with statistical confidence could be a feasible al-
ternative to satisfactorily circumvent the high computational
cost required by the refined FE meshes currently necessary
to obtain the dynamic behavior of bolted structures.

The paper is organized as follows: in addition to the in-
troduction, the following section shows an overview of the
smoothing procedure for the Bouc-Wen model and the HBM
approach applied to describe the hysteresis effect [21]. Then.
The HBM-based procedure is presented in Section ??, which
contains two main subsections: first, in Section 3.2, the de-
terministic identification technique of the Bouc-Wen model
proposed byMiguel et al. [22] is presented. Themethodology
is based on minimizing the error between mono-harmonic
responses from the experimental data and the analytical ap-
proximation through the Cross-Entropy optimization proce-
dure [8,17,9]. It is also assumed the adjustment of a transient
velocity is an auxiliary identification metric to achieve better
results. So, in Section 3.3, the procedure to identify a stochas-
tic model using Bayesian inference is described. This step,
which brings the main contributions of this work, consid-
ers the system’s parameters as random variables with their
respective probability distributions. Starting from a priori
knowledge about the structural dynamics based on the pre-
vious deterministic results, a posteriori statistical model em-
ploying theMarkov ChainMonte Carlo/Metropolis-Hastings
(MCMC) algorithm is identified through the maximization
of the likelihood of the harmonic amplitudes obtained via
HBM. In Section 4 the efficacy of this approach is demon-
strated applying it on the BoltEd stRucTure (BERT1) bench-
mark [22,34], which is composed of two aluminum beams
jointed by a symmetric double-bolted joint in a cantilever
boundary condition. The preliminary deterministic model
is briefly presented to illustrate the preliminary knowledge
acquired and then expanded to the stochastic model using
the Bayesian paradigm formulation, allowing to generate a
model that can accommodate the uncertainties existing in
the system through a mean and a confidence band. Also, it is

1 For more information access: https://github.com/
shm-unesp/DATASET_BOLTEDBEAM
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essential to point out that the BERT benchmark was chosen
because it has all the nonlinear behavior expected to bolted
structures, besides it had already been statistically identi-
fied by Teloli et al. [34] using higher-order FRFs estimated
through Volterra series expansion, enabling a methodologi-
cal comparison that is carried out at the end of this section.
Finally, the concluding remarks and trends for future research
directions in this topic are presented. Finally, the concluding
remarks and trends for future research directions in this topic
are presented in Section 5.

2 The HBM Applied to Hysteretical Systems

Among several methods to approximate output signals in
nonlinear systems, harmonic balance is an analytical method
in the frequency domain that carries a simple proposal and
exact physical meaning. In opposite to what happens in lin-
ear systems, when a pure sinusoidal input is applied to a
nonlinear system, the output does not follow the input’s
mono-harmonic frequency but is distorted by the presence
of high-order harmonics [38]. Based on this feature, the har-
monic balance’s fundamental premise is to capture both the
fundamental response and the higher-order harmonic terms
through the sum of sinusoidal functions with a truncated
Fourier series, according to the required precision. A com-
plete discussion with simulated examples of the method,
including the particular case of hysteretic systems, can be
found in Miguel et al. [21], where the formulation applied to
this work is presented. This section aims to summarize the
key ideas of the methodology.

2.1 General HBM formulation

To briefly illustrate the main ideas of HBM, a general non-
linear mechanical system is considered, whose differential
equation of motion is given by:

< ¥H(C) + 2 ¤H(C) + :H(C) + Z(C) = D(C), (1)

in which H, ¤H and ¥H represent the displacement, velocity and
acceleration, respectively;< is the mass constant, 2 and : are
the viscous damping and linear stiffness, respectively; Z(C)
is a general representation of the nonlinear restoring force
element. For the application of HBM it is assumed that the
system is subject to a mono-harmonic sinusoidal excitation
D(C) = � sin (lC), where � [N] is the input amplitude, and
l the frequency. For this input signal it is assumed a steady-
state harmonic output that generates a restoring force with

these same features, allowing them to be approximated by an
expansion in Fourier series:

H(C) ≈ 00 +
∑̂
==1
[0= cos(=lC) + 1= sin(=lC)] , (2)

Z(C) = A0
2
+

∑̂
==1
[A= cos(=lC) + B= sin(=lC)] , (3)

where ^ is the number of harmonic terms considered in the
approximation, and 0=, 1=, A= and B= are Fourier coeffi-
cients of displacement and nonlinear force, respectively. In
this second one, the coefficients are conveniently expressed
through the integrals of classical Fourier analysis:

A= =
l

c

∫ 2c
l

0
Z(C) cos(=lC)3C, (4)

B= =
l

c

∫ 2c
l

0
Z(C) sin(=lC)3C. (5)

Replacing the Eqs. 3 to 5 on Eq. 1 and balancing the
harmonic terms of the equality, we arrive at a system of
nonlinear equations that in general is solved numerically. It
is worth noting that in some frequency ranges, the system
can present multiple solutions due to physical effects such as
the jumping phenomena [4] and even numerical instabilities
that can occur mainly when high order harmonic terms are
considered. This second case can manifest itself in situations
where the method does not reach the convergence or reach a
false convergence.

