Automating UML Models Merge for
Web Services Testing

Vincent Pretre

Fabrice Bouquet

Christophe Lang Frédéric Dadeau

Adrien de Kermadec
Laboratoire d’'Informatique de Franche-Comté
16 route de Gray
25030 Besancon CEDEX

firstname.lastname@lifc.univ-fcomte.fr

ABSTRACT

This paper presents a method for merging UML models
which takes place in a quality evaluation framework for Web
Services (WS). This framework, called iTac-QoS, is an ex-
tended UDDI server (a yellow pages system dedicated to
WS), using model based testing to assess quality. WS ven-
dors have to create UML model of their product and our
framework extracts tests from it. Depending on the results
of the test execution, a mark is given to WS. This mark per-
mits to customers to have an idea about the quality of WS
they find on our UDDI server.

Up today, our framework was limited to WS which did not
use other WS. This was justified by the fact that it is im-
possible for vendors to create a good model of a foreign
product. Our method for model merging solves this prob-
lem: each vendor produces models of its own product, and
we automatically merge the different models. The resulting
model from this merging represents the composition of the
different WS.

For each type of diagram present in the models (class,
instance or state-chart diagram), a method is proposed in
order to produce a unique model. In addition to this, a solu-
tion is proposed to merge all OCL code in the class modeling
the WS under test. Unfortunately, this process introduces
inconsistencies in the resulting model, that falsify the results
of the subsequent test generation phase. We thus propose
to detect such inconsistencies in order to distinguish incon-
sistent and unreachable test targets.

Keywords

Web services, UML, model based testing, consistency

1. EVALUATION OF WEB SERVICES

Since few years, Service Oriented Architecture takes an

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

iiIWAS2008 November 24-28, 2008, Linz, Austria.

Copyright 2008 ACM 978-1-60558-349-5/08/0011 ...$5.00.

important place in software development. Web Services
(WS) are used in many kinds of applications: web sites,
widgets or more classical software. This omnipresence leads
to a need of validation.

That need led us to create a quality evaluation framework
for WS. Until now, this framework was not able to test WS
working with other WS. This paper introduces a method for
model merging, which solves this lack.

The first section introduces context which led us to pro-
pose a model merging solution. First, we introduce WS
and our vision of their quality. Then, we present iTac-QoS,
our validation framework for WS. The merging method pro-
posed in this paper takes place in this framework. At last,
we present why model merging is a necessity for testing a
particular type of web services.

Second section is dedicated to related works. It is split in
three parts: UML modeling of WS, test of WS and model
merging. The third section introduces our method to auto-
matically merge UML models, applied on an example.
Then, the fourth section presents how to detect and solve
the inconsistency problems resulting from the model merg-
ing process.

At last, we conclude and introduce future work.

1.1 Web services quality

We define WS as the server part of a client-server applica-
tion in which exchanged messages are written in XML [25].
Generally, WS are built upon SOAP (Simple Object Access
Protocol [15]). This protocol defines structure of XML mes-
sages, and uses well known protocol such as http or smtp.
The first advantage of WS is their compliance with most
security policies, which generally authorize http and smtp
protocols. Moreover these protocols and XML bring the sec-
ond main advantage of WS: portability. Almost every pro-
gramming language has libraries handling XML and those
protocols. This makes it possible to easily create clients for
a web service in any programming language.

Writing a client for a WS can be easily done using a WSDL
(Web Service Description Language [8]) file. This file de-
scribes everything required to communicate with a WS: ad-
dress, provided operations, message format, exchange pro-
tocols ... A second technology related to WSDL is UDDI
(Universal Description Discovery and Integration [19]). A
UDDI server is a yellow pages system for WS. It permits
customers to easily find WS, and vendors to spread their

2 - Test model production

Web service

1 - Deployment

5 - Tests execution

3 - Registration

4.1 - Tasks on model
4.2 - Model merging
4.3 - Tests generation

Customer

A

6 - Search services

Vendor

> o UDDI server

7 - Services evaluation

Figure 1: From Web service deployment to quality assessment

products. We are currently working on an improvement of
UDDI, in which the server provides more than the informa-
tion given in the WSDL files, it also assesses the quality of
results produced by WS.

There exists many criteria to describe quality of a WS: ac-
cessibility, time needed to compute a result, privacy of data
and customer, quality of results ... We consider two criteria
to define quality of a WS. The first one is results correctness
(is the answer given fits with the expected one ?7) and the
second one is result completeness (if many answers can be
given, are they all provided 7).

There is many reasons that can lead to quality leak of a WS.
We can classify them in two categories: static or dynamic.
Classification is based on reproducibility of quality leak. Re-
producible problems are considered as static, the others as
dynamic.

For WS, the most obvious dynamic problem is network:
packets may be lost during transport, leading to a corrupted
message. As this kind of problem is not reproducible, it is
quite impossible to certify that a WS is free of them.
There exists few static reasons for quality leak. The first
one is, obviously, bugs introduced during the development
phase. The second one is software on which the WS relies:
web server, libraries, other applications, etc. Bugs may exist
in those software, and have an impact on WS quality. The
last reason is the interaction relations between WS opera-
tions.

There exists two kinds of relations between WS opera-
tions. The first kind of relation is composition. An infor-
mal definition of composition is “a WS operation acting as a
client of another operation”. There exists several composi-
tions. We consider three criteria to discriminate them: syn-
chronicity (a composition is synchronous when the com-
posing operation uses results of the composed operation),
dynamicity (a composition is dynamic when the composed
operation has been found through a UDDI server) and dis-
tributivity (a composition is distributed when the two in-
volved operations do not belong to the same WS). Due to
fault propagation, synchronous compositions have an impact
on quality. If an operation bases its results on wrong data,
it may be false.

The second kind of relation is the temporal dependency.
Its informal definition is “operation a temporally depends on
the operation b if it can be called only if b has been called

previously”. Generally, this dependency is due to shared
data, on the server side (operation b writes in a database,
operation a reads what has been written) or on the client
side (operation b produces a list of results, the client picks
up one and uses it as a parameter of a). As for composition,
temporal dependency can be responsible of fault propaga-
tion.

Thus, as we see in this part, there are numerous possible
quality leaks in WS. This is why we set up iTac-QoS, a
quality evaluation framework for WS.

