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Abstract
Observing the loss of tightening torque using modal parameters is challenging due to the variability and nonlinear effects
in bolted joints. Thus, this paper proposes a combined application of two probabilistic machine learning methods. First,
a Gaussian mixture model (GMM) is learned using estimated natural frequencies, assuming the tightening torque in a
safe situation. This probabilistic model can assuredly detect the lack of torque using indirect vibration measures in other
unknown states by computing a damage index. A Gaussian process regression (GPR) is also learned considering a set
of torque and damage index pairs in several conditions. The GPR model interpolates a curve to supply an estimative of
the tightening torque for other conditions not used in this learning. An illustrative application is performed considering
the Orion beam, an academic-scale specimen composed of a lap-joint configuration that retains the friction surface in
contact patches. The structure is subjected to a random vibration with a controlled RMS level and several tightening
torque conditions to identify the modal parameters. The probabilistic model learning via the GMM and GPR can detect
adequately, with a low number of false diagnoses, the actual state of torque using an indirect measure of vibration, i.e.,
without the need for a torque sensor on each bolt.
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Introduction

One of the most utilized forms to connect structures
is by using bolted joints; besides ensuring safe and
stiffness to the structural systems, the presence of joints
offers the possibility of building complex systems with
modular geometry, which often facilitates the replacement
of damaged components by healthy counterparts. Thus, it
stands out that the use of joints in an industrial context is
gaining more attention, with applications ranging from aero
and wind turbines (Chou et al., 2018, Siewert et al., 2010)
to bolted-flange joints in oil and gas plants (Reza et al.,
2014). Notwithstanding the advantages behind such a design
strategy, locations containing bolted joints are susceptible to
structural damages (small cracks may propagate Qiu et al.
(2014)). In contrast, bolt loosening is commonly seen when
the structure is subject to external vibration sources (Doyle
et al., 2010, Li and Jing, 2017, Oregui et al., 2017). Due to
these reasons, many methods are proposed for monitoring the
health of bolted joints (Miao et al., 2020, Wang et al., 2013a),
and this work focuses on approaches for the detection of
torque conditions in bolts.

The literature suggests organizing these approaches into
two categories based on the instrumentation used (Nikravesh
and Goudarzi, 2017). The first one includes the direct
methods. Each bolt or a set of joints is monitored using
specific sensors, typically employing strain gauges or load
cells to estimate information about the stress state and then
compare it with the design requirements. The key idea is
to assess an empirical relationship of bolt loosening using

the stress-torque in each bolted joint. The most popular
algorithm is the torque wrench method (Motosh, 1976).
However, a significant fluctuation is expected using this
approach induced by numerous uncertainties (Nazarko and
Ziemianski, 2017). Thus, discrepancies affect the accuracy
of loosening detection, limiting its use in widespread
applications. Another limitation is that many structures with
bolted joints, such as pipes, are submerged or in complex
human access regions for regular inspection (Razi et al.,
2013). This category trend involves using an automated
computer-vision method combined with machine learning
algorithms to estimate the bolted joints’ tightening level (Cha
et al., 2016, Ramana et al., 2019).

The second category of approaches is using indirect
methods. Active sensing approaches using piezoelectric
sensors/actuators are attractive and regularly used for
detecting torque loosening in this class, mainly applying
electromechanical impedance (Park et al., 2001, Wang
et al., 2013b). Machine learning algorithms have been using
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electromechanical signatures to propose new extraction
features for computing damage index with classification, for
example, adopting a support vector machine method (Wang
et al., 2020). However, vibration-based data is still the most
prevalent approach (Milanese et al., 2008).

Razi et al. (2013) suggest using empirical mode
decomposition as a useful energy-based damage index
assuming tests performed in a pipeline’s bolted flange joint
with progressive torque loss. In this class of approach,
induced vibration can be collected using a piezoceramic
actuator (Wang and Song, 2019), impact modulations (Meyer
and Adams, 2019), or shakers with harmonic excitations
(Li and Jing, 2020). Features extracted from the spectrum
transmissibility are typically used to diagnose the level of
tightening torque (Li and Jing, 2020).

Modal parameters are standard features extracted from
these spectrum signatures due to consolidated identification
methods in commercial software. On the other hand, these
parameters are essential linear features. Consequently, the
sensitivity to robustly detect small changes in tightening
torque of lap-joints is still a challenge, once diverse nonlinear
mechanisms may appear due to interactions between
assembled components, as hysteretic damping induced by
friction, dynamic clearance, and other effects (Segalman,
2006); To the best of our knowledge, the best safe detection
of lack of tightening torque currently present in the literature
is in the order of approximately ten times less than a
torque condition considered healthy (Luo and Yu, 2017). An
effective way to treat the inherent nonlinearities seems to be
by applying a higher-order spectrum, as the Volterra series
(Villani et al., 2020).

