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Abstract: The filling efficiency during the hot embossing process at micro scale is essential for micro-
component replication. The presence of the unfilled area is often due to the inadequate behavior
law applied to the embossed materials. This research consists of the identification of viscoplastic
law (two-layer viscoplastic model) of polymers and the optimization of processing parameters.
Mechanical tests have been performed for two polymers at 20 ◦C and 30 ◦C above their glass
transition temperature. The viscoplastic parameters are characterized based on stress–strain curves
from the compression tests. The influences of imposed displacement, temperature, and friction on
mold filling are investigated. The processing parameters are optimized to achieving the complete
filling of micro cavities. The replication of a micro-structured cavity has been effectuated using this
process and the experimental observations validate the results in the simulation, which confirms the
efficiency of the proposed numerical approach.

Keywords: hot embossing process; thermoplastic polymer; mechanical behavior laws; viscoplastic
model; numerical modelling; friction coefficient

1. Introduction

As the demand for better microstructural control is increasing continuously, it is
necessary to develop an efficient process to manufacture micro-structured component at
lower cost in less time. Hot embossing (HE) consists of heating the polymer substrate to
an adequate temperature and compressing it with an imposed pressure or displacement.
The micro features in the mold are embossed on to the polymer surface. It is a suitable
process for the accurate replication of high-quality features with high aspect ratios, high
porosity, and a large surface area at the micro/nano scale [1]. Polystyrene, poly (methyl
methacrylate) (PMMA) and polycarbonate (PC) are polymeric materials mainly employed
in HE. The main processing parameters are pressure, forming temperature, time, and
demolding temperature [2].

Kim et al. investigated acoustic wave detection using a PMMA-based device obtained
via HE [3]. A polymer layer was successfully replicated with high accuracy to improve the
performance of a tunneling sensor. Deshmukh et al. optimized the processing parameters,
such as embossed time, pressure, and temperature to manufacture a microchannel with
polymer substrate [4]. Generic algorithm and Taguchi method were applied to achieve high
replication accuracy approximately 96%. An in situ observation method was proposed to
capture the filling ratio of the microchannel using HE [5]. The effects of various parameters
on replication efficiency were investigated to satisfy its reproducibility on the PMMA
microstructures. Liu et al. studied the deformation of PMMA in the filling stage of micro
HE [6]. The replication precision was significantly improved during the stress relaxation
and deformation recovery stage. Wang et al. improved HE to replicate the inverted pyramid
microstructure array on a PMMA surface, which demonstrated high replication accuracy
and good hydrophilic effect [7].
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Chang and Yu introduced an ultrasonic-assisted HE process to fabricate the micro lens
arrays with a PMMA substrate [8]. The obtained microstructures were confirmed to be
satisfactory after the measurement of geometrical and optical properties. This simple and
rapid method has potential for the mass-production manufacturing of micro lens arrays
with low cost and high accuracy. Yang et al. used the carbon dioxide gas in HE to achieve
a large-area replication with a PMMA substrate [9]. The main advantages of this innova-
tive gas-assisted embossing technique were lower processing temperature and pressure,
associated with a more uniform pressure distribution. Wu et al. confirmed the efficiency
of a gas-assisted HE process in the replication of a PMMA micro lens array [10]. Less
residual stress was observed on the replicated substrate because of the lower embossing
temperature and pressure. Çoğun et al. studied the effects of HE processing parameters,
such as force, time, and temperature, on the filling rate of microfluidic channels [11]. The
experimental tests were carried out using the micro-milled aluminum mold with various
widths. However, only the effects of the hardness of polymer substrate as a function of
temperature were considered in the numerical simulation. Other mechanical properties
of the polymer substrate and the suitable material behavior laws are still lacking in the
optimization of HE.

The thermoplastic polymers employed in HE are embossed above their glass transition
temperature (Tg). The polymers exhibit highly temperature dependent properties, includ-
ing elastic, viscous, and plastic behaviors. The complex mechanical properties should be
characterized in the temperature range above Tg.