1.2 iTac-QoS: usingteststo asses quality

iTac-QoS (iTac Tests And Certifies Quality of Services [20])

is a quality evaluation framework for WS. It relies on a UDDI
server, and provides quality information based on tests. Fig-
ure 1 shows the evaluation process, that we now describe.
First, the WS vendor deploys its product (1), and creates
a model for test (2). When he registers its product on our
framework (3), provides classical information (WSDL file,
description ...) and this model. Before test production,
the framework has to perform some tasks on the model (4.1)
such as interaction discovery, or string replacement. If dis-
tributed compositions have been discovered, models of the
different WS need to be merged (4.2). Then, tests are gen-
erated using Test Designer (TD) a commercial tool from the
Smartesting company®'. (4.3) and executed (5). Result of
these tests are used to compute a mark for each WS opera-
tion.
When a customer searches WS on the UDDI server (6), it
provides the list of corresponding WS and the mark they
obtained (7). This mark helps customers to have an idea of
the quality of WS found.

This paper focuses on step 4.2. In order to make our
method for model merging easier to understand, we will de-
tail two important steps of the assessment process: modeling
and test generation.

The modeling solution chosen was UML, because of its ex-
tensibility and reputation. WS vendors are more likely to
know UML than any other modeling language.

UML models required by our framework contain three types
of diagrams (class diagram, instance diagram and state-
chart diagram), completed by OCL code. Those models
have to be compliant for the test generation tool we con-

! www.smartesting.com

sider, Test Designer (TD), as described in [6].

The first type of diagram is class diagram. Class diagram
is mandatory for two different parts of the WS: interface
and data used. The interface part is composed of a class
representing the WS and a set of class describing exchanged
messages. This part of the class diagram is needed to pro-
duce suitable test scripts (in which messages content is set
before operation call). The second part of diagram class is
more classical, and represents data used by the WS (for ex-
ample, a model describing an online store WS will contain
classes “customer”, “commands”, “products” ...).

For each operation described in the class diagram, post-
conditions must be expressed using OCL. They describe how
the model changes when the operation has been called. We
do not use pre-condition (meaning that the pre-condition
is always true). Our model is built upon the defensive
paradigm: error cases have to be handled in post-conditions
and return error codes. We chose this solution in order to be
able to capture all the possible behaviors of the WS under
test.

The second diagram of our model is an instance diagram.
When the class diagram gives structure of data, instance
diagram gives value to them. This diagram has to present
real data, because our framework is fully automatic, and no-
body will translate abstract data into real data. All classes
declared in the model must have at least one instance in the
instance diagram. It is useless to represent all data used by
the WS in the instance diagram. The modeler has to choose
a subset of data and integrate them in the model. Data cho-
sen must be as representative as possible. For example, if
the modeled WS handles multiple level of users, the model
must contain at least one user of each level (such as admin,
member, guest, etc.).

The last kind of diagram is state-chart diagram. Its goal
is to model the life-cycle of the web service. This is not a
mandatory diagram, but it helps test generation by describ-
ing how WS has to be used. If such a diagram is made, it
must represent all possibilities of WS utilization.

Figure 2 synthesizes how a WS is decomposed in its model.

We then use Test Designer (TD) to generate tests. First,
it extracts every behavior described in the model. A be-
havior can be seen as a path in the control-flow graph of
an operation written in OCL (for example, an “if” statement
may create two behaviors: one when its condition is satisfied
and one when it is not). Behaviors may also be extracted
from a state-chart diagram (when a state is reached).

All those behaviors are called test targets. For each one,
TD generates a sequence of operations that aims at activat-
ing it. This sequence is called a test.

Class diagram
Interface and structure

Behavior
OCL code

Data values

Instance diagram

Temporal evolution

State-chart diagram

I

Figure 2: An overview of model’s structure

An oracle is associated to each test. It is given by the state
of the model after test execution and/or the values returned
by the last operation call. In our framework, we only con-
sider the latter option: if the results produced by the last
operation of the test are not the expected one, the test fails.
Now, we present limits of this modeling solution and why it
is not adapted for WS composition testing.

1.3 Thenecessity of model merging

The need for model merging only occurs when a WS uses
other WS. To test such a WS, there are two solutions. In the
first one, the vendor of the WS produces a model describ-
ing the two WS involved in the composition. The second
solution is that each vendor models its own product, and
our framework merges these two models. The result of this
merging is a new model which described the composition of
the two WS.

We consider that the first approach is not viable, since a
vendor may not be able to produce a valid model of a for-
eign product. A “login” operation seems simple to model:
if there exists a user corresponding to login and password
given in parameter, he is logged in the system. If there is
no such user, an error is raised.

This solution would certainly fit in most cases. But if the
WS has more severe security policies, tests may fail because
the model does not match with implementation. For exam-
ple, composed WS security policies specify that a customer
can not be logged in twice in the same time. If our frame-
work is not aware of this, it will try to run parallel tests to
accelerate quality evaluation process, and tests will fail.
Security policies are one of the reasons why model of the
composed WS must concord to its behavior. A simple cus-
tomer is aware of how the composed WS reacts in normal
conditions of use, but may not precisely know all security
policies. For this reason, he is not able to produce a efficient
model for this WS.

A second problem of modeling a foreign WS is creation of
instance diagram. As we said before, this diagram must rep-
resent real data. Someone modeling a foreign WS may not
know which data it uses, and so may be unable to produce
a useful instance diagram. As we explained before, the in-
stance diagram has to be representative of the system. If
data is missing, the testing tool may not be able to produce
some tests.

A solution could be to get model given by the vendor when
he registered his WS. As we saw before, this model contains
real data that may be critical. For this reason, models can
not be shared. Thus, this solution can not be used.

Those two reasons led us to choose the solution of model
merging. Before introducing our method, we present works
about WS testing and model merging.

2. RELATED WORKS

In order to propose an efficient solution for model merg-
ing, we had to look at existent solutions. This section is di-
vided in three parts. First, we introduce works using UML
to model compositions. Then, we take a look at works us-
ing UML to test WS, and how they handle compositions.
Finally, we present works about merging UML models.

2.1 UML for modeling web services and com-
positions

UML-WSC is an UML extension introduced in [24]. It
is presented as an alternative for BPEL2. Another solution
for composition modeling has been introduced in [1]. This
paper presents design patterns to easily design compositions
with UML.
We think that these works are not relevant for our purpose.
The first reason is that those models are not designed for
test production. The second one is that these models rep-
resent the whole composition. We explained before why we
do not think that this kind of method is suitable for our
framework.
UML modeling for WS was also presented in [18]. This
modeling solution is not suitable for test generation, be-
cause behavior of WS is not modeled. A link between UML
meta-models and WS standards (WSDL, BPEL) is shown
in [23].