Luo and Yu (2017) proposed a new method for damage
identification of structures with bolted joints based on a
residual error of the Auto-Regressive model in time series
analysis. In this particular work, the authors could only
observe torque changes when the undamaged condition’s
level reduced from 20 Nm to 2.5 Nm in the damaged one.
Although significant changes in torque values do not imply
equal proportions in the dynamics of jointed structures, at
this level, the assembled components are practical without
any connection and with great severity of variation. Another
critical point that lacks investigation is to define the degree
of damage severity due to loss of tightening without having
a direct torque measurement embedded at each bolted joint.
The proposal to have a simple and clear indicator to quantify
this value is of interest to the industry. Consequently, the
use of modal properties in bolted joints to characterize and
quantify damage and be used in stochastic SHM strategies is
still open in the literature.

In this sense, this paper’s main contribution lies in
proposing an integrated approach based on machine
learning techniques but with a physical interpretation on
the detection of tightening torque problems. From the
frequency spectrum of vibration signals, model features are
estimated to implement a Gaussian Mixture Model (GMM)
to classification and a Gaussian Process Regression (GPR)
to quantify torque values in a testbed of an Orion beam.

The benchmark proposed by Teloli et al. (2021) is an
academic-scale specimen that provides controlled tightening
torque conditions on the bolts that comprise the lap-joint.
Nevertheless, the structure exhibits dynamic behavior typical
to other bolted joint systems (Brake, 2018). At first, a new
damage index is computed using natural frequencies and
implementing a GMM to classify the bolted connection’s
state in a binary way. The advantage of the GMM is
the ability to detect populations with different probability
densities (Figueiredo et al., 2019). This approach is highly
used for SHM assuming environmental variability. We can
adapt it here to gather knowledge about torque fluctuation
taking disassembly and assembly processes, generating
considerable structural dynamics changes and, consequently,
modal features associated with damage conditions.

The second method utilized is a stochastic interpolation
obtained by GPR. The key idea is to learn the nonlinear
correlation between the tightening torque and changes in
the natural frequencies through the damage index previously
computed based on them, assuming the uncertainties to val-
idate these estimates’ utilization. Although this correlation
is empirical, as are several well-known phenomenological
models in the literature (Mathis et al., 2020, Visintin, 2013),
it is plausible to associate it with a reduced-order model that
emulates the bolted joint’s behavior. This is executed here
to prove the GPR-based model’s validity. Thus, we examine
an equivalent reduced-order model of our experimental setup
around the vibration mode that stresses the lap-joint the most
to project the nonlinear restoring forces on a physical basis.
Analyzing the restoring force × displacement plane, it is
worth noting that when there exists a decrease in the torque
values applied to the contact patches of the Orion beam,
the hysteresis loop becomes prominent and indicates the
existence of a nonlinear relationship between the tightening
torque and the natural frequencies. This effect is consistent
with recent findings in the literature (Fantetti et al., 2019)
since the tightening torque directly influences the normal
load applied on the joint area. A higher torque value reduces
the amount of slipping, resulting in a stiffer system.

Although reduced-order are usually capable of describing
hysteresis effects and their influence on modal parameters,
obtaining these models is difficult to achieve quickly,
seeking to implement a practical SHM method. Thus, the
proposal of a probabilistic methodology for tightening torque
detection through simple features extracted from the modal
parameters is justified. In addition to the introduction,
this paper is organized as follows. In the first section,
we present the problem statement, which addresses this
work’s main assumptions. Afterward, the methodology
for detecting and quantifying the tightening torque is
covered in the GMM and GPR sections, respectively. The
Results and Discussion section starts with a description
of the Orion beam used to demonstrate the method.
Modal parameters are extracted directly from the frequency
responses curves considering different torque levels. To
validate the algorithm’s effectiveness in detecting and
estimating tightening torques under conditions involving
variability in experimental realizations, frequency responses
are measured considering three sets of complete assembly
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and disassembly of the Orion beam. Finally, the concluding
remarks summarize that applying the GMM helps detect
early torque loss compared to the detection obtained with
other methods. Moreover, the GPR enables us to learn the
change score of the GMM. The proposed algorithm paves the
way for its plausible application to different configurations of
bolted structures.

Problem Statement and Methodology
Framework

Some main questions are addressed to understand the
problem correctly behind the experimental application under
analysis:

• Problem tackled:

– The Orion beam is used for proof-of-concept of
the integrated approach proposed in this work.
The academic test structure is representative of
vibration effects common to systems assembled
by bolted joints. The damage imposed on the
structure aims to emulate a gradual loss of
torque.

– The system response exhibits random variations
and a high degree of unrepeatability between
measurements after complete assembly and
disassembly of the lap-joint.

– Nonlinearities may appear in the system’s
dynamic behavior for torque values referring to
damage conditions.