2.2 Particularities of HBM applied to hysteresis systems

Unfortunately, this simple and direct application presented
earlier is only possible when dealing with smooth nonlin-
earities, since the restoring force is continuous and does
not undergo abrupt transitions between different operating
regimes, differently from what occurs in non-smooth sys-
tems such as the hysteretic ones. Another factor that limits
its use is that the hysteresis forces are often described in
differential equations with no single and trivial solution in
terms purely related to the output. These features are exem-
plified here to the Bouc-Wen model, which is the chosen one
for modeling applications further in this work. A dynami-
cal system coupled to a hysteretic dissipation element can
be modeled as a Bouc-Wen oscillator, whose the nonlinear
restoring force follows the first order differential equation of
¤Z(H, ¤H) [36]:
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¤Z(H, ¤H) = U ¤H(C) − (W | ¤H(C) | |Z (H, ¤H) |a−1 Z (H, ¤H) +
+ X ¤H(C) |Z (H, ¤H) |a), (6)

in which U, W, X and a are responsible for determining the
shape of the obtained hysteresis loop, and are called Bouc-
Wen parameters. As pointed out by Jalali [15], the term
Z(H, ¤H) does not offer an explicit expansion in terms of the
output H or even its derivatives ¤H and ¥H, restricting the appli-
cability of the HBM along with other complications associ-
ated with the non-smoothness features of hysteresis models.
In order to overcome such issues, a smoothing procedure was
developed based on the integration of the differential equa-
tion that governs the hysteresis force [33]. For this purpose
Eq. 6 considering the case in which a = 1 (without loss of
generality) is initially divided by ¥H, resulting in the following
equation

3Z

3H
= U − |Z| [sgn ( ¤H Z) W + X] , (7)

which in turn is a differential equation in H. The definite inte-
gral of the equation at convenient intervals that ensure all the
different combinations of the signal function’s argument re-
sults in four intervals forZ, within which smooth and explicit
functions can represent the force in terms of displacement,
given by:

(i) path: ¤H 6 0,Z > 0

Z(1) =
U

(X − W)

(
1 − 4−(X−W) (H−H0)

)
, (8)

(ii) path: ¤H 6 0,Z 6 0

Z(2) = − U

(X + W)

(
1 − 4 (X+W) (H−H0)

)
, (9)

(iii) path: ¤H > 0,Z 6 0

Z(3) = − U

(X − W)

(
1 − 4 (X−W) (H+H0)

)
, (10)

(iv) path: ¤H > 0,Z > 0

Z(4) =
U

(X + W)

(
1 − 4−(X+W) (H+H0)

)
. (11)

in which paths (iii) and (iv), characterized by ¤H > 0, make
up the loading cycle, while paths (i) and (ii), characterized
by ¤H 6 0, make up the unloading cycle. Additionally, H0
was also defined as the displacement to Z = 0, as shown in
Fig. 2.2. Besides that, the smooth equations obtained allow
a finite expansion in Taylor series around the term H0:

Z(1) ≈ U

(X − W)

(
1 −

[ ∞∑
==0

[(X − W)]= (H − H0)=
=!

])
, (12)

Z(2) ≈ − U

(X + W)

(
1 −

[ ∞∑
==0

[(X + W)]= (H − H0)=
=!

])
, (13)

Z(3) ≈ − U

(X − W)

(
1 −

[ ∞∑
==0

[(X − W)]= (H + H0)=
=!

])
, (14)

Z(4) ≈ U

(X + W)

(
1 −

[ ∞∑
==0

[(X + W)]= (H + H0)=
=!

])
. (15)

Fig. 1 Representation of the paths of the Bouc-Wen hysteresis loop. -
represents the range described by Z(1) , • the one described by Z(2) , -
the one described by Z(3) and • by Z(4) [21].

With the hysteresis force wholly described in the polyno-
mial form, the challenges related to it are solved; however, it
is necessary to adapt the Fourier coefficients’ integrals. Con-
sidering that the restoring force was divided into four smooth
intervals alternating every quarter of the excitation period,
the integrals of the Fourier analysis, contained in Eqs. 16 and
5, are also split into a quarter of the period, resulting in the
following integrals:

A= =
l

c

©«
∫ c

2l

0
Z(1) cos(=lC)3C +

∫ c
l

c
2l

Z(2) cos(=lC)3C+

+
∫ 3c

2l

c
l

Z(3) cos(=lC)3C +
∫ 2c

l

3c
2l

Z(4) cos(=lC)3C

ª®®®®¬
,

(16)

B= =
l

c

©«
∫ c

2l

0
Z(1) sin(=lC)3C +

∫ c
l

c
2l

Z(2) sin(=lC)3C+

+
∫ 3c

2l

c
l

Z(3) sin(=lC)3C +
∫ 2c

l

3c
2l

Z(4) sin(=lC)3C

ª®®®®¬
.

(17)
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that replaced in Eq. 3 allow finding an average Fourier se-
ries considering all regimes of motion. Some aspects of the
displacement signal produced by the Bouc-Wen model must
also be assumed, such as the fact that it has symmetric mo-
tion between its maximum and minimum points. Due to
this symmetrical aspect, the contribution of even-order har-
monic and constant displacement terms can be considered
nulls [38]. Once the series has been calculated, obtaining
and solving the system usually proceeds as described in the
general case.

3 Parameter Estimation Framework Based on the HBM

3.1 Problem Definition

This paper aims to propose a parameter estimation proce-
dure applied to problems involving bolted joints that admit
approximation by hysteresis models. The Bouc-Wen model
is used to represent the set of observed dataD of the first vi-
bration mode of the BERT beam, a benchmark that contains
a fully symmetric double-bolted joint. This data exhibit fluc-
tuation due to environmental variation and uncertainties in
the measurement process since the experimental tests were
conducted on different days.

First, a reference model is calibrated considering deter-
ministicBouc-Wen parameters. In this step, the cross-entropy
(CE)method is used to estimate the set of feasible parameters
) = )∗ ∈ Rn that best fits a single experimental realization
D; ∈ D, as illustrated by Miguel et al. [22].

The construction of the stochastic Bouc-Wen model is
then performed. The calibrated parameter values for the de-
terministic model are used to propose a priori uniform dis-
tributions c(�) ∼ U

(
(1−Δ))∗, (1+Δ))∗

)
, with Δ ∈ R, and

� is the randomized version of the vector ) . These probabil-
ity density distributions are then updated to posteriori ones
c(�|D) by the MCMC algorithm based on the learning in-
ferred from experimental observations.