A two-layer viscoplastic model (TLVP) is available to describe viscoplastic behavior of
a polymer at high temperature [12]. Kichenin et al. used it to carry out the numerical simu-
lation of the cyclic pressure test on a polyethylene specimen [13]. Bianca et al. employed
the TLVP model to predict the mechanical behavior of a thermoplastic polymer under
various strain rates, specifically for the description of its viscoplastic properties [14,15].
Its parameters were identified based on the stress–strain data obtained in the tensile test.
The TLVP model has been applied to predict the relaxation stress vs. time for polymers at
various strain rates [16]. Tensile tests were performed to characterize the material parame-
ters. Rabhi et al. used this model to determine the rheological parameters of PMMA and
studied the effect of elastic–viscoplastic behavior on mold filling via HE [17]. Abdel et al.
employed the model to describe the deformation of PMMA over a large temperature zone
under Tg [18]. This model was observed to offer better consistency with the experimental
data than the elastoplastic one.

The simulation of HE is performed to optimize the replication of micro-components.
Yun and Kim proposed a computational analysis approach to efficiently determine the
HE processing parameters [19]. A constitutive model considering the work hardening
and strain softening was applied to describe the thermomechanical behavior of PMMA.
The finite element method (FEM) was selected, associated with an arbitrary Lagrangian–
Eulerian remeshing approach, to carry out the simulation of HE. Gomez et al. investigated
the mold filling of a PMMA micro structure in HE [20]. A 2D deformable geometric
substrate was created to model the polymer flow under various embossing temperatures
and forces. The numerical results were validated by the experimental observations in
the same processing conditions. Guo et al. effectuated the numerical simulation of the
demolding stage in HE using FEM [21]. The thermal stress distribution of a replicated
PMMA sample during cooling and demolding was analyzed, which indicated that the
friction between the mold and PMMA sample affected the polymer deformation. Kiew et al.
proposed a constitutive model to characterize the PMMA behavior during HE [22]. The
effects of embossing time were studied and confirmed with the experimental results. The
frictional effects during HE on the mold filling were not exploited. Wang et al. employed a
generalized Maxwell model for describing the viscoelasticity of an amorphous polymer
in HE [23]. The relaxation tests at various temperatures were effectuated to identify the
material parameters. According to the numerical simulation and experimental investigation,
enough embossing time was required for filling completely the microstructures with a
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large cross-sectional area. Mondal et al. studied the deformation mechanism of PMMA
with a generalized Maxwell model considering the contact friction and thermal expansion
effects [24]. The experimental tests were effectuated and compared with simulation results
to validate the numerical approach. A parametric optimization was performed to improve
the filling depth of the replicated polymer.

Cheng et al. investigated HE to develop microfluidic devices [25]. Their study included
an identification of material behavior and filling simulation of the process. PMMA and PC
are the most appropriate amorphous thermoplastic polymers for HE. PC is often employed
in mechanical engineering due to its excellent mechanical properties [26].

This paper is a continuation of the work of Rabhi et al. [17], studying the effects of
viscoplastic behavior on the mold filling accuracy of micro HE. The main objective of
this research is to propose a suitable viscoplastic behavior law of polymers and improve
the simulation efficiency of HE. Mechanical compression tests have been performed to
characterize the properties of PC and PMMA above their Tg. The TLVP model has been
identified by an inverse method to determine the behavior law of the selected polymers.
The contact friction is often ignored in the numerical simulation of HE. It is important
to include the interface friction between the polymer substrate and mold to improve the
process simulation accuracy. The effect of the friction coefficient on the mold filling was
analyzed at micro scale. A series of experimental tests have been performed to confirm the
numerical simulation results.

2. Manufacturing Process, Experimental Tests and Behavior Law
2.1. Description of HE

In the case of HE, a polymer plate is pressed by a micro-structured tool above Tg. It is
maintained for a certain time, and cooled to a temperature under Tg to separate from the
mold [27]. Figure 1 shows the steps of HE to create micro-structured components [28]. The
micro-structure from the mold is transferred on to the polymer plate by the application of
optimized temperature and pressure. The polymer plate exhibits viscoelastic or viscoplastic
behaviors during HE. The characterization of the mechanical behavior of the polymer is
essential to identify the suitable processing parameters in HE. An appropriate behavior
law is also indispensable to accurately simulate the process.
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Figure 1. Schematic diagram of HE to replicate micro/nano patterns on polymeric film.