– The proposed approach needs to differentiate
the influences from uncertainties, nonlinear
behavior, and torque loss.

The key steps of the methodology used for tightening
torque detection in bolted joints, which is based on using the
GMM for damage detection and the GPR for quantification
of the torque level, are described as follow:

• A set of vibration data in a healthy situation, i.e., a
safe tightening torque, is known for different beam
assemblies. Some features can be extracted from this
data set. Here some sensitive natural frequencies are
used as features to compute the damage index. Any
traditional output-only modal analysis procedure can
be applied to perform it.

• Using the learning data set in healthy condition, the
GMM procedure is used to organize the probability
distributions of the healthy state clusters and define a
threshold value.

• Structural condition detection, i.e., determining
whether the structure is damaged or not, is performed
assuming different blind tests with unknown torques
conditions (unknown health state). Damage indexes
are then estimated.

• The relation between the damage index computed with
the modal feature and the tightening torque level seems

to be nonlinear. Torque changes may cause variation
in the energy dissipation when the tightening force
applied to the bolts is reduced. This nonlinear relation
is learned using a GPR with half of the damage index’s
available data set versus the tightening torque.

• The tightening torque quantification is performed by
using the GPR-based model, which enables us to
determine the mean and variance and infer our torque
uncertainty estimates using a simple damage index.
Blind tests are then considered to perform torque
estimation with the calibrated GPR model.

Gaussian Mixture Model for Damage
Detection

A Gaussian mixture model (GMM) is a practical machine
learning algorithm for clustering using outlier formation. The
components of a GMM are defined using a learning process
to estimate the main clusters in the undamaged condition.

One may examine a learning data matrix, Y ∈ Rn×d,
with d-dimensional feature vectors from n different
operational and environmental conditions when the structure
is undamaged and a testing data matrix, Z ∈ Rl×d, where
l is the number of feature vectors from the undamaged
or damaged conditions. Here the operational situation is
the torque in the bolted joint assumed in the safe case
(undamaged). Figure 1 shows the typical steps to implement
a GMM for damage detection. First, learning using features
is computed to define the central clusters by adjusting the
features from Y . Next, in the validation step, each new input
feature vector from Z is transformed in a damage index DI,
where it is feasible to observe a computed score to give the
current state of a sample.
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Figure 1. Algorithm for damage detection via Gaussian Mixture
Model

A finite mixture model, p (y|Θ), is the weighted sum
of K > 1 components, p (y|θk), in Rd (McLachlan and
Rathnayake, 2014)
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p (y|Θ) =

K∑
k=1

αkp (y|θk) , (1)

where y is the d-dimensional data vector and αk corresponds
to the weight of each component. These weights are

constrained as αk > 0 with
K∑

k=1

αk = 1.

Each component p (y|θk), is described by a Gaussian
distribution

p (y|θk) =
exp

[
− 1

2 (y − µk)
T

Σ−1k (y − µk)
]

(2π)
d/2
√

det (Σk)
, (2)

where each element denoted by the parameters,
θk = {µk,Σk}, composed of the mean vector,
µk, and the kernel matrix, Σk. The parameters
Θ = {α1, α2, . . . , αK ,θ1,θ2, . . . ,θK} control entirely
a GMM.

The expectation-maximization (EM) algorithm is the most
used way to determine the parameters of the GMMs (Ganjavi
et al., 2017). This strategy applies a maximization step

until the log-likelihood, log p (Y|Θ) = log

m∏
i=1

p (yi|Θ),

converges to a local optimum (McLachlan and Rathnayake,
2014). The Bayesian information criterion (BIC) can also
be applied to define the appropriate number of structural
elements for the fittest model of a GMM.

For each principal component k, a damage index is
computed using each observation z in the test matrix Z:

DIk(z) = (z− µk)Σ−1k (z− µk)
T
. (3)

For each component, k, from the healthy situation, if a new
observation, z, is computed from the same element, DIk
will be Chi-square distributed with d degrees of freedom, χ2

d.
For each observation, the DI is given by the smallest DIk
estimated for each component

DI(z) = min [DI1(z), . . . ,DIK(z)] . (4)

Then, from a threshold established using the learning
data, one can compare the data point to determine the
structural state, in our case, the bolted joint’s safety. The
practical implementation can be performed using ready-
made packages available, as Python (scikit-learn*).

Gaussian Process Regression for
Tightening Torque Quantification

A Gaussian Process Regression (GPR) is a proper procedure
for torque quantification to compute a learning model
capable of associating the change in features with the
tightening torque variation using a calibration procedure. It
should be emphasized that these features can be damage
indexes or a data set of modal parameters estimated for
the learning and validation phases. However, since this
work proposes an algorithm that integrates the detection and
quantification methodologies, we chose to train the GPR
based on the damage index.