As discussed by Ikhouane and Rodellar [13], there are
several combinations of the Bouc-Wen parameters that could
reproduce the same input-output behavior, making the pro-
cedure of optimizing its parameters computationally labori-
ous. To circumvent this technical issue and reduce the set of
possible solutions S to the problem, this work divides the
parameter estimation procedure into two steps:

1. Linear Regime of Motion: This step takes advantage of
the knowledge acquired by the underlying physics of the
system of interest by estimating its modal parameters.
These parameters are calibrated at specific low displace-
ment conditions such that the system is still operating in a
linear vibration regime and subject to a broadband power
input spectrum with very low excitation amplitude;

2. Nonlinear Regime of Motion: Having the modal param-
eters to constraint the nonlinear optimization problem,
the parameters responsible for the nonlinear dynamics
of the Bouc-Wen oscillator are estimated via analytical
expressions derived by the HBM-based formulation to
approximate experimental measurements from stepped-
sine tests. Under these controlled periodic excitations,
the system of interest bevahes nonlinearly.

Figure 2 shows the framework of the parameter estima-
tion procedure proposed by this work.

3.2 Deterministic identification procedure

The Bouc-Wen model from Eqs. (1) and (6) is rewritten in
the mass normalized form, yielding:

¥H(C) + 2Zl= ¤H(C) + :̃ H(C) + Z̃(H, ¤H) = D̃(C), (18)

¤̃Z(H, ¤H) = Ũ ¤H(C) − (W̃ | ¤H(C) | Z̃ (H, ¤H) + X̃ ¤H(C)
��Z̃ (H, ¤H)��). (19)

where l= is the linear resonance frequency defined as l= =√
Ũ + :̃ and Z is the damping ratio; ) =

[
Ũ, W̃, X̃

]
is the set

of parameters to be estimated through the CE method when
the structure is under nonlinear regime of motion.

Firstly, for low vibration amplitude, it is assumed that the
structure behaves linearly, in which the pair (l=, Z) can be
adjusted by any classical modal analysis method, or curve
fitting strategy, such as the Complex-Exponential Method
applied in this work, among others [20].

These parameters are then fixed as constraints on the non-
linear optimization problem, which is formulated to find a set
of feasible parameters that minimizes an objective function
) ∈ S ↦→ R(\) [22]:

)∗ = argmin
) ∈ S

R()), (20)

where the set of admissible parameters is limited to the inter-
val S = [)min, )max], and R()) is the total residue between
features inside D; built of different vibration data and the
predicted ones, yielding:

R()) = R2 ()) + RB ())︸              ︷︷              ︸
HBM terms

+ R) ())︸ ︷︷ ︸
transient term

, (21)

Assuming that the experimental response admits a first-
order harmonic solution considering the complex represen-
tation:

Hexp (C) =
(
. exp + . exp)︸         ︷︷         ︸
= 0

exp
1 (l8)

cos (l8 C) + 9
(
. exp − . exp)︸          ︷︷          ︸
= 1

exp
1 (l8)

sin (l8 C),

(22)

where 0exp1 (l8) and 1
exp
1 (l8) are the harmonic coefficients

calculated directly from the Fourier transform . exp and its
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Fig. 2 Flowchart of the identification procedure. As can be seen, the procedure has two main branches: deterministic and later stochastic
identification. Each uses the data acquired and processed and has a linear and nonlinear identification step, as is proposed throughout the work.
At the end of the deterministic identification step, the knowledge obtained is used as an initial guess for the iterations of the MCMC/Metropolis-
Hastings algorithm that performs the Bayesian identification, in the form of a uniform distribution called prior, to obtain the posteriori distribution
of the parameters.

complex conjugate . exp measured at a frequency l8 . Note
that these harmonic coefficients will be extracted at each
frequency increment that composes stepped sine tests.

Thus, the HBM terms are given by the distance between
the experimental Fourier amplitudes and the analytical ones
assuming ^ = 1 harmonic term and = = 0,1,2,3 on Taylor
series:

R2 ()) =
a1 ()) − aexp1

2
2aexp1 2

2

, (23)

RB ()) =
b1 ()) − bexp1

2
2bexp1 2

2

, (24)

inwhich aexp1 =
[
0
exp
1 (l1), . . . ,0

exp
1 (l#l

)
]
, bexp1 = [1exp1 (l1),

. . . ,1
exp
1 (l#l

)], a1 =
[
01 (l1), . . . ,01 (l#l

)
]
and b1 =

[
11 (l1), . . . ,11 (l#l

)
]
are the amplitude vectors over the

frequency spectrum.
Considering that there is a negligible delay between the

sinusoidal input and the hysteresis force, the time instant
C = C0 when the nonlinear restoring force is zero coincides
with the zero input value, one can conclude that the displace-
ment term H0 on Eqs. (8)-(15) results in H0 =

��0exp1 �� [22]. This
enables one to evaluate the analytical amplitude at each ex-
citation frequency using the HBM-based formulation.

The transient term, in turn, is given by:

R) ()) =
 ¤H(); C) − ¤̂Hexp (C)22 ¤̂Hexp (C)22 . (25)

resulting from the difference between the experimentally
measured velocity ¤̂Hexp (C) and its predictive counterpart ¤H(\; C)

https://orcid.org/0000-0002-2622-6134
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numerically integrated through the Runge-Kutta 4th order
scheme applied on Eqs. (18)-(19). This term is included in
the calibration of the reference model to take into account
transient effects in system response, since the HBM only
considers steady-state response. It will be seen in Section 4
that the velocity responses correspond to data generated by
swept sine excitation tests in the vicinity of the first resonant
frequency. In Eqs. (22)-(24), ‖•‖2 is the L2-norm,

Based on the nonlinear optimization problem addressed
in Eq. (20), the CE method [29] is considered to find a fea-
sible solution )∗. For the case of parameter identification, it
consists of firstly selecting a probability distribution c(�, v)
defined by hyperparameters v = [-,2], where - is the mean
and 2 is the standard deviation of the random vector �. In
this work, the realizations ): (: = 1, . . . , #B) are sampled
according to a Gaussian truncated distribution within the S
domain.

After sampling the random vector �, the objective func-
tion is evaluated and sorted in ascending order, such that
R (1) ≤ · · · ≤ R (#B) . At this step, an elite sample E8 is com-
posed of those {)1, . . . , )#4

} for which the performances
R (1) ≤ · · · ≤ R (#4) present their #4 smallest values, since
the values that minimize the objective function are of utmost
importance. The number of candidates that compose an elite
sample is defined by selecting a subset of #4 = d#B samples,
in which 0 < d < 1 is the rarity parameter and it represents
the d-quantile of performances [17].