2.2 Testing web serviceswith UML

The choice of UML for test generation can be criticized,
because of its lack of formalism. For example in [17], UML
has been set aside because authors considered that UML
could not describe precisely evolution of a WS. Our model-
ing solution does not suffer from this lack of formalism, as
it has been shown in [6].

There also exists works that deal with UML modeling for
WS testing. Some does not take composition into account,
such as [14]. The others deal with composition in different
ways. In [16], when the WS under test performs a composi-
tion, it does not really communicate with another WS. The
test driver emulates the composed WS. In [2], a proxy is set
up between WS under test and composed WS. That allows
to verify how the WS under test acts toward composed WS.
In [13], UML is combined with BPEL in order to verify if
composition workflow is respected.

Those solutions are really efficient for composition testing,
but do not provide clues to our main problem: how to easily
make a model of the composition compliant with our test
tool?

According to our knowledge, there is no solutions dealing
with model merging to handle WS testing. To propose a
solution, we had to investigate on works about model merg-
ing.

2.3 Modd merging

Composition is not a specificity of WS. Since a few years,
different solutions have been proposed for creating applica-
tions from components. Having models to represent those
compositions is one goal of [3]. This paper does not show
solutions for model merging, but deals with the use of meta-
models to handle several kinds of components (EJB, Corba

In [12], a UML profile is proposed in order to help model
compositions. No explanations are given on how to produce

an unique model from different models using this profile.

A model merging solution is introduced in [9]. This method

2Business Process Execution Language - A language used to
model compositions

aims at helping subject-oriented design. An application is
not designed in a big model, but by a set of small models.
Each one of those models describes a subject of the applica-
tion. The method proposed in this paper may not be applied
to WS model merging, because composition description re-
quires both models. In [4], another model merging solution
is proposed. This solution only applies a merging for dia-
gram classes, and do not take into account other types of
diagram.

We present now our own solution for model merging.

3. MERGING UML MODELS

We saw that model merging is necessary to test a WS per-
forming distributed compositions. In order to illustrate our
method for model merging, we introduce an example.

This example is composed of two WS. The first one is an
online store WS, which composes a parcel service WS. The
online store WS provides operations: register, login, lo-
gout, search, addToCart and validate. The parcel service
WS provides three operations: login, getPrice and logout.

We now present our method for model merging, which
is done in four steps: the first one is to transform state-
charts into OCL code. The second one consists in merging
the different class diagrams. Then, OCL code of classes are
merged in class modeling the WS under test. Eventually,
instance diagram are also merged to produce the final model.

3.1 State-chart

There would be two solutions to produce a final model in
which specifications of the several state-charts are captured.
The first one would be to produce a final state-chart that is
a combination of the different one.

The second solution would be to translate the state-charts of
composed web services into OCL code, and the state-chart
of the composing web services is kept in its original version.

With the first solution, the final state-chart models tem-
poral evolution of every WS involved in the composition.
With the second one, the state-chart only models evolution
of the WS under test.

This is why we chose this solution.

The first step in the transformation of the state-chart in
OCL is to create a new enumeration (“state-List”), which
lists all states described in the state-chart, including initial
and final state. A new attribute (“state”) is added to the
class describing the web service, which has for type the enu-
meration previously created.

Then, for each operation, we list all transitions using it as a
trigger. These transitions are noted as 4-tuple, in the form
{1S, g, 1S, op}, where “IS” is state leaved by the transition,
“g” the guard of the transition, “rS” the state reached by the
transition and “op” operation that may be automatically ac-
tivated when “rS” is reached.

This list is the base for OCL update, which permits simula-
tion of the state-chart.

Update of OCL code is done in two steps. First, we in-
clude all the OCL code of the operation in a “if” statement.
Its condition is “(((self.state = 1S1) and (g1)) or ((self.state
= 1S2) and (g2)) or ...or ((self.state = 1S,) and (gn)))”
Thanks to this condition, the operation has effects only if it

Customer

currentUser login
login() /

getPrice()
logout()

OnlineStore name ParcelService OnlineStore ParcelService
login() currentUser
getPrice() login()
logout () getPrice()
logout ()
ParcelService Customer

1-Customer 2-Customer

name login

Figure 3: Example of class diagram merge

is called in a case that has been specified in the state-chart
diagram.

Then we simulate the evolution in the state-chart diagram.
To do this, at the end of OCL code (just before closing the
“if” statement previously created), we create a list of “if”
statement that make the “state” attribute’s value change.
They look like this following code:

if ((self.state = 1S7) and (g1)) then
self.state = rS; and self.opj ()
else
if ((self.state = 1S3) and (gg)) then
self.state = rSg and self.opg()
else
if ((self.state = 1Sy,) and (gn)) then
self.state = rSy, and self.opp ()
endif
endif
endif

There is a particular case when the reached state is a
choice point. In this case, we can not write “self.state =
..”7. Each transition is transformed into imbricated “if”
statements (where the guard of the transition becomes the
condition of the “if” statement). The order in transformation
as no importance, except if a guard of one of these transition
is “[else]”. In this case, the state reached by this transition
is used to produce the “else” case of the last “if” statement.
The code produced by this transformation is shown in code
below:

if (g1) then

self.state = rS; and self.opj ()
else
if (gg) then
self.state = rSgp and self.opn ()
else
if (gn) then
self.state = rSy and self.opp ()
else
/* if there is an ‘‘[else]’’ guard x/
self.state = rS. ;5. and self.opgs. ()
endif
endif
endif

Once all operations are treated, there is one step left be-
fore state-chart diagram destruction. In some cases, opera-
tion may use the “OCLisInState(x)” keyword (that permits
to know the current state of the system). We replace all
these use by “self.state = xS” (where “xS” is the enumerate
value corresponding to the state “x”).

Now the state-chart diagram can be deleted, because it
do not have any interest anymore. The next step in model
merging is about the class diagram.

3.2 Classdiagram

Class diagram merging is a quite simple step: all classes
of the models have to be merged into a single class dia-
gram. The main problem is aliasing: if two classes have the
same name, do they represent the same thing? Obviously,
we can not trust classes names. Two classes named “cus-
tomer” in two models of two different WS will not represent
the same customers. But two classes named “getParcelPri-
celnputMsg” will represent the SOAP message used as input
parameter for the getparcelPrice operation.