The key idea is to estimate parameters for controlling
a GPR model to infer the regression’s variance and mean
within a Bayesian paradigm, assuming that only limited
information is available. The confidence interval tells us
how much we can expect the model to detect changes in
tightening torque or how risky it is to use it for this purpose.
Figure 2 depicts the proposed algorithm to estimate the GPR-
based model to quantify the torque state.

Modal Features

GPR 
Quantification

Validation

GP Model

Tightening Torque

+

Modal Features

Learning

Estimated
Torque

Figure 2. Algorithm for quantification of the tightening torque
through the GP-based model.

The tightening torque T (i) ∈ R can be described as an
output of a nonlinear regression (Rasmussen and Williams,
2006):

T (i) = f(F (i)) + ε
(i)
S , i = 1, 2, . . . , N samples (5)

where f(·) is a nonlinear function, F (i) ∈ R is an input
vector, in our case the damage index assumed known in the
learning data, and ε(i)S is a stochastic variable representing
inherent randomness in the observations, which assumes a
Gaussian distribution with zero mean:

∗https://scikit-learn.org/
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ε
(i)
S ∼ N

(
ε
(i)
S |0, σ

2
S

)
, (6)

where σ2
S is the variance of the Gaussian noise observations.

For N tests, the learning data set assumes the following
simplified notation:

D =
(
T (i),F (i)

)N
i=1
≡ (T ,X ) , (7)

where T ∈ RN×1 is the output vector (torques) and X ∈
RN×1 is the input one (damage index).

Once the regression equation (5) represents a Gaussian
Process, the function f(·) is then formed by the assumption
of a multivariate Gaussian prior distribution of zero mean
(Rasmussen and Williams, 2006):

f = f(X ) ∼ N (f |0,K) , (8)

where K ∈ RN×N is the covariance (kernel) matrix with
Kij = k(xi,xj), and k(·, ·) is the kernel function, also
named as covariance function (Paixão et al., 2021, Teloli
et al., 2021b). The kernel function can assume several classes
depending on the type of application. This function represent
a degree of the agreement between two sample observations.
In this work, considering the available data, the best results
were achieved considering a squared exponential kernel as
covariance function:

k(xi,xj) = σ2 exp

[
−1

2

(
xi − xj

`

)2
]
, (9)

where σ2 is the hyperparameter that controls the model’s
covariance and ` is the lengthscale. The hyperparameters
β =

[
σ2, `

]
are determined by solving an optimization

problem of the marginal log-likelihood of the observed data
(Mattos et al., 2016):

log p(T |X ,β) = −1

2
log |K+ σ2

SI|+

− 1

2
T T(K+ σ2

SI)−1T −
N

2
log(2π),

(10)

where I ∈ RN×N is the identity matrix. In this work, such a
maximization procedure is performed using an evolutionary
optimization method, and the optimum model is used to
predict new outputs as a result of new inputs.

The Bayesian inference is used to condition a posterior
predictive distribution p(f∗|T ,X ,x∗) over the predicted
function f∗ based on the new input samples x∗, which yields
the main relationship for the GP regression (Rasmussen and
Williams, 2006):

p(f∗|x∗,X ,T ) = N
(
f∗|µ∗, σ2

∗
)
, (11)

where the posterior predictive mean is given by:

µ∗ = k∗N
(
K+ σ2

SI
)−1 T , (12)

and the posterior predictive variance is given by:

σ2
∗ = k∗∗ − k∗N

(
K+ σ2

SI
)−1

kN∗, (13)

where

k∗N = [k(x∗,x1), · · · , k(x∗,xN )],

kN∗ = k
T
N∗,

k∗∗ = k(x∗,x∗).

A predictive distribution of T is similar to f∗. The
numerical implementation can be made using ready-made
packages as available, for instance, in Matlab (UQLab†, see
Lataniotis et al. (2018)) or Python.

Results and Discussion

Description of the experimental setup

Figure 3 presents the experimental setup. The lap-joint
structure, so-called “Orion beam” (Teloli et al., 2021),
consists of two assembly duraluminium beams with
dimensions of 200× 30× 2 [mm] each one and connected
by three M4 bolts spaced along a length of 30 mm, as
depicted in Fig. 3. The beam is in a cantilever configuration
under base excitation. To minimize uncertainties related to
the stiffness in the cantilever beam’s clamped boundary
condition and avoid exciting torsional modes, a 40 mm
length of the beam with the contact patches is screwed to
a solid aluminum block, which is the base of the structure
(see Fig. 3(c)).

The base motion is driven by a permanent magnetic shaker
TIRA (TV Model 50303− 120), which excites the structure
considering a white-noise Gaussian input at an amplitude
level of 4 m/s2 RMS as the base acceleration. A Polytec
vibrometer OFV-5000 is used to measure the velocity at the
Orion beam’s free end. In contrast, the acceleration at the
base is monitored by a triaxial accelerometer PCB (Model
356A4). Base acceleration and velocity measurements are
used to estimate the transmissibility spectrum. The setup
also includes a National Instruments acquisition system
composed of a CompactDAQ Chassis (NI cDAQ - 9134), C-
Series Sound, and Vibration Input Module (NI-9263), and
C-Series Voltage Output Module (NI-9234).