Based on the subset E8 and following the analytical for-
mulas for the mean and standard deviation for truncated
Gaussian distributions, the hyperparameters then are up-
dated:

-8 =
1
#4

∑
�: ∈E8

�: , (26)

28 =

√
1
#4

∑
�: ∈E8

,
(
�: − -d

)2 (27)

The CE method is a sampling technique, which refines
the solution candidates at each iteration. Instead of consid-
ering the hyperparameter values from equations (26)-(27) to
sample ): in the next iteration, a heuristic smoothing proce-
dure is applied to prevent components of v8 from being zero
or one at the first few iterations [17]:

v8 = Vv8 + (1 − V)v8−1. (28)

where 0 < V < 1 is a fixed smoothing parameter that
weights the hyperparameter’s update on the learning phase.

The main idea of the CE method lies on using the infor-
mation obtained by evaluating R()) for all the independent
and identically distributed samples to iteratively drive the
prior assumed distribution in direction to the optimal set of
parameters (bymoving its mean) and to concentrate it around

)∗ (by decreasing the deviation). In other words, the method
makes:

lim
v→()∗ ,0)

c(�, v) = X () − )∗) (29)

In which X () − )∗) is a multivariable Dirac delta [8]. Thus,
an usual stopping criterion is do the iterations while ‖28 ‖∞ >
fB , in which fB is a small tolerance related to an ideal Dirac
delta, in whichfB = 0, and ‖•‖∞ is theL∞-norm. Algorithm
1 summarizes the cross-entropy optimization procedure em-
ployed [9,17,8].

Algorithm 1: Cross-entropy for parameter identifi-
cation.
1 Chose the initial PDF c (�, v0) , and parameters d, #B , f2B

and V. Set the counter 8 = 1;
2 Generate #B samples �1, . . . ,Θ#B

∼ c (�, v0);
3 Evaluate R()) for �1, . . . ,Θ#B

;
4 Sort the results such as R (1) ≤ · · · ≤ R (#B ) , and select
E8 = [R (1) . . . R (#4 ) ] as the d-quantile of performance;

5 Use the mean and standard deviation of E8 , v8 = [-8 28 ], to
update the distribution: v8 = Vv8 + (1 − V)v8−1;

6 Do the steps 2 to 5 while ‖2i ‖∞ < fB ;

3.3 Bayesian inference in stochastic identification using
HBM amplitudes

The Bayesian inference for identification purposes is based
on selecting random parameters � that maximize a like-
lihood function c(D | �) that best represents the set of
observed data [7]. Estimation of this function allows us to
update posterior probability density functions (PDF) of the
numerical model parameters c (� | D) based on the infor-
mation inferred about the system of interest. Besides, due to
Bayesian paradigm, the amount of samples used for model
learning is not exhaustive to measure, which makes this tech-
nique widely used to identify stochastic models. From the
Bayes rule of conditional probability, the posterior PDF is
given by [10]:

c (� | D) = c(D | �)c(�)
c(D) (30)

where c(�) is an a prior probability distribution introduced
from preliminary assumptions, constraints, or parameters of
a deterministic reference model, as done by this work; c(D)
is the PDF of the observed data that ensures c (� | D) is
a probability density function with integral equal to unity.
Thus, note that if c(�) ∼ U

(
(1 − Δ))∗, (1 + Δ))∗

)
, then

c (� | D) ∝ c(D | �). The generation of the posterior
distribution can be understood as a process of increasing
statistical information about the system’s response.
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The analytical expression of the likelihood function can
be derived assuming the following:

D = DM (�) + 9 (31)

where DM (�) is the model M prediction given a set of
parameters �, 9 ∼ N(0, If2Y) is an additive decorrelated
Gaussian noise 9 ∈ R= with covariance If2Y , and I is the
identity matrix. Thus, c(D | �) results in:

c(D | �) ∝ exp

(
−

(
D − DM (�)

)T (
D − DM (�)

)
2f2Y

)
(32)

To evaluate the likelihood function in this work, the
model prediction is taken also as mono-harmonic Fourier
amplitudes of a Bouc-Wen model defined by � and com-
puted through HBM. Therefore, the Bayesian inference is
based on minimizing the residue:

R� (�) =
∑
D
‖H (D;) −H (�)‖22 , (33)

whereH (�) is the absolute value vector composed bymono-
harmonic analytical responses along the frequency range of
interest, with elements given by:

H (�) ≡H (�, l8) =
√
01 (�;l8)2 + 11 (�;l8)2. (34)

In a similar way, H (D;) is the absolute value vector of
experimental responses from a realizationD; ∈ D along the
same frequency range. Also, the summation indicates that
R� (�) is composed by the sum of the residue evaluated in
all realizations of D. Thus, the likelihood function can be
rewritten as:

c (D | �) ∝ exp
(
−R� (�)
2f2n

)
(35)

As can be seen on Eq. 35, as both residues reduces, the
likelihood increases. In other words, minimizing the residue
yields maximizing the likelihood, which in turn becomes
a measure of how well a set of parameters fits the entire
dataset. The most representative parameters ) = )∗ are those
that reach the maximum a posteriori probability (MAP):

�∗ = argmax
) ∈ K

c (D | �) , (36)

where K denotes the domain constrained by the uniform
prior c(�), i.e., K =

[
(1 − Δ))∗, (1 + Δ))∗

]
.

Although the Bayesian paradigm has a solid theoretical
basis for evaluating the likelihood function, it does not spec-
ify by itself methods for obtaining the posterior efficiently,
primarily when the model is defined by a combination of
parameters with different distributions sampled simultane-
ously. Due to this fact, there is an auxiliary algorithm in

the literature from the family of Monte Carlo methods that
are useful to avoid high-dimensional integration, such as the
Markov ChainMonte Carlo/Metropolis-Hastings [12,28], il-
lustrated in Algorithm 2 [27].