In order to discriminate classes modeling the only thing
shared by the two model (SOAP messages and interfaces
of WS), we will use WSDL files. As explained before, those
files describe messages used to communicate with a WS.
So we use this files to discover which classes models shared
messages. All other classes are renamed before merging. To
rename classes, we give a number to each model. Then, for
each class which do not represent a shared message, we pre-
fix its name with the number given to the model it belongs
to.

Once renaming done, all classes are sent into a new class
diagram.

It is possible that shared messages are not represented ex-
actly the same way. In this case, we keep all attributes and
operations from the several classes modeling those data and
include them in a single class.

Figure 3 shows merging process on a sub-part of our ex-
ample. For space reasons, we simplified the diagram (for
example, cardinality, name and role of association are re-
moved). Up left part represents a sub-part from the online
store model, below is shown a sub-part from the parcel ser-
vice model. The right side is what is obtained when merging
these two sub-parts.

Once this step is finished, we can merge all OCL code into
the class modeling the web service under test.

33 OCL

We propose a solution for OCL merging because our test
tool (TD) does not handle operation call. That means that
the whole OCL code must be contained in the class repre-
senting the web service under test.

This merging solution is only possible because TD under-
stands OCL code as a sequential language, not as a paral-
lel language. If we write “self.attr = 2 and self.attr = 47,
this should be evaluated as false, because, in the same time,

“attr” should have for value 2 and 4. For our test tool, this
means “attr has for value 2, then it has for value 4”.

This solution does not comply with OCL specifications (in
which OCL is an constraint language, not an action lan-
guage). This solution has been chosen during TD design
to help model design: most people know how to use action
language, and some operations could not be written with
parallel interpretation of OCL.

Merging OCL code is done in two phases: the first one is
the references update. In OCL code, there may be many
references (to an attribute of the class, to another class
...), that are linked to a context. For example, the op-
eration “login” of the class “parcelService” has for postcon-
dition “self.user = pUser”. The context is the operation “lo-
gin”, so “self.user” refers to the attribute “user” of the class
“parcelService”.

In order to move all OCL code in the class representing the
web service under test, we have to change all those refer-
ences to adapt them to their new context. This is done by
changing the “self” keyword by the path linking new context
to old context. In the previous example, the code will be
moved to the class “onlineStore”. The classes “onlineStore”
and “parcelService” are linked by the association “uses”; the
role on the “parcelService” class side is “parcel WS”. When
OCL code of the operations of the “parcelService” class is
moved to the operations of “onlineStore”; all references to
“self” will be changed to “self.parcel WS”.

We also have to update a second kind of references: oper-
ation’s parameters. All references to parameters must be
changed by the value assigned at the call.

Once this is done, OCL code of an operation is moved

before its call. The next step is to link results produced by
operation to call of the operation. There is two possibili-
ties here. The first one occurs when “result” is only affected
once. In this case, this affectation is deleted, and the call
to the operation is replaced by the value used to instantiate
“result”.
In the second case, “result” has multiple affectation. Here,
we create a new attribute in the class under test, having the
same type than the result. Each occurrence of result will be
replaced by this attribute, and the call to the operation will
also be replaced by this attribute.

Code below shows evolution of code in our example. We
chose composition of operation login(user, passwd) from
the parcel WS by operation validate from online store WS.
In order to make the example more readable, we had to sim-
plify the code (we do not use classes defining SOAP mes-
sages).

/*— ORIGINAL CODE —x/

/* Operation: validate */

if (self.parcelService.login(”login”, “password” = 7ok”)
then

/x business code, useless for the ezample x/
endif

/* Operation: login (user, passwd) x/
if (self.users—>exists(u|u.login = user and
u.password = passwd) then
self.currentUser =
self.users —>any(u|u.login = user and
u.password = passwd) and
result = 7ok~
else
result = "Authentication failed?”
endif

/*— 1 — REFERENCES UPDATE —sx/

/* Operation: login (user , passwd)
Every reference to self is changed to
self.parcelService x/
if (self.parcelService.users —>exists(u|u.login = user
and u.password = passwd) then
self . parcelService.currentUser =
self. parcelService.users —>any(u|u.login = user
and u.password = passwd) and
result = 7ok’
else
result = 7"Authentication failed”
endif

/*— 2 — PARAMETERS UPDATE —x/
/% Operation: login (user, passwd)
References to parameter user are changed by

its wvalue ”login”, and those to parameter
passwd to "password” x/
if (self.parcelService.users—>exists(u|u.login = "login”
and u.password = “password”) then
self . parcelService.currentUser =
self.parcelService.users —>any(u|u.login = 7"login”
and u.password = “password”) and
result = 7ok~
else
result = "Authentication failed?”
endif

/*— 8 — CODE MERGING —x/

* peration: walidate
O lid
All code from operation login () is brought before

its call in operation walidate () */
if (self.parcelService.users —>exists(u|u.login = 7login”
and u.password = “password”) then
self.parcelService.currentUser =
self.parcelService.users —>any(u|u.login = "login "
and u.password = “password”) and
result = 7ok’
else
result = 7"Authentication failed”
endif and
if (self.parcelService.login("login”, "password” = 7ok”)
then
/* business code, useless for the ezample x/
endif

/*— 4 — MATCHING RESULT AND CALL —x/

/* Operation: validate ()
A new attribute , called 7tmpLogin”, is created in the
class modeling the online store WS.
References to result coming from login () code are
replaced by this attribute. The same thing is done for
the call to the operation .
*
if (self.parcelService.users —>exists(u|u.login = 7login”
and u.password = “password”) then
self . parcelService.currentUser =
self.parcelService.users —>any(u|u.login = “"login "
and u.password = “password”) and
self . tmpLogin = 7o0k”
else
self.tmpLogin = ”Authentication failed”
endif and
if (self.tmpLogin = “0k”) then
/* business code, useless for the ezample x/
endif

3.4 Instance diagram

Initial state merging is done by bringing all instances of
class provided in the different models into a single instance
diagram. As in class diagram merging, we have to change
names in order to avoid conflicts between names. The same
principles than in class renaming is applied, all names are
prefixed by the number previously given to the model. As
classes names have been changed, we must tell to instances
the new names of the class they instantiate. Then, we can
move all instances to a single instance diagram.

Now, we have to correct impacts of class diagram update
on instances. The first action is to locate classes that re-
ceived new attributes during class diagram merging. For
all instances of those classes, we have to instantiate every
attribute to its default value (as specified in models or arbi-
trarily chosen by us).