Concerning the bolted joint, there are contact patches
at each bolt connection to retain the contact between both
beams in a small area. These patches consist of a square

†https://www.uqlab.com/
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of 12× 12 mm2 with an extra thickness of 1 mm. After
each experimental run, each bolt’s torque value was checked
by a Lindstrom MA500-1 torque wrench. Additionally,
to avoid undesired uncertainties in the measured data
set, the following assembly protocol was adopted for all
experimental realizations:

1. To guarantee the alignment between both beams, two-
axis are inserted in the external holes.

2. The central bolt is fully tightened.
3. Both axes are removed and the external bolts are thus

tightened.

The damage imposed on the structure aims to emulate
the gradual loss of torque. Preliminary tests indicate that
variations in the preload values applied to the central bolt
considerably alter the assembly’s structural stiffness. Thus,
to avoid abrupt changes in the system dynamics and ensure
that the features’ variation is gradual, the central bolt is
maintained fully tightened with a torque of 80 cNm at all
experimental measurements. On the other hand, 16 different
levels of torque are considered ranging from 80 cNm to 5
cNm with decrement of 5 cNm. The torque range between
80 cNm to 60 cNm is assumed to be a safe/healthy condition,
whereas from 55 cNm to 5 cNm, are taken as damaged
conditions by loss of connecting properties.

One of the advantages of assembled structures over mono-
lithic structures is that they can be assembled and disas-
sembled according to operational needs. Unfortunately, these
structures have high measurement-to-measurement variabil-
ity (low repeatability between tests). This characteristic is
because structural stiffness and damping properties are sen-
sitive to changes in the contact area, influenced by several
aspects, including contact pressure, residual stresses, rough-
ness, surface alignment, dynamic clearance, friction, wear,
and third body (see Brake et al. (2019), Jalali et al. (2019), for
instance). Thus, to verify how robust our detection methodol-
ogy is to the presence of variability in the lap-joint dynamics,
experimental campaigns are performed on four sets of 15
measurements after complete assembly and disassembly of
the Orion beam, repeated on different days to obtain a total
of 60 realizations for each torque level.

Modal analysis

Figure 4(a) presents the transmissibility spectrum between
the velocity measured at the free end of the beam (output)
and the base acceleration (input) for some tightening torque
conditions and different assemblies of the same beam. It can
be seen that the bending modes of the beam are uncoupled
and with reduced contribution from the torsional ones.

Figure 4(b) illustrates the modes predicted experimentally
considering 195 sensing points on the Orion beam’s surface.
Note that lower modes have only a slight sensitivity to
both changes in torque values and different assembly and
disassembly realizations of the structure, as shown in Fig.

4(a) around 10 and 400 Hz. In contrast, the higher bending
modes (approximately 700 and 1900 Hz) stress the lap-joint
area more distinctly, ensuring greater observability of the
effects of variations in resonance peaks.

Although it is known that bolted structures have inherent
nonlinear behavior due to hysteresis effects induced by
local frictional interactions at the joint, which indicates that
a nonlinear identification might be more suitable on this
class of issue (Teloli et al., 2021a), this paper adopts a
more straightforward, but still traditional approach based on
a classical modal analysis algorithm to extract the modal
parameters; the so-called Complex Exponential Method
(Maia and Silva, 2001). The key idea is to show that after
a learning procedure involving combined linear parameters
in different torque conditions, it is possible to associate them
with the loosening in the bolted connection through a damage
index.

Damping ratios are directly related to the quantification of
nonlinear dissipation in friction-damped systems, including
lap-joints (Festjens et al., 2013, Zare and Allen, 2021). It
is expected that lower preload values, where the structure is
less stiff, will maximize damping due to micro-slip motion.
However, the damping ratios’ estimation is more sensitive
to noise than the natural frequencies (Cao et al., 2017), and
for this reason, this paper considers only these frequencies as
damage features.

To illustrate the sensibility of the natural frequencies to
damage, Fig. 5 presents the boxplot of them for the first six
bending modes for only one assembly. Note that in the 5th
(Fig. 5(e)) and 6th (Fig. 5(f)) the resonance frequencies show
a clear trend of decreasing values when the torque value is
reduced. This trend in behavior is not seen in modes 1st,
2nd and 3rd (Figs. 5(a)-(c)). The 4th vibrating mode is also
a feature candidate, with a trend comparable to modes 5th
and 6th. However, preliminary tests indicated that including
it in the feature space for learning would not significantly
improve the algorithm’s performance. Thus, the analysis
follows with emphasis on modes 5th and 6th.