Algorithm 2: Markov Chain Monte
Carlo/Metropolis-Hastings for parameter identifi-
cation.
1 Set the counter 8 = 1, a first candidate
X0 = {0.5,0.5,0.5,0.5}T, and define fB and 8B ;

2 Generate a candidate Y ∼ N (Xi−1, fB);
3 Interpolate the value � = Y(1 + Δ))∗ + (1 −Y) (1 − Δ))∗ and

�Xi−1 = Xi−1 (1 + Δ))∗ + (1 − Xi−1) (1 − Δ))∗;
4 Generate C ∼ U(0,1);
5 If C ≤ L {�}/L

{
�Xi−1

}
, accept candidate Xi = Y. Else,

reject candidate Xi = Xi−1. Set 8 = 8 + 1;
6 Do the steps 2 to 5 while 8 < 8B .

From the Algorithm 2, X ∈ R8B×= is the matrix that
contains the 8B sets of = parameters accepted by the algorithm
to compose the posterior distributions. The operator L {)}
evaluates the likelihood function of Eq. 35 for the set ) ,
originated from the interpolation of the vectorY, which each
element belongs to the range [0,1], between the boundaries
of the domain K. Each sample Y is a candidate to compose
the set X, and is generated from a normal distribution with
standard deviation fB adjusted to obtain ∼ 50 % acceptance
rate of candidates. Finally, 8Bmust be chosen to ensure that the
model reaches the convergence, evaluated by the function:

2>=E(8) =

√√√
1
8

8∑
;=1

H∗ (8, :)22 (37)

which takes into account the mean of the squared euclidean
norm of all the 8 lines of the matrix H∗ ∈ R8×#l , that
stores the vector H (�: ) to each accepted candidate �:

(: = 1, . . . ,8), and which the dimension is increased at each
iteration 8 up to 8B .

It is important to note that there are other alternative
methodologies to reach a stochastic model. A pretty common
way is to perform repeatedly deterministic identification pro-
cedures to a dataset and evaluate the parameters identified
to each one. The main drawback of this approach is that you
will need a different realization to each set of parameters
identified, increasing the amount of data required. Further,
as the procedure will be repeated several times, the identi-
fication should be as simple as possible to do not increase
the computational cost too much. An example of this kind of
methodology was carried out as a preliminary investigation
on the linear parameters of this work and can be seen at the
beginning of Section 4.2.2. It was feasible because it was
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performed only through classical modal analysis on white
noise inputs.

4 Experimental Application

4.1 Experimental setup

The BERT benchmark is based on some experimental setups
with bolted joints present in the literature [31,1,16,2,32]
to experimentally illustrate the hysteretic behavior in bolted
joints dynamics. This benchmark is proposed to test identi-
fication frameworks, and due to this reason, it was used in
this work to exemplify the application of the methodology
described in Section 3. The beam is composed of two alu-
minum beams whose dimensions are 270 mm x 25.4 mm x
6.35 mm, and are connected by a double-bolted joint with
a contact area of 40 mm x 25.4 mm and 5 Nm tightening
torque applied to M5 metric hex bolts. The relative motion
of micro-slip between the two surfaces in contact induces
a global hysteresis behavior that the Bouc-Wen model can
fit. Figure 3 shows the complete experimental setup of the
BERT beam.

Figure 3(b) details the structure and the instrumentation
employed: to measure the output acceleration of the system,
four accelerometers span the length of the beams; to measure
the velocity at the free end of the beam, a laser vibrometer
Polytec OFV-525/5000S is used. As this work focuses on the
first bending mode, a reduced-order model is constructed,
taking only the laser signal into account once it provides
better observability of this mode that has more pronounced
displacements at the free end of the beam. Besides that, the
first resonance range was at relatively low input frequencies
(around 5 and 30 Hz), and the laser was capable of mea-
suring low-frequency signals with higher quality than the
accelerometers. The tests performed on the test bench for
this work include white noise, swept-sine, and stepped-sine
excitations, and the application of each one will be presented
along with the development of the results in Section 4.2.
A Modal Shop 2400E electrodynamic shaker provided all
the input signals with an integrated power amplifier cou-
pled by a nylon stinger at 85 mm from the clamped end
to minimize shaker/structure interactions. A LMS SCADAS
acquisition board acquires the signalsd, and as input signal
was considered, the voltage supplied by the shaker ampli-
fier converted in [N/kg] by a conversion constant previously
identified A = 49.507 [NV−1/kg].

Figure 4 depicts preliminary tests that justify using an
equivalent hysteresis model to represent the BERT system
and detect the nonlinear forces acting on the first vibrating
mode as the excitation force increases. Figure 4(a) illustrates
the frequency response curves of the BERT benchmark es-
timated from swept-sine tests with frequency linearly in-
creased from 0 up to 40 Hz along 8 seconds considering

different low input levels (0.05 V), medium (0.15 V) and
high (0.25 V) amplitude and a sampling rate of 1024 Hz.
These results indicate that the peak amplitude decreases as
the excitation level increases, i.e., the structure does not hold
the superposition principle, which is the main feature of a
linear system. Moreover, Fig. 4(b) shows the BERT’s re-
sponse to the stepped-sine test performed in a frequency
range from 13 up to 23 Hz with an incremental step 0.10
Hz and a sampling rate of 1600 Hz. For this test, only the
low andmedium amplitudes were considered to ensure struc-
tural health. It concentrates more energy at fixed frequencies
(mainly at resonance range), generating mono-harmonic in-
puts that induce large displacements. Note the decreasing of
resonance frequencies as the excitation increases, e. g., from
18.5 Hz to 18.3 Hz for the amplitudes of 0.05 V and 0.10
V, respectively. These aspects characterize the occurrence
of the so-called softening behavior, which is a nonlinear ef-
fect that generates a loss on the structural stiffness in regimes
with more significant displacement (such as in the vicinity of
resonance for a high level of input) that shifts the resonance
frequency to the left.