HE is applied to replicate different micro patterns in various thermoplastic polymers.
Figure 2 shows different geometrical shapes at micro scale obtained with PMMA [29].
Circular patterns with a diameter lower than 0.001 mm, threadlike lines with a lateral width
of 0.025 mm, and hexagonal shapes with s side length of 0.015 mm and 0.003 mm spacing
between the hexagons were successfully obtained.
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obtained via HE.

The main advantage of HE is the possibility to create a device with a large surface and
to obtain a complex structure at micro/nano scale, such as an optical sensor, diffractive lens,
microfluidic channel, and so on. Tan et al. focused on the state of art creation of optical
Fresnel lenses, and micro HE exhibited high accuracy compared to other manufacturing
processes [30]. Jiang et al. improved the embossing process with the optimized processing
parameters to produce a microfluidic channel [31]. Fewer mold tools are required in HE,
and it is relatively easy to carry out [32]. Compared with conventional processes, less
residual stress is obtained in the replicated substrate because of the lower processing
temperature. The principal challenge in HE is to optimize the embossing temperature and
pressure to achieve the full mold filling with the selected polymer.

2.2. Differential Scanning Calorimetry (DSC)

The thermal properties of the embossed polymer need to be characterized in order to
optimize the processing temperatures. DSC is used to identify the thermal behavior of two
thermoplastic polymers (PC, PMMA) and determine their Tg. In this temperature range,
the state of the polymer changes from glassy to rubbery. The embossing temperature of HE
is slightly above the Tg of the replicated polymer. Tg is an important parameter used to
ensure a high-quality replication without defects in HE. In this research, the DSC tests were
performed from 25 to 295 ◦C (heating rate 2 ◦C/min). Two heating–cooling cycles were
carried out for each analysis. The first cycle was used to eliminate the thermal history of the
polymers (humidity, residual stress). The second cycle was retained for the measurement
of Tg. The values of Tg of PMMA and PC are summarized in Table 1.

Table 1. Tg of PMMA and PC obtained in DSC tests.

Polymer Transition Interval (◦C) Tg (◦C)

PMMA 112–117 114 ± 1
PC 137–144 140 ± 1

2.3. Description of TLVP Behavior Law

TLVP behavior law involves elastic, plastic, and viscous parts. It consists of an
elastoplastic branch in parallel with a viscoelastic one, represented in Figure 3 [33]. The
elastoplastic branch consists of linear hardening, connected in parallel with the viscoelas-
tic branch consisting of the Maxwell model. σ is stress, ε is strain and σY is the initial
yield stress.

σ is calculated by the sum of elastoplastic stress σp and viscoelastic stress σv, repre-
sented as follows:

σ = σp + σv, (1)

The true stress–strain in the elastoplastic branch is described as the following equations:

σp = Ep × ε if σp ≤ σY, (2)

σp = H × εn1 if σp ≥ σY, (3)
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where Ep is elastic modulus in the elastoplastic branch and n1 is the work hardening
exponent. Hardening parameter H is defined as [34]:

H × εn1 =
σY

ε
n1
Y
(εY + εpl)n1 = σY(1 +

εpl

εY
)n1 = σγ(1 +

Ep

σY
εpl)n1 , (4)

where εY is strain at σY and εpl is the plastic strain.
Viscoelastic stress σv is expressed as:

σv = A− 1
n2

.
ε

1
n2 , (5)

Time-hardening m is set to zero, in the case that the strain rate
.
ε is independent of time:

.
ε = Aσn2

v tm, (6)

where A represents strength coefficient, n2 represents strain hardening of Norton–Hoff law
(creep strain rate = Aσn2 ), and t is time.

The total modulus is defined as:

E = Ep + Ev, (7)

where Ev is the elastic modulus in the viscoelastic branch.
f is the proportion of elasticity in the viscoelastic branch to the total elasticity, which is

calculated as:
f =

Ev

Ep + Ev
, (8)

The elastic strain εel consists of viscoelastic component εel
v and elastoplastic component

εel
p :

εel = fεel
v + (1 − f)εel

p , (9)
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2.4. Uniaxial Compression Test

Uniaxial compression tests were carried out to characterize the mechanical properties
of PC and PMMA. The polymer specimens were fabricated by injection molding process.
They were heated to anneal for 2 h before the compression test. The cylindrical polymer
specimen was compressed between two metallic molds in an oven, as shown in Figure 4.
The tests were carried out at Tg + 20 ◦C and Tg + 30 ◦C and repeated five times to be
consistent with the loading conditions.
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the specimen is 18 mm and its diameter is 10 mm).