Figure 6 shows the natural frequencies of the 5th and
6th bending modes, including observations of the 960 tests
performed for the 16 torque levels with 60 measurements
for each of them and equally divided into four different
assemblies. Each torque condition presents various tests that
include variability in the feature maps (healthy and damaged
conditions). The tightening torque is assumed the same in
each realization by measurements with a torque wrench.

Challenges for damage detection in bolted
joints by using modal parameters

Figure 7 illustrates potential pitfalls in classifying torque
states for different assemblies by just individually interrogat-
ing natural frequencies as damage indexes since the mean
and variance values in each condition are overlapping for
most torque values (when assumed as a known label to
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Figure 3. Experimental setup - The Orion beam (Teloli et al., 2021).

compare situations). Generally speaking, it is difficult to
distinguish whether the changes are produced by damage,
i.e., torque loosening or variability caused by fluctuating
operational or environmental influences.

However, important information is hidden in the vibration
data to explain what happens when the tightening torque
decreases. The frictional contact produced between surfaces
of bolted joints varies the damping properties. It results
in the appearance of hysteresis loops, which can be seen
through the plot of the restoring force from Fig. 8. The linear
stiffness is driving the restoring force behavior at healthy
torque conditions (80 and 60 cNm). Still, under damaged
conditions, the hysteresis loop becomes more pronounced as
the torque values decrease, as illustrated in Fig. 8. Here, the
restoring forces, which represent the whole nonlinear force
that actuates on the 6th vibrating mode (the bending modes
are uncoupled and allow such approach), are identified by
approximating an equivalent reduced-order model based on
the force-state mapping (Jalali et al., 2007, Noel et al., 2012).

The dissipated energy caused by the hysteresis effect (such
as the damping ratio) should also be a great feature as
damage index; unfortunately, this parameter is difficult to
estimate and identify as it generally requires an a priori
updated reduced-order model. In this sense, it is preferable
and straightforward to use a simple modal parameter, such
as the natural frequency, as a feature.

The hysteresis’ adequate slope slightly changes for low
torque values, which indicates that the joint friction causes
global stiffness nonlinearity. This effect occurs in jointed
structures due to partial slippage on the joint interface, which
reduces the contact stiffness according to the bolt preload
applied (Brake et al., 2019, Jalali et al., 2019, Segalman,
2006). As a consequence, the natural frequency of the system
is also sensitive to these variations in torque. Thus, the
particular idea is to consider the natural frequencies that
correspond to the 5th and 6th vibration modes to compute
an index to classify the healthy or damaged states. Having
covered the main challenges related to the torque detection in
structures assembled by bolted joints, the following sections
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Figure 4. (a) Transmissibility plot with emphasis on the structural conditions. Dashed lines −− indicate the frequency ranges in
which the bending modes are. Different lines of the same color indicates different assemblies; (b) exemplifies the experimentally
measured modes.

aim to illustrate the methodology proposed by this work
applied to experimental measurements.

Detecting torque loss by GMM

Classical classifiers that allocate the undamaged conditions
into a single cluster, i.e., an overfitted probabilistic
distribution, are unfeasible for classifying states from
features of several torque conditions considering the
assembly and disassembly procedure. In such types of
classifiers, the DIs are calculated, for instance, by using
the Mahalanobis Square Distance (MSD) between the
learning data obtained from the features to a baseline

condition in a healthy state and the validation data under
supposedly unknown torque conditions. However, since the
characteristics of different assemblies may be distant from
each other in their mapping (see the dispersion of the
healthy state in Fig. 5), it is not feasible to classify test
samples within a cluster that has a higher concentration of
observations far from the mean of its distribution as healthy
without any baseline data indicating healthy condition
near to this unrepresentative mean, as could occur when
considering an algorithm based on a single distribution for
all the undamaged data, i.e.,K = 1 cluster. In this case, there
is the possibility of overlap between the reference state and a
damaged one (see Fig. 5), indicating as healthy conditions
those situations where damage exists (in particular to this
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Boxplot of the resonance frequencies referring to the 1st (a), 2nd (b), 3rd (c), 4th (d), 5th (e) and 6th (f) bending modes
on different tightening torques in each labeled structural condition.
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Figure 6. Experimental identification, changing the tightening torque with 180 observations (36 in each structural conditions
equally distributed in three different assemblies) to show the variability of the natural frequencies

Figure 7. Boxplot of the resonance frequencies on different tightening torques using three realizations in each labeled structural
condition and different set of assemblies indicated by markers:4, × and 3.

work, most tests between 55 and 45 cNm would be
incorrectly classified as healthy), presenting high values of
type II errors. For this reason, GMM is used in this work
to form K > 1 cluster components referring to the baseline
conditions (undamaged states).