Both nonlinearmechanisms of amplitude attenuation and
loss of stiffness depending on the excitation amplitude are
compatible with the presence of hysteresis behavior in struc-
tures assembled by bolted joints, which paves the way for the
proposition of the Bouc-Wen oscillator, which is a very ver-
satile hysteretic model, for modeling the BERT benchmark.
Therefore, its parameters can be calibrated by the proposed
optimization procedure in Section 2.

4.2 Identification results

4.2.1 Deterministic identification step

As previously stated in Section 3.2, the first step of the deter-
ministic identification consists in obtaining themodal param-
eters that best fit the experimental FFR of the first bending
mode, applying any classical modal analysis procedure [20].
A white noise test was carried out with a low amplitude level
supplied in the shaker amplifier (0.05 V) to achieve this. This
is a broadband excitation that, for low input amplitudes, gen-
erates responses close to the linear behavior. Figure 5 shows
the experimental FRF compared to the linear model identi-
fied, which has a resonance frequency of l= = 18.8 Hz and
damping ratio of Z = 0.4634 %.

To cover a large frequency band with a sinusoidal in-
put (for which the HBM is formulated), a stepped-sine test
D; ∈ D was performed to the nonlinear identification step.
The input was set to excite each frequency for 32 seconds to
ensure a steady-state response. The test conditions were the
same from Fig. 4. From the measured response, it was pos-
sible to estimate experimental Fourier coefficients 0exp1 (l8)
and 1exp1 (l8) for each frequency l8 increment. Then, these
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Measurement
Points

Laser 
Vibrometer

Bolted
Joint

Shaker

Top view of the bolted joint:

(a) General view. (b) Schematic representation.

Fig. 3 Setup of the BERT beam [34,22]. The results of this work are all based on the signal of the laser vibrometer at the measurement point 1.

(a) Swept-sine test. (b) Stepped-sine test.

Fig. 4 Indicatives of nonlinear behavior on frequency domain. ◦ is low input level 0.05 V; 4 medium 0.15 V and � high 0.25 V.

values were compared to the respective HBM amplitudes
01 (): ;l8) and 11 (): ;l8) in function of a sampled candi-
date ): to obtain the residues R2 ()) and R∫ ()) from Eq.
23 and 24. A swept-sine test was also carried out to evalu-
ate the transient behavior through the residue R) ()) from
Eq. 25. Finally, having the residues, the objective function
R()) from Eq. 21 is minimized by the CE method. Table 1
presents the lower and upper limits )min and )max, respec-
tively, of the feasible solutionsS. Theywere selected through
preliminary assumptions. For instance, the observation of a

Parameter )min )max
Ũ [Nkg−1 m−1] 200 800
X̃ [kg−1m−1] 200 1000
W̃ [kg−1m−1] 5 150

Table 1 Interval S of feasible solutions considered for the optimization
procedure.

softening behavior reveals the requirement of 0 < W̃ ≤ X̃

[34].
Hereupon, considering a heuristically chosen smoothing

parameter V = 0.3,#B = 20 samples, d = 0.1, yielding
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Fig. 5 Comparison of the receptance FRF between ◦ experimental and
− linear FRF.

#4 = d#B = 2 samples, it was possible to obtain the Bouc-
Wen parameters presented in Tab. 2 through the CE method
using as stopping criterion fB = 1 × 10−4.

To illustrate the validity of the updated parameters, Fig.
6 compares the hysteresis loops on the displacement × non-
linear restoring force plane predicted by the deterministic
Bouc-Wen model and the ones obtained from the experi-
mental data. Such verification was performed considering
the low (0.05 V), medium (0.10 V), and high (0.15 V) levels
of excitation amplitude.

Figure 6 indicates that the Bouc-Wen restoring force
identified is capable of predicting the nonlinear behavior ob-
served in the experimental bolted structure properly.Notwith-
standing, note that the energy dissipated by the hysteresis
during each oscillation cycle, which is proportional to the
loop’s internal area, increases according to the input level.
These results are consistent with the ones observed in Fig.
4(a), in which the peak amplitudes are presumably reduced
due to nonlinear damping. The predicted hysteresis loops fit
the experimental observations in terms of shape and scale,
which indicates that the model proposed has a good agree-
ment in assessing the energy dissipation by the hysteresis
effect.

4.2.2 Stochastic identification step

Based on the deterministic model, the stochastic identifi-
cation procedure is then carried out. Firstly, the modal pa-
rameters were identified through frequency response curves
estimated from 50 experimental runs considering a white
noise excitation at a low input level (0.05 V). From these
tests it was preliminary analyzed the coefficient of variation,

that is, a percentage that evaluates the dispersion of a random
variable in a dimensionless way and is defined as

�+ =
f

`
(38)

For the natural frequency, it was computed a coefficient of
variation �+l=

= 0.06% and for the damping ratio �+Z =
9.37%. Since the resonance frequency does not vary consid-
erably between the experimentally estimated samples, this
parameter is fixed at its mean value `l=

= 18.8 Hz dur-
ing the stochastic identification procedure. Due to the higher
computational cost and fewer experiments available, this pre-
liminary finding was not feasible for nonlinear parameters.
Thus, the vector of parameters considered in the stochastic
identification is: � = [Ũ, X̃, W̃, Z]T.

Defined the set� to be identified, another important step
that deserves attention is adjusting the MCMC/Metropolis-
Hastings algorithm. Based on the inferred information about
the deterministic model, and a priori distribution c(�) is
proposed. A natural consideration is to define the a priori
PDF as a uniform distribution centered on the determinis-
tic parameter set )∗. However, this first suggestion may not
be the most representative when considering the whole D
dataset and needs to be updated when appropriate. For ex-
ample, the posteriori distribution of some of the parameters
can tend to concentrate its values near the upper or lower
limits of the proposed Uniform distribution, indicating that
it may be appropriate to update the Uniform distribution to a
new mean value. Thus, after adjusting the Uniform distribu-
tion, Tab. 3 presents its maximum and minimum values by
considering a Δ = 30 % for each side of a central value.