2.5. Description of Simulation Approach

The aim of the simulation was to investigate the effects of the mechanical behavior
of the material at micro scale on mold filling by taking into account its viscoelasticity and
elastoplasticity. The simulation of HE was performed with two selected materials (PC and
PMMA substrates with a thickness of 1 mm) using FEM, as demonstrated in Figure 5. The
elastoplastic and viscoelastic parameters were determined with the results obtained in the
mechanical tests. The influence of friction parameter µ between the mold and the polymer
on the filling ratio was investigated in the current work.
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A 2D axisymmetric substrate was created to simulate the displacement of polymer
in the micro cavity, as shown in Figure 6. The mold was cylindrical, with a radius of
0.1 mm and a height of 0.05 mm, which was considered as a rigid body due to its much
higher stiffness. The polymer substrate with 1 mm height was placed under the mold. The
polymer substrate was treated as a deformable solid, described by a TLVP behavior law.
The Coulomb friction model was proposed to describe the contact friction between the
mold and the substrate. A constant friction coefficient was applied with the penalty friction
formulation. The boundary conditions were applied with a constant imposed displacement
of the mold and a zero-displacement imposed on the bottom surface of polymer substrate.
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The mesh applied on the polymer plate consists of free triangular and quadratic
elements. The total number of elements was 3322 with a minimal size of 0.002 mm in
the contact area between tool and polymer, as shown in Figure 7. The CPU time of the
simulation is around 600 s with a 2.4 GHz processor and 8 GB random access memory.
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3. Characterization Results of PMMA and PC
3.1. Results of Compression Tests

The uniaxial compression tests were conducted with PMMA and PC to determine
the viscoplastic behavior parameters. To determine the plastic behaviors of these two
studied polymers, a displacement rate of 0.54 mm s−1 was imposed on the samples at two
temperatures (Tg + 20 ◦C and Tg + 30 ◦C). The true stress σ and strain ε were determined
with the following equations:

σ =
F
S
=

F × H1

S0 × H0
, (10)

where H0 is the initial height, S0, S are the initial and final cross section, respectively, and
H1 is final height after the compression test.

ε = ln
(

H0

H1

)
, (11)

Figures 8 and 9 illustrate the true stress–strain curves for the PMMA and PC samples.



Polymers 2024, 16, 1417 8 of 18

Polymers 2024, 16, x FOR PEER REVIEW 8 of 19 
 

 

where H is the initial height, S, S are the initial and final cross section, respectively, 
and Hଵ is final height after the compression test. ε = ln ቀୌబୌభቁ, (11)

Figures 8 and 9 illustrate the true stress–strain curves for the PMMA and PC samples. 

 
Figure 8. Evolution of true stress as a function of strain in compression tests for PMMA at different 
temperatures. 

For PMMA, the true stress increases with strain with a maximum value of 1.49 MPa 
for Tg + 20 °C and 0.5 MPa for Tg + 30 °C. The true stress decreases with temperature at 
the same true strain. The obtained true stress–strain curves of PMMA are coherent with 
the results obtained by Federico et al. [35]. For PC, the true stress increases with strain, up 
to a maximum value of 0.9 MPa for Tg + 20 °C and 0.95 MPa for Tg + 30 °C. At the same 
true strain, stress decreases with temperature. 

 
Figure 9. Evolution of true stress as a function of strain in compression tests for PC at different 
temperatures. 

The plastic deformation of PMMA is more important than that of PC at the same 
temperature range. PC exhibits lower mechanical properties and viscosity. The obtained 
true stress–strain curves are coherent with the results obtained by Tang et al. [36]. At Tg + 
20 °C, the true stress–strain curve of PMMA has two domains, an elastic domain up to 2% 
deformation corresponding to a stress of 0.7 MPa and a plastic domain after 2% defor-
mation. At Tg + 30 °C, the transition from elastic state to plastic state is not significant. For 
PC, the true stress–strain curves at different temperatures show the same trend and con-
sist of a small elastic range and an exponential increase in the plastic state. The elastic and 
plastic parameters of the polymers were identified from the experimental data and are 
summarized in Table 2.  