The next issue is to have only one instance of each web ser-
vice interface. If we keep more than one instance of a web
service interface, the model will not be realistic, because

there exists only one web service corresponding the instan-
tiated class. To do this, we only keep the instance given
in the model describing the concerned web service. If we
have two different instance of the class modeling the inter-
face, we consider that the vendor of the web service knows
his product better than everyone else. That means that his
instantiation of the class can be more trusted, so it is the
one that is kept.

The third problem may be caused by associations between
classes, and particularly associations having a cardinality of
“1” or “0..17. If we take our example of online store and
parcel service again, the “parcelService” class has a relation
with the “newParcelResponse” class, the cardinality on the
“newParcelResponse” side is “1”. In the two models, we have
a instance of each of these class, and a instance of the re-
lation liking them. We saw before that we only keep the
instance provided by the parcel web service vendor. If we
create a link between the “parcelService” instance and the
two instances of the “newParcelResponse” class, our model
will not be correct, because the cardinality of the association
is broken. For the same reasons than before, we only keep
the instance provided by the vendor of the parcel service,
and the other one is deleted. If other links were existing
between the deleted instance and other instances, they are
reported to the instance kept.

We have to point at the fact that, in normal conditions
of modeling, only interfaces of web services and messages
received and produces can be found in two different mod-
els. This explains why we mainly talk about these kind of
instances.

Once the new instance diagram is created, our model is
ready for test generation.

3.5 Testsgenerated from merged model

TD is used to generate tests. This tool is based on the
extraction of every behavior of the operations described in
the model. It is important to know that TD has a par-
ticular way of interpreting OCL. OCL is usually a parallel
language, used to describe the states of the model before
and after the each operation. TD considers OCL as a se-
quential action language, having the same syntax, and in
which each equality is interpreted as an assignment modi-
fying the state variables of the models. If this particularity
is helpful for model interpretation and merging, we lose the
commutativity and associativity of predicates.

The operation code has to be put in the SSA form (Static
Single Assignment [?]), a predicative representation to keep
intermediate calculus for sequential semantics. It is obtained
by adding intermediate state system variables between each
assignment, our changing state function.

Based on the control flow graph of the operation in the
SSA form, TD extracts the behaviors, from which the test
targets are issued. Thus, a behavior is the conjunction of
all predicates on paths starting from the root node of the
graph, until the leafs, through a depth-first search in the
graph. A test target is then computed as the set of states in
which the behaviors can be activated.

For each test target, TD automatically computes a se-
quence of operations, a preamble, from the initial state of
the system, that aims at its activation. This gives the test
cases, to which an oracle is associated. This latter can be

defined in two ways: the state of the model after test execu-
tion, and/or values returned by the operations of the test.
In our framework, we only consider this second definition,
as iTac-QoS does not have access to the internal states of
the WS, and, moreover, the definition of a mapping relation
between abstract and concrete values would be to costly in
terms of effort asked to the WS vendor. As a consequence, if
the results produced by the operations of the system under
test are not the expected one, the test fails. Otherwise, it
succeeds.

Our method has been applied on the example, as shown
in [21]. When we tried to generate tests on the final model,
TD found fifty-two test goals. Only twenty-three of these
were about the WS, the others were about messages get-
ters and setters. Among these twenty-three tests goals, only
twelve were reached by tests. The other test goals could not
be activated for two reasons: either the goal was inconsis-
tent or the initial state is incomplete. The main problem is
that some of these test goals are introduced by the model
merging process. We now present how to correct the model
merging process in order to filtrate these irrelevant test goals
for the test generation step.

4. CORRECTION OF MODEL MERGING

Our goal is to correct models obtained by model merging,

(1) on figure 4. This latter illustrates our method correction
and it is used as reference for the section 4.1.
We focus on dead code created by the model merging method
and on the lack of data in the initial state from which the
two problems, inconsistent test targets and incomplete ini-
tial state, originates.

First, we present in 4.1 our methods for checking the cor-
rectness of the test targets. Then, we give, in 4.2, an example
of the behavior computation that we use for our detections.
We further explain in 4.3 how to get the inconsistent behav-
iors and, eventually, how to get a minimal instanciation of
the initial state in 4.4.

4.1 Correction Methods

The model-based testing approach of TD aims at produc-
ing tests that cover the tests targets, (2). These tests are
composed of sequences of operations that reach a state in
which a behavior (ie. a test target) can be activated (a). If
TD can not find such a sequence, the behavior is declared
unreachable (2).

As test targets coverage is used to give an indication of the
quality of the produced test suite, the fact that the first two
cases are reported as "unreacheable” falsifies the results of
the test generation, and may let the user think that this step
did not fully succeed, whereas inconsistent targets introduce
a disturbance in the statistics. We attempt to resolve that.

The first step of the correction (3) is to find behavior which
is inconsistent (ie. incoherente) over any possible configu-
ration of the system. This inconsistent behavior (c) is un-
reachable behavior because the conditions representing the
states of the behavior are not sastifiable. This may be due to
an incoherence of the system (invariant or constantes) and
we invite the user to correct is model by classic static verifi-
cation like XX. If no error exist in the system, this behavior
is extracted from a dead code because of a bad modelisation
of the behavior. In the model merging process, operation
calls are substitued by copies of the entire operation, in-

)

Reachable
Composing @ test targets
Model
o«
()
S
Composed Unreachable
Model (b) test targets

Consistent over
the system?

the system with
data?

Figure 4: Correction method

stead of using only the relevant part (a specific execution
path of the called operation), creating inconsistent behav-
ior (dead code), that may only be determined by evaluating
the behavior conditions. As the model merging process may
produce this kind of behaviors, behaviors extracted from a
dead code, we invite the user to verify their origins to filtrate
them on test generation process if necessary and otherwise
to correct them in the model.

The second step of the correction (4) take the rest of un-
reachable behavior (d) and find the behaviors which is in-
consistent over the system limited by a data pool. In our
case the limitation is calculate with the instance diagram. In
classic Model Based Testing context this limitation is done
on the model before test generation, due to its complexity,
by enumerate the abstract data [XX]. These kind of incon-
sistent behaviors (e) is due to a problem on data. Some
data is missing or must not be exists because of a problem
in the data pool. We give an instantiation (g) of the sys-
tem providing to the user a help to verify if the data pool is
correct (5). The rest of behaviors (f), which are consistent
over the system with the limitation data, may be due to
a problem in preamble computation of test generation, its
need some object instances creation but is limited in search
depth computation (a bounded time), or due to an activable
behavior which is really unreachable. We give as before an
instantiation (g) that may help the user to help the preamble
computation or to conclude on the reachability of the behav-
ior (5) and we invite him to use reachiability test method
[XX]? too.