As an estimate of experimental variance fY2, the sum
of the main diagonal of the covariance matrix evaluated to
D was considered, resulting on fY2 = 3.5842 × 10−8. It is
worth mentioning here that the data considered as experi-
mental was series of synthetic data generated from really
experimental stepped-sine signal from the test bench in Fig.
4. Thus, it was considered 10 realizations with medium exci-
tation level generated by simply adding directly on the exper-
imental stepped-sine curve a Gaussian noise with standard
deviation f� = 1.0% of the RMS value of the curve.

Lastly, using fB2 = 8.6 × 10−3 adjusted to ensure the
acceptance rate ≈ 50%, the convergence of the method were
evaluated. Figure 7 presents the convergence function calcu-
lated after each sampling.

Note that the convergence is reached around the 1200th
sample. A burn-in of 200 samples was assumed, then only
1000 samples were available to estimate the posterior PDFs
for the parameter set �, which are depicted in Fig 8. Some
statistical aspects about the PDFs can be readily noted: on
the one hand, for W, U and X unimodal PDFs were identified,
being much more concentrated around this unique mode for
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l= [Hz] Z [%] U [N kg−1m−1] X[kg−1m−1] W̃ [kg−1m−1]
18.8 0.4634 386.5841 768.6727 16.3125

Table 2 Bouc-Wen parameters of the model identified.

(a) Low amplitude (0.05 V). (b) Medium amplitude (0.15 V).

(c) High amplitude (0.20 V).

Fig. 6 Comparison of the hysteresis loops for a swept-sine input. model identified, and • experimental data.

Parameter Minimum Maximum
Ũ [Nkg−1/m] 306.8080 569.7864
X̃ [kg−1m−1] 390.4736 725.1653
W̃ [kg−1m−1] 13.1764 24.4704
Z [%] 0.2660 0.4940

Table 3 Limits of the uniform prior distribution.

the last two. On the other hand, Z resulted in a bimodal distri-
bution covering all the assumed prior range, indicating quite
a difficulty in identifying the linear damping ratio. Despite
this, the methodology was able to predict in which regions
there are more suitable parameters. .

Table 4 shows the mean and MAP values for each PDF
from Fig. 8, and also allows comparing them with the first
deterministic result )∗

Parameter MAP ` )∗

Ũ [Nkg−1/m] 446.6540 439.4293 386.5841
X̃ [kg−1m−1] 538.3623 555.4850 768.6727
W̃ [kg−1m−1] 19.1222 19.8844 16.3125
Z [%] 0.4462 0.3725 0.4634

Table 4 MAP and mean values obtained compared to the deterministic
result.

As suggested by the PDFs, Tab. 4 confirms that the final
parameters identified considering the entire dataset tended
to slightly distance from the deterministic value. However,
when considering distributions, we see that in the case of the
parameter Ũ, X̃, Z the value identified initially remains ac-
cepted within the distribution. In opposite, for X̃, the values
of the admitted parameters were lower, causing the deter-

https://orcid.org/0000-0002-2622-6134


Bayesian Model Identification Through Harmonic Balance Method For Hysteresis Prediction in Bolted Joints 13

Fig. 7 Convergence function evaluated for each sample.

ministic values to be out of the distribution. These results
indicate that when it is intended to adjust the model to rep-
resent a broader set of experiments and not just a specific
one, the parameters may differ slightly. As the Bouc-Wen
model admits more than one set of parameters to reproduce
the same physical system, one can conclude that the model
depends on specific combinations of them. Because of that,
different sets do not necessarily imply any model fault.

To evaluate the results, the following comparisons con-
sider the uncertainty propagation of the Bouc-Wen model
generated by series of 1000 Monte-Carlo simulations car-
ried out along the parameter distributions. They were done
for swept-sine inputs considering low, medium, and high am-
plitude with the same test conditions as the responses shown
previously in Fig. 4. For comparing the results it was used
10 swept-sine outputs for each excitation level, that were all
generated through additive Gaussian noise in experimental
signals adjusted to obtain a similar variability than previously
computed on Bayesian inference, evaluated by the variance
fY
2. The main idea was to ensure testing with statistically

similar data to learning. Further, it is essential to note that
swept-sine data was selected to illustrate the identifiedmodel
due to the high computational cost in performing Monte
Carlo simulations by integrating stepped-sine signals over a
long experimental time. From the responses obtained were
computed an average response and the limits of 0.995 and
0.005 quantiles, which compose the confidence band of 99
%. Figure 9 shows the comparison between the experimental
temporal response and that of themodel, with themean value
and confidence intervals with 99% of the amount responses.

It is noted in the temporal responses that the stochas-
tic model proved to be quite efficient to accommodate the
system’s response and possible variations, even in transient
conditions, once the swept-sine test is primarily a transient

input. It is essential to highlight that despite the stochastic
model identified through the stepped-sine test, it also fit-
ted the transient behavior of the swept-sine, illustrating the
method’s robustness. Also, it was possible to reasonably pre-
dict responses to low and high input levels; even the model
was only identified considering the medium one. Notwith-
standing, it was noticed the presence of relatively worse pre-
diction in the model’s output concerning the experimental
response just after the resonance region, which results in a
large dispersion in the confidence band. This also indicates
that it is a region more sensitive to variations in parameters
due to the larger envelope when compared to the other ar-
eas simulated by the same model and conditions. Figures 10
(b), (d) and (f) reflect the same pattern of uncertainty in the
model but regarding the frequency response curves, i.e., a
similar effect of more significant uncertainty and prediction
difficulty in the region around 20Hzwhen analyzing the FRF
for the same amplitudes. And finally, Figs. 10 (a), (c), and (e)
also illustrates the hysteresis loops for the stochastic model.
A notable feature in this stochastic model’s loops is that the
confidence bands tend to decrease near the plastic regime,
i.e., as the nonlinear restoring force goes asymptotically to aa
horizontal line opposite to what occurs on the sloping lines of
the elastic regime. As most of the uncertainties were inserted
in the nonlinear system’s parameters, this behavior illustrates
the increased influence of hysteresis in the response as the
system reaches more significant displacements, accentuat-
ing the nonlinearity. However, the model was able to predict
the experimental response for all the input levels with quite
an accuracy, in particular to the medium amplitude used to
identify it. Thus, it can be stated that the model is helpful in
predicting the energy dissipated by the hysteresis loop with
a reasonable confidence band, demonstrating the adequate
functioning of the methodology.