Figure 8. Evolution of true stress as a function of strain in compression tests for PMMA at different
temperatures.

Polymers 2024, 16, x FOR PEER REVIEW 8 of 19 
 

 

where H is the initial height, S, S are the initial and final cross section, respectively, 
and Hଵ is final height after the compression test. ε = ln ቀୌబୌభቁ, (11)

Figures 8 and 9 illustrate the true stress–strain curves for the PMMA and PC samples. 

 
Figure 8. Evolution of true stress as a function of strain in compression tests for PMMA at different 
temperatures. 

For PMMA, the true stress increases with strain with a maximum value of 1.49 MPa 
for Tg + 20 °C and 0.5 MPa for Tg + 30 °C. The true stress decreases with temperature at 
the same true strain. The obtained true stress–strain curves of PMMA are coherent with 
the results obtained by Federico et al. [35]. For PC, the true stress increases with strain, up 
to a maximum value of 0.9 MPa for Tg + 20 °C and 0.95 MPa for Tg + 30 °C. At the same 
true strain, stress decreases with temperature. 

 
Figure 9. Evolution of true stress as a function of strain in compression tests for PC at different 
temperatures. 

The plastic deformation of PMMA is more important than that of PC at the same 
temperature range. PC exhibits lower mechanical properties and viscosity. The obtained 
true stress–strain curves are coherent with the results obtained by Tang et al. [36]. At Tg + 
20 °C, the true stress–strain curve of PMMA has two domains, an elastic domain up to 2% 
deformation corresponding to a stress of 0.7 MPa and a plastic domain after 2% defor-
mation. At Tg + 30 °C, the transition from elastic state to plastic state is not significant. For 
PC, the true stress–strain curves at different temperatures show the same trend and con-
sist of a small elastic range and an exponential increase in the plastic state. The elastic and 
plastic parameters of the polymers were identified from the experimental data and are 
summarized in Table 2.  

Figure 9. Evolution of true stress as a function of strain in compression tests for PC at different
temperatures.

For PMMA, the true stress increases with strain with a maximum value of 1.49 MPa
for Tg + 20 ◦C and 0.5 MPa for Tg + 30 ◦C. The true stress decreases with temperature at
the same true strain. The obtained true stress–strain curves of PMMA are coherent with the
results obtained by Federico et al. [35]. For PC, the true stress increases with strain, up to a
maximum value of 0.9 MPa for Tg + 20 ◦C and 0.95 MPa for Tg + 30 ◦C. At the same true
strain, stress decreases with temperature.

The plastic deformation of PMMA is more important than that of PC at the same
temperature range. PC exhibits lower mechanical properties and viscosity. The obtained
true stress–strain curves are coherent with the results obtained by Tang et al. [36]. At Tg
+ 20 ◦C, the true stress–strain curve of PMMA has two domains, an elastic domain up
to 2% deformation corresponding to a stress of 0.7 MPa and a plastic domain after 2%
deformation. At Tg + 30 ◦C, the transition from elastic state to plastic state is not significant.
For PC, the true stress–strain curves at different temperatures show the same trend and
consist of a small elastic range and an exponential increase in the plastic state. The elastic
and plastic parameters of the polymers were identified from the experimental data and are
summarized in Table 2.
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Table 2. Elastic modulus, plastic strain, and stress of PMMA and PC at two temperatures.