We present, in the next sections, the techniques use for

3comme les travaux de ROMEO OH MON ROMEO...

the correction more precisely.

4.2 Behavior Example

In order to illustrate our method of merging correction on
the wvalidate operation in an understable manner, we trans-
late and more simplify this operation into an imperative
oriented-object programmation language (similar to Java -
pseudo-Java) with quantifiers, whose semantics is equivalent
to the TD interpretation of OCL. The code below gives the
translation in pseudo-Java of the validate operation.

if (currentUser.login = validateMsg.login and
currentUser . session .sessionld = validateMsg.sessionld) {
psloginmsg . user2 = str.onlineStore and
psloginmsg . password2 = str .storePassword and
/x Code from login is brought here x/
if (exists(c| ¢ : ps.customer and
c.login = psloginmsg.user2 and
c.password = psloginmsg.password2)) {
/% business code, useless for the ezample x/
} else {
ps.psloginresponse .resCode2 = —1

and

/* end of login codex/

psloginresponse2 = ps.psloginresponse and

if (psloginresponse2.resCode = 0) {
/* business code, useless for the ezample */
osvalidateresponse2.resCode = 0

} else {
osvalidateresponse2.resCode = —1

}
} else {
osvalidateresponse2 .resCode = —1

}

and
result = osvalidateresponse?2

We can extract the control flow graph of this translated
example as done in [?]. This graph is depicted in Fig. 5.

Behaviors are then computed by a depth-first search in
the resulting graph. In this paper we interest of the third
behavior, the path (1,2,4,6,7,8,9,11,12), and the fourth
behavior, the path (1,2,4,6,7,8,10,11,12), of 5.

Behavior b; of the login validation (i).
The expression of the behavior b3 is given by the following
set-theoretical predicate:

currentUser.login = validateMsg.login N
currentUser.sesston.sesstonld = validateMsg.sessionld N
psloginmsg.user2 = str.onlineStore N\
psloginmsg.password2 = str.storePassword A
- (3 c. c € ps.customer A

c.login = psloginmsg.user2 N\
c.password = psloginmsg.password2)) A
ps.psloginresponse.resCode2 = -1 N\
psloginresponse2 = ps.psloginresponse A
psloginresponse2.resCode = 0 N
osvalidateresponse2.resCode = 0 N
result = osvalidateresponse2

The fourth, by, is the same behavior as bs except for last
part,

psloginresponse2.resCode = 0 N\
osvalidateresponse2.resCode = 0 N
result = osvalidateresponse2

which became

= (psloginresponse2.resCode = 0) A
osvalidateresponse2.resCode = -1 N\
result = osvalidateresponse2

currentUser.login = validateMsg.login

currentUser.session.sessionld = validateMsg.sesNonlId
not(currentUser.login = validateMsg.login and
currentUser.session.sessionld = validateMsg.sessionld)

3

psloginmsg.user2 = str.onlineStore and
psloginmsg.password2 = str.storePassword

exists(c| ¢ : ps.customer and
c.login = psloginmsg.user2 and

c.password = psloginr not(exists(c| ¢ : ps.customer and

c.login = psloginmsg.user2 and
c.password = psloginmsg.password?2))

-

/* business code, useless for the example */

ps.psloginresponse.resCode2 = -1

psloginresponse2 = ps.psloginresponse and

psloginresponse2.resCode = 0

/ not(psloginresponse2.resCode = 0)

osvalidateresponse2.resCode = 0
osvalidateresponse2.resCode = -1
osvalidateresponse2.resCode = -1
result = osvalidateresponse2

Figure 5: Control flow graph of the pseudo Java of the validate operation

4.3 Consistency of Test Targets

Behavior bs illustrates the problem of inconsistency of de-
clared “unreachable” behaviors. This latter describes a login
validation, that requires the user not to be logged

ps.psloginresponse .resCode2 = —1

after a successful authentication.

osvalidateresponse2.resCode = 0

This is clearly an incoherent behavior that is introduced by
the model merging process.

The consistency checking ensures that the behavior is co-
herent by verifying that a proof obligation, called the be-
havior consistency formula (BCF), is satisfiable. A BCF is
the conjunction of the predicates of a behavior, it represents
the minimal condition to activate the behavior, in terms of
system states that in which the behavior may be activated.

To be able to verify this formula using automated tools,
it is necessary to dispose of a representation of the system
state in the theory used by the prover/solver that will be
employed. We have chosen to employ a set-theoretic repre-
sentation of the system state. As in a previous work [?], the
object oriented systems we consider are represented using
sets, total functions and relations, according to the following
principles. The system heap is represented by an abstract
set of atoms that give the addresses of the possible objects.
Existing class instances are pairwise distinct subsets of this
latter. Each instance attribute is a total function mapping
the instance to its value in a given domain. Each binary
UML association is represented by a relation from the first
to the second class instances. Thus, for a given instance, it is
possible (using domain or image restriction of the relation)
to know to which instances it is linked. The data model
is extracted from the considered UML class diagrams. The
set of existing instances is given by the instance diagram
considered by TD.

BCF of thelogin validation.
A part of the BCF expression of behavior b3 is given by
the following set-theoretical predicate:

SETS
INSTANCES_PARCELSERVICE;
INSTANCES ONLINESTORE ;
INSTANCES CUSTOMER?2;
INSTANCES_SESSION2 ;

VARIABLES
parcelService , onlineStore ,
customer2, customer22login , customer22password ,
session2 , session22id ,

isLoggedIn2 , knows2,
manages2 , isLoggedWith2,

INVARIANT
onlineStore <: INSTANCES_.ONLINESTORE &
parcelService <: INSTANCES PARCELSERVICE &
customer2 <: INSTANCES CUSTOMER2 &
customer22login : customer2 ——> STR &

customer22password : customer2 ——> STR &

session2 <: INSTANCESSESSION2 &
session22id : session2 —> STR &

isLoggedIn2 : customer2 <——> parcelService &

knows2 : customer2 ——> parcelService &
isLoggedWith2 : customer2 <—> session2 &
manages2 : session2 ——> parcelService &

. &

(i) //Predicate of B3

The BCF is verified using satisfiability checker tools, namely
SMT-provers and a set-theoretical solver. Provers use de-
ductive techniques that make it possible to deal with infi-
nite data, such as abstract sets whose content and size is
not specified. Constraint solver manage the constraints us-
ing consistency algorithms. Unfortunately, consistency al-
gorithms are not complete, and thus, an enumeration of the
solutions, named labeling, is potentially necessary for ensur-
ing the satisfiability of the constraints.