For the GMM learning, half of the data set referring to safe
torque conditions (from 80 to 60 cNm) is randomly selected
within the sample space of features for each assembly.
The remaining healthy data are used to validate false-
positive errors and observe the clustering performance of the

GMM-based algorithm. Table 1 summarizes how the feature
samples are used in this work.

For the GMM learning procedure, a number of K = 9
components are used to represent the data in the healthy state.
This number is chosen based on the Bayesian information
criterion (BIC). The clearest way to understand how the
GMM algorithm deals with the data set to classify the
structural states as healthy or not is by visualizing the
learned model and dispersing the features’ clusters. Figure
9 illustrates the multivariate probability density functions
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Figure 8. Restoring forces that actuate on the 6th bending mode projected on physical basis; hysteresis loop opening when the
tightening torque reduces, modifying the natural frequencies in a nonlinear way.

Table 1. Parameters for learning and validation.

Data Set Condition Number of Samples Range of torque (cNm)

learning Healthy 150 80, 75, 70, 65, 60

Validation Healthy 150 80, 75, 70, 65, 60

Validation Damaged 660 55, 50, 45, 40, 35, 30, 25, 20, 15, 10, 5

(PDF) learned by the GMM. The clusters also demonstrate
the possible effectiveness of the model in detecting outliers
for damage classification. This can be seen because all test
data in healthy conditions are concentrated at the learned
PDFs, and those in damaged conditions are far away. The
MSD is responsible for computing the damage indexes
based on the nearest healthy cluster’s outlier formation.
Note that some limitations to early detection may appear
when a large number of assemblies to the GMM model is
considered. Although the GMM prevents most false-positive
occurrences by introducing multiple healthy clusters, it is
still possible for a healthy cluster from an assembly to
overlap a damaged condition from another one. In this case,
the error in condition detection is difficult to avoid, as there
would be no distinction between samples in feature space.
However, this would generally occur for some cases of early
detection (in this work, for 55 cNm and 50 cNm torque
values).

Figure 10 shows the classification results where the
type I errors (false-positive) are ≈ 3.6% and the type II
errors (false-negative) are ≈ 0% for all validation data,
proving that the identified GMM can detect the changes
caused by fluctuations in tightening torque values with good
performance, and is suitable for use even in situations where
different assembly sets are considered. To establish the
threshold value, the Chi-square test was applied.

The results’ analysis indicates that it was possible to
recognize a reduction in the torque values from the 80 -
60 cNm conditions to 55 - 5 cNm based on the proposed
DI. Compared to methods in the literature using modal
parameters, just a considerable loss of tightening torque is
detected with statistical confidence, as performed by Luo and
Yu (2017), where only changes for tightening were observed
from 20 Nm in the undamaged condition to 2.5 Nm in the
damaged one. Furthermore, it is also important to stress that
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Figure 9. Learned GMM and features clustering.

Figure 10. DI computed by GMM using frequencies of the 5th and 6th modes. Type I Error are ≈ 2.8% and Type II Error are
≈ 0%.

the structure tested by these authors consisted of a single
bolted joint, which is a setup quite sensitive to variations in
the applied preload.

The following considerations and benefits in using the
GMM are outlined:

• The advantage of applying GMM is to make several
distributions of different assembly configurations to
learn how the modal parameters change when the
torque is changed, making it easier to detect outliers.
However, attention must be paid. In practical terms,
with each new structure assembly, new clusters
associated with the healthy condition must be
produced. This fact is not a direct limitation of the
method, since the assembly protocol is expected to

guarantee torque values consistent with the healthy
condition;

• Another advantage is that the amount of samples used
for learning is not exhaustive to measure;

• For this application where it is only intended to detect
whether or not torque loss exists and not to locate the
position of the damage, a single measurement point is
satisfactory for extracting features based on the modal
parameters;

• The approach is not limited to using only vibration sig-
nals and modal parameters; other time-series features
could be used to extract additional damage-sensitive
indicators to calculate the score for classification - for
instance, the use of output-only methods is adequately
acceptable to apply. Nonetheless, caution should be
taken since some features extracted in output-only
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methods capture global vibration effects, which may
compromise the damage position’s detection.

Tightening torque estimation via GPR

A natural and subsequent step to detecting the loss of
tightening torque is to estimate this value without the need
for a direct measurement using, for instance, a torque wrench
or structural inspection in locus. Since natural frequency-
based DI can track torque variations, this score is used to
calibrate the GPR learning for torque estimation.

The learning data (T , X ) used for learning the GPR-
based model and estimation of hyperparameters β consist of
half of the observed DI samples randomly selected within
a uniform distribution to form the learning input vector X ,
whereas the torque values corresponding to each DI are the
output vector T . The remaining DI samples are used for
validation of the GPR-based model.