Although theBouc-Wenmodel equations considered here
to describe the BERT benchmark’s response are the same as
those considered by Teloli et al. [34], the set of experimental
realizations used for each work is different. However, a com-
parative analysis between both identification frameworks can
be drawn, as summarized on the Tab. 5.

Considering the deterministic procedure, there are no
considerable differences in the experimental tests needed
once both methodologies use white noise, transient swept-
sine, and sinusoidal signals in a frequency range; however,
while the method based on the higher-order FRFs estimated
through the Volterra series expansion considers the sequen-
tial quadratic programming as an optimization algorithm,
this work uses the CE-method. Regarding the stochastic
identification, the framework proposed by Teloli et al. [34]
identifies, firstly, the parameters Ũ and X̃ considering sine
inputs with excitation frequency around one-third of the res-
onance frequency (l=/3) to ensure a closed hysteresis loop,
in which there is no dependence of the parameter W̃. Depend-
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(a) U Distribution. (b) X Distribution.

(c) W Distribution. (d) Z Distribution.

Fig. 8 PDFs identified for the model parameters. ). represents the posterior distribution, and - - the prior distribution.

Volterra series Harmonic balance

Main identification feature Third-order
Volterra Kernel

Fundamental
harmonic
amplitude

Optimization algorithm
Sequential
quadratic

programming

Cross-entropy
method

Deterministic
identification

Required input
classes

Random, periodic
and transient inputs

Random, periodic
and transient inputs

Identification
steps

Linear: 1 step
Nonlinear: 2 steps

Linear: 1 step
Nonlinear: 1 step

Stochastic
identification

Required input
classes

Random, periodic
and transient inputs

Random and
periodic inputs

Identification
steps

Linear: 1 step
Nonlinear: 2 steps

Linear: 1 step
Nonlinear: 1 step

Table 5 Methodological comparison of the identification procedures
based on Volterra series and HBM.

ing on the mode of interest, this excitation condition may be
close to another vibrating mode, causing undesirable cou-
pling effects. In this sense, the advantage of the HBM-based
methodology lies in the possibility of isolating nonlinear
modes through stepped-sine tests around the resonance fre-
quency. Still, in stochastic identification, the HBM requires
fewer signal classes than the Volterra series formulation, rep-

resenting a smaller number of experimental tests. Also, the
theoretical basis of HBM has its formulation based basi-
cally on the Fourier series, which are much simpler than the
multidimensional Fourier transforms present on the Volterra
Series formulation. However, both have a known physical
meaning [26]. Nevertheless, it is important to highlight that
bothmethodologies are helpful and present promising results
to identify systems with a hysteresis.

5 Final Remarks

Thiswork presented a newmethodology to identify a stochas-
tic Bouc-Wen model capable of predicting the hysteretic be-
havior in bolted joint structures. The identification procedure
was applied in a BERT benchmark with two beams joined
by a bolted connection. Preliminary tests showed that there
was the presence of nonlinear behavior induced by frictional
effects in the contact surface between them.

The paper brought all the theoretical and practical for-
mulation of the procedure, including previous steps to adjust
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(a) Low amplitude (0.05 V). (b) Zoom in the resonance frequency.

(c) Medium amplitude (0.15 V). (d) Zoom in the resonance frequency.

(e) High amplitude (0.20 V). (f) Zoom in the resonance frequency.

Fig. 9 Comparison of the time responses for a swept-sine input. model identified, • experimental displacement, and � the confidence interval
with 99 % of the amount responses.
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(a) Receptance for low amplitude (0.05 V). (b) Hysteresis loop for low amplitude (0.05 V).

(c) Receptance for medium amplitude (0.15 V). (d) Hysteresis loop for medium amplitude (0.15 V).

(e) Receptance for high amplitude (0.20 V). (f) Hysteresis loop for high amplitude (0.20 V).

Fig. 10 Comparison of the receptance and hysteresis loops for a swept-sine input. model identified, • experimental data, and � the confidence
interval with 99 % of the amount responses.

a deterministic first guess for the identification algorithm.
A Bayesian inference so updated the stochastic model over
displacement amplitude of the fundamental harmonic com-
ponent obtained in the function of the Bouc-Wen parameters
through a piecewise HBM approach recently presented in

the literature [21]. The methodology was proved to be quite
efficient in represent the nonlinear behavior of the structure
statistically, showing how practical and robust the proper for-
mulation of a simple analytical tool such as HBM can be to
identification purposes, even when dealing with more com-
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plex nonlinearities than those commonly identified through
it in the literature, such as exemplified in the review made by
Busseta et al. [5].

Finally, it is also important to highlight that the proce-
dure is in line with current trends in the specific literature to
identify hysteretic systems, as the work presented by Teloli et
al. [34], over which this present work even has somemethod-
ological advantages. As theHBMapproach used is capable to
adequately predict the response in function of all the Bouc-
Wen parameters without any additional assumptions about
the nonlinear behavior presented by the hysteresis loop. It
can update all the nonlinear parameters in the same Bayesian
step, making the methodology more straightforward to im-
plement and requires a dataset with less variability from
different experimental tests.

The presence of methods on the literature that allow not
only analytically approximate hysteresis by series of smooth
functions but also propose its use as features to adjust hys-
teretic models to experimental data paves the way for future
works on how to overcome challenging issues in the sim-
ulation bolted connections of more complex structures that
nowadays need FE models with a large number of degrees of
freedom and high computational cost to represent the fric-
tional effects on them. Following the contributions presented
by this work, it would be possible to adjust a model such as
Bouc-Wen with statistical confidence to the transmissibil-
ity through the joint and even then use the HBM approach
to calculate the response from it, avoiding costly numerical
integrations.
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