In our experimentation, we use the CLPS-BZ solver [7]
(that natively supports set theory) and the SMT provers [22],
in which the set theoretical structures are expressed using
the array theory (suitable for representing sets and func-
tions) as done in [10] and [11].

For the BCF of behavior b3, the tools automatically con-
clude on the unsatisfiability of the formula. The CLPS-BZ
solver give a result in XX.XXs and the SMT provers Yices
answers in YY.YYs, Z3 in ZZ.Z7Zs and haRVey in TT.TTs.

[[FD: un petit tableau complet des 13 insatisfiables avec
les temps de calcul, ca serait vraiment nickel ...]]

Behavior b4 consistency formula is also declare unsatifiable
in similar times.

With this method, we can automatically find automat-
ically inconsistent behavior of the operations of an UM-
L/OCL model.

For the example model, 39 generate tests were generated,
excluding 13 “unreachable” targets. Among these, we found
8 inconsistent behaviors meaning that the remaining 5 be-
haviors are “real” unreachable ones.

When checking the BCF we check if the behavior is consis-
tent for a given set of existing instances at the initial state.
This point is crucial since objects can not be created dy-
namically when executing the UML models (requirement of
TD).

We now propose to check if the inconsistency of the be-
haviors may possibly due to an incorrect initial state.

4.4 Computation of a Relevant Initial State

As seen before, the inconsistency of behaviors may be due
to an erroneous initial state of the UML

After filtrate the inconsistent behaviors, we propose a in-
stantiation of the system parameters for a behavior. We
need enough elements in our database of object, the instance
diagram, to represent a state, a collection of objects. If we
haven’t this, we can not represent the state, and so, we can
not reach it. Our method get an instanciation of parametres
providing the representation of a least one state activating
a behavior.

The behavior by illustrate the instantiation problem. This
behavior describes a login validation failure, that requires
the user doesn’t exist

not(exists(c| ¢ : ps.customer and
c.login = psloginmsg.user2 and
c.password = psloginmsg.password2))

but in the instance diagram this user exist. In fact for a
specific instantiation we can be log or not but not both.

It clearly an unreacheable behavior due to a lack data or
a bad data. We want to compute an instantiation needed to
activate the behavior in the way to compare each other.

The instantiation approach represent the data structure of
the system with the set theory, a set for each parameter, and
use the BCF to put enough elements in them and activate
the asociated behavior.

We can only instanciate consistent behavior because com-
pute the instantiation of an inconsistent behavior is useless
as it is not activable with any instantiation.

4.4.1 Data Structure Representation

As in the section 4.3 we get the BCF with the system
representation in predicative form over set theory. Each
parameter becomes a set pairwise distinct and is considering
as primary sort.

We compute the graph of sort dependency [5], a repre-
sentation of dependency between sorts. The nodes are the
sorts and the edges are the dependencies. A sort s depends
of others sorts si,..., sy if there exists a functional symbol
whose signature is s1,...,s, — s. Intuitively it is the case
when an element transformer adds some elements of some
sorts in an other sort.

At this point, we obtain the data structure of the model
over the set theory and their dependencies.

4.4.2 Instantiation Computation

The instantiation computation gives a over-approximation
of needed objects in parameters for the behaviors and reduce
it.

We want to get each variables of the BCF representing a
system object and put in in the appropriated sort.

We skomelize the BCF to extract these variables, that
become constants of the herbrand universe, and we use in-
formations of the behavior predicate to fill the data structure
with these constants.

A simple way to do this is to duplicate and add each con-
stants in each sort. By this way we are sure that any variable
can be instantiate by any sort.

In the same time, we use the graph of sort dependency
to complete the instantiation. For each dependency and
each combination of constant which can be use to apply the
function, we add a new fresh constants corresponding to the
result of the function application over this combination.

The problem of this approach is the Herbrand universe
calculus can not terminate. This is due to a cycle in the de-
pendency graph of sort. Indeed the computation of universe
Herbrand is finite if and only if the graph is acyclic.

We check the BCF on a solver with this upper approxi-
mation as parameter domain to reduce it and obtain a min-
imalist behavior instantiation.

We obtain for the behavior by and the USER class an
intantiation without an user ¢ where the condition

c.login = psloginmsg.user2 and

c.password = psloginmsg.password2
is verified.

4,43 Modd Instantiation

The model instantiation consists in computing an unique
instantiation for all behaviors in the same time, and so the
entire model.

We extend the BCF to the Most General Behavior Con-
sistency Formula MGBCF for the over-approximation com-
putation and the reduction.

The Most General Behavior Consistency Formula is the
conjunction

P ANNANGEX;. BCF(X;))

where for each behavior b;, X; is a distinct tuple of state
variable and BCF; is the BCF of b; over X; and P is the

common part of each BCF, such as parameters, constants
and their properties.

We get the model instantiation with the same method of
behavior instantiation but we use no more the BCF but the
MBCEF.

In our example we can not compute the model instanti-
ation because the MBCF is not consistent. It due to the
the condition c.login = psloginmsg.user2 and c.password =
psloginmsg.password2 of the user ¢ can not be true and false
in the same time.

With this method, we can find automatically a behavior
instanciation of a UML/OCL model.

For the example model, which still have 5 unreachable
behaviors with unkown reason. We find an instanciation of
each of them.

5. CONCLUSION AND FUTURE WORK

In this article, we introduced a method used to merge

UML models for test generation. The method takes place
in a quality evaluation framework for WS: iTac-QoS. In this
framework, WS vendors produce a UML model of their prod-
uct. Tests are generated from this model, and result of their
execution are translated into marks, allowing customers to
evaluate quality of the WS.
Our framework was not able to test WS which acted as client
of other WS. This was due to the fact that a WS vendor is
not able to produce a valid UML model of a foreign product.
We solved this problem with our model merging method.

This method is done in four steps. The first one is to
transform state-charts into OCL code. Once done, a new
class diagram is created, which includes class from the sev-
eral models. To avoid any overwriting due to two classes
sharing the same name, classes are renamed before the cre-
ation of the new class diagram. The third step is to merge
all OCL code into a single class (the one modeling the WS
under test). We have to do this because the test tool we use
(TD), does not handle operation call. The solution proposed
to solve this problem is based on a another specificity of the
test tool. OCL code is interpreted as a sequential language,
not a parallel one. The last step of model merging is to cre-
ate a new instance diagram.