Figure 11 depicts the GPR-based model’s predicted
torque with 95% of statistical confidence bands in direct
comparison with validation data. Note that the model has
large confidence bands for low torque values, even covering
negative torque values. The explanation for this refers to
the dispersion of the features observed to compute the DI.
Note in Fig. 5 that for the 5th resonance frequency, the
variability between the different assemblies increases as the
tightening torque decreases. This result is expected since
the uncertainties related to contact pressure distribution are
reduced when the preload increases. It is noteworthy that
there is a tendency for more pronounced reductions in the
natural frequency the lower the tightening torque. In this
context, the MSD increases similarly to low torque values,
making the points more distant from each other and thus
hampering the regression in this region. It also stands out that
the relationship between torque and DIs is not monotonic.
This is because there are more than one DI with the
same torque as well as more than one torque for the same
DI. Nonetheless, this GPR-based model can help the user
decide about tightening torque based on score changes and,
consequently, quantify possible damages.

Figure 12 presents the comparison of the actual versus
estimated torques. It is worth noting that the estimated mean
values are close to each torque condition’s actual ones,
especially for damaged conditions. There are some expected
limitations in accurately estimating the tightening torque in
healthy conditions, as all of them are considered to be on the
reference state when computing the MSD. Therefore the DI
tends to be≈ 0 in both. The zoom is shown in Fig. 11 reveals
that for all conditions between 80 and 60 cNm, a mean torque
of ≈ 70 cNm is predicted. Since both states are defined as
indistinguishable healthy states, one can conclude that there
is no loss in this particular imprecision.

Combining the GMM and GPR algorithms to first detect
whether there is damage to the structural connection and
subsequently, in an affirmative case, quantify the severity
of the damage with reasonable accuracy is a simple tool

with the potential to aid decision-making in maintenance
procedures involving bolted joints. This result is feasible for
industrial applications once a calibrated GPR-based model
is obtained after a supervised learning procedure. Based on
this, the most viable alternative is to consider the mean or
even the upper and/or lower limits of confidence bands to
make a safer decision.

Conclusions

This paper proposes a procedure for detecting tightening
torque loss for structures assembled by bolted joints based
on probabilistic machine learning tools. The motivation of
this work arises from the need to interpret and differentiate
which variations in the structural dynamics of bolted joints
are related to changes in the preload applied to them (which
is considered damage in this work), from variations arising
from operational conditions and uncertainties inherent to
these systems that are not necessarily damaged, such as the
assembly and disassembly procedure.

It is argued that one of the advantages of this work
lies in using modal parameters as features to compute
damage indexes. The extraction of these parameters can be
done by any traditional modal analysis procedure and does
not require multi-point measurements to be observed by
the acquisition system. In particular to this work, natural
frequencies of two vibrating modes are chosen as features.
In bolted joints, the variation in these parameters’ values
may be related to changes in the system’s structural stiffness
caused by alterations in tightening torque. Data variation was
imposed on the experimental setup by considering vibration
measurements after complete assembly and disassembly of
the Orion beam.

Extracted features were used in the learning step of
the Gaussian mixture model. The advantage of applying
GMM is to make several distributions of different
assembly configurations to understand how the modal
parameters change when the torque is changed, which
aids in recognizing outliers. To this end, damage indexes
were computed by the Mahalanobis square distance.
Consequently, with the GMM correctly identified to classify
states into damaged or undamaged conditions, there was a
low occurrence of type I errors (3.6%) and no type II errors.
This procedure is suitable for implementing an automated
alarm system for bolted joint application on flanges, pipes, or
offshore structures, using indirect vibration measurements,
i.e., without the need for sensors allocated to each bolt of the
connection.

A GPR-based model’s learning was carried out by using
the estimated damage indexes for several torque conditions.
In practical terms for the application addressed in this
paper, one first classifies whether the damage is present
(loss of tightening torque) and then estimates the actual
torque condition. Due to the sparse amount of torque states
for learning the GPR-based model, the healthy condition’s
assessed value will probably differ from the real torque
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Figure 11. Torque versus DI with a GPR model.

Figure 12. Estimated torque versus actual torque for all index (•) (gray) and the mean of estimated torque (×) (red) in each test
condition.

value. However, when damage exists, it is possible to
quantify its severity with reasonable accuracy. The results
presented in this paper are concerned with explaining the
probabilistic model learning via the GMM and GPR in the
academic test structure. The natural path to be followed
is to validate the methodology to detect tightening torque
variations in large structures (e.g., offshore structures). To
achieve this, additional experiments will be collected to test
asymmetric variations of torque applied on the external bolts
or even on the central bolt to ensure that the methodology
is robust in an even more uncertain scenario close to
industrial applications. In this context, this work paves the
way to validate other features extracted directly from time-
series or additional spectral information about the frequency
responses. Moreover, other future applications of industrial

interest could be the use of the GMM approach to monitor
more than one assembly of nominally identical structures
acting simultaneously with just one classifier trained for all
of them, which could simplify the damage detection for an
entire population of specimens.
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