To the best of our knowledge, this work is an innovation
in model merging. We do not know any solution allowing to
automatically merge UML models for test generation.

This solution is has three main advantages. The first one is
its portability. Except for OCL merging, it can be applied
to classical UML model which are not designed for TD. The
OCL merging solution only works because of an TD speci-
ficity, but has been designed to solve a lack of this software.
The other advantages are more specifics to our framework.
The first one is that our framework can now evaluate quality
of WS performing distributed compositions. The last one is
that it simplifies work for WS vendor: they just have to
model their own product, and our framework automatically
produce a model describing the whole composition. They do
not have to specify composition pattern for merging. Com-
position specification is done by describing composed WS
interface in the class diagram, and to call operations in OCL
code.

In order to simplify description of interfaces in class diagram,
we created a tool translating WSDL files in XMI (http://lifc.

univ-fcomte.fr/“pretre/itac-qos/wsd|2xmi.php.html). With this
tool, describing interfaces is really simple and automated.

We are currently working on a last improvement for our

method: initial state completion. As shown in section 3.5,
TD was not able to generate some tests on model produced
by our example.
Our goal is to be able to automatically classify those test
goals: do they concern inconsistent behaviour or can we add
data to make this test goal activable? Once inconsistent test
goals set aside, we will have to complete models to reach all
test goals.

6. REFERENCES

[1] B. Benatallah, M. Dumas, M.-C. Fauvet, and F. A.
Rabhi. Towards patterns of web services composition.
pages 265296, 2003.

[2] A. Bertolino and A. Polini. The audition framework
for testing web services interoperability. In
EUROMICRO-SEAA, pages 134-142. IEEE
Computer Society, 2005.

[3] J. Bézivin. From object composition to model
transformation with the mda. In TOOLS ’01:
Proceedings of the 39th International Conference and
Ezxhibition on Technology of Object-Oriented
Languages and Systems (TOOLS39), page 350,
Washington, DC, USA, 2001. IEEE Computer Society.

[4] A. Boronat, J. A. Carsi, I. Ramos, and P. Letelier.
Formal model merging applied to class diagram
integration. Electron. Notes Theor. Comput. Sci.,
166:5-26, 2007.

[5] F. Bouquet, J.-F. Couchot, F. Dadeau, and
A. Giorgetti. Instantiation of parameterized data
structures for model-based testing. In B’2007, the 7th
Int. B Conference, volume 4355 of LNCS, pages
96-110, Besancon, France, Jan. 2007. Springer.

[6] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux,
N. Vacelet, and M. Utting. A subset of precise UML
for model-based testing. In A-MOST’07, 3rd int.
Workshop on Advances in Model Based Testing, pages
95-104, London, UK, July 2007. ACM Press.
A-MOST’O7 is colocated with ISSTA 2007, Int.
Symposium on Software Testing and Analysis.

[7] F. Bouquet, B. Legeard, and F. Peureux. CLPS-B: A
constraint solver to animate a B specification.
International Journal on Software Tools for
Technology Transfer, STTT, 6(2):143-157, Aug. 2004.

[8] E. Christensen, F. Curbera, G. Meredith, and

S. Weerawarana. Wsdl 1.1.

http://www.w3.org/TR/wsdl, 2001.

S. Clarke. Extending standard uml with model

composition semantics. Sci. Comput. Program.,

44(1):71-100, 2002.

[10] J.-F. Couchot and F. Dadeau. Guiding the Correction
of Parameterized Specifications. In Integrated Formal
Methods, IFM’07, volume 4591, pages 176-194, 2007.

[11] J.-F. Couchot, D. Déharbe, A. Giorgetti, and
S. Ranise. Scalable Automated Proving and Debugging
of Set-Based Specifications. JBCS, 9(2):17-36, 2003.

[12] J. Estublier and A. D. Ionita. Extending uml for
model composition. In ASWEC ’05: Proceedings of the
2005 Australian conference on Software Engineering,

[9

24]

25]

pages 31-38, Washington, DC, USA, 2005. IEEE
Computer Society.

H. Foster, S. Uchitel, J. Magee, and J. Kramer.
Model-based verification of web service compositions.
ase, 0:152; 2003.

L. Frantzen, J. Tretmans, and R. de Vries. Towards
model-based testing of web services. In A. Bertolino
and A. Polini, editors, in Proceedings of International
Workshop on Web Services Modeling and Testing
(WS-MaTe2006), pages 67-82, Palermo, Sicily,
ITALY, June 9th 2006.

M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau,
H. F. Nielsen, A. Karmarkar, and Y. Lafon. Soap
version 1.2. http://www.w3.org/TR/soapl2-partl/,
2007.

R. Heckel and M. Lohmann. Towards contract-based
testing of web services. In M. Pezzé, editor,
Proceedings of the International Workshop on Test
and Analysis of Component Based Systems (TACoS
2004), volume 116, pages 145-156, 2005.

R. Heckel and L. Mariani. Automatic conformance
testing of web services. In In proceedings of the 8th
International Conference on Fundamental Approaches
to Software Engineering (FASE 2005), pages 34-48.
Springer-Verlag, 2005.

E. Marcos, V. de Castro, and B. Vela. Representing
web services with uml: A case study. In ICSOC, pages
17-27, 2003.

OASIS UDDI specification TC. Uddi version 3.0.2.
http://uddi.org/pubs/uddi_v3.htm, 2005.

V. Pretre, F. Bouquet, and C. Lang. A model-based
validation framework for web services. In STV07,
Procs of the 5th workshop on Systems Testing and
Validation, pages 63-76, Paris, France, Dec. 2007.

V. Pretre, F. Bouquet, and C. Lang. Automating uml
models merging: application of the method. Research
Report RR2008-09, LIFC, october 2008.

S. Ranise and C. Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org,
2006.

A. Staikopoulos and B. Bordbar. A comparative study
of metamodel integration and interoperability in uml
and web services. In ECMDA-FA, pages 145-159,
2005.

S. Thone, R. Depke, and G. Engels. Process-oriented,
flexible composition of web services with uml. In ER
(Workshops), pages 390—401, 2002.

W. Vogels. Web services are not distributed objects.
IEEE Internet Computing, 7(6):59-66, 2003.