Polymer
Tg + 20 ◦C Tg + 30 ◦C

E (MPa)
±0.005

σp (MPa)
±0.005

εpl

±0.005
E (MPa)
±0.005

σp (MPa)
±0.005

εpl

±0.005

PMMA 3.61

0.50 0

2.81

0.05 0
0.80 0.01 0.20 0.03
1.10 0.04 0.40 0.07
1.40 0.08 0.50 0.10

PC 2.17

0.12 0

0.97

0.09 0
0.20 0.05 0.10 0.10
0.27 0.10 0.12 0.15
0.60 0.13 0.18 0.20

3.2. Identification of TLVP Parameters

The inverse method was applied with an optimization procedure to minimize the sum
of squares of deviations between the uniaxial compression test data and the actual one. The
assessment function E(X), representing the average of least squares errors, was defined as
follows [15]:

min
XϵΩ

E(X) =

√√√√ N

∑
i=1

∥∥ym
i (X)− yc

i (X)
∥∥2

N

, (12)

where X is an unknown vector that collects a, b, and c parameters, yc
i (X) denotes the

calculated true stress–strain response, ym
i (X) is the measurement data from experimental

tests for vector X, N is the parameter number, and Ω is the analysis space for X.
The relaxation tests were performed to identify the viscoelastic behavior of the polymer

above its Tg. A strain rate
.
ε = 0.03 s−1 was imposed on the sample up to a final strain level.

The evolution of true stress vs. time was measured. The relaxation tests were effectuated
at six different true strains (from 0.06 to 0.40). The true stress–strain curves obtained at
different strains are plotted in Figure 10. As a conclusion, the true stress of PC decreases
with time. A great descent of true stress appears during the first 20 s. At the end of the test
(100 s), the value of true stress is close to zero.
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An exponential equation, including three parameters, was used to characterize the
viscoelastic behavior of PC at Tg + 20 ◦C. The parameters (a, b, and c) in Equation (13) were
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identified with the least squares method based on the experimental results obtained at six
different strains:

σr = a × exp(−b × t) + c, (13)

where σr is relaxation stress, a and b are material constants, and c is equilibrium stress.
The obtained parameters with the coefficients of determination (R2) are summarized

in Table 3. The value of R2 is close to 1, indicating a strong coherence of the obtained
parameters with the experimental tests.

Table 3. Fitting parameters for PC in stress relaxation tests.

Strain a b c (MPa) R2

0.06 0.081 0.1802 0.0010 0.9772
0.12 0.101 0.2201 0.0020 0.9830
0.18 0.153 0.1901 0.0038 0.9797
0.25 0.169 0.2301 0.0040 0.9903
0.33 0.174 0.2001 0.0050 0.9899
0.40 0.170 0.1801 0.0060 0.9944

The strain rate is zero, because the true strain remains constant in the relaxation test.
The viscoplastic strain rate

.
ε

vp is represented by the following equation:

.
ε

vp
= − .

ε
el, (14)

where
.
ε

el is elastic strain rate. Hooke’s law is applied for describing the relation of the
elastic strain and stress. A power law is provided to explain the evolution of stress vs.
plastic strain:

εel =
σ

E
, (15)

εpl = Aσn2 , (16)

where E is the elastic modulus, A is strength coefficient, and n2 is strain hardening exponent.
.
E

el
and

.
ε

pl are expressed as follows, with the viscoplastic strain rate
.
ε

vp [37]:

.
ε

el
=

.
σ

E
, (17)

.
ε

pl
= n2Aσn2−1 .

σ, (18)

.
ε

vp
=

[
σ− c

K

]1/m1

, (19)

where K and m1 are material constants. c is found in the quasistatic elastoplastic relation:

ε =
c
E
+ Acn2 , (20)

where ε is the total strain:
ε = εel + εpl + εvp, (21)

Five material constants (E, A, n2, K, m1) are required for the elastic–viscoplastic model.
K and m1 are identified based on the true stress vs. viscoplastic strain rate curve. A and n2
are identified by the equilibrium stress curves at different strains, as shown in Figure 11,
according to the equation:

ln(εpl) = ln(ε− c
E
) = n2ln(g) + ln(A), (22)
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Table 4 shows the parameters identified from experimental tests for the TLVP model
(viscous and plastic parameters) and the elastic properties of the two materials.

Table 4. Identification of TLVP model parameters of the studied polymers at Tg + 20 ◦C.

Identification
PMMA PC

Parameter Equation

Ep (Pa) (7) 3.61 × 106 2.17 × 106

E (Pa) (7) 3.338 × 107 3.173 × 107

f (8) 0.89 0.93
A (Pa)

(16), (18) 6.63 × 10−6 1.71 × 10−4

n2 0.88 0.70
m1 (19)

0.84 0.93
K (Pa) 3.338 × 107 3.173 × 107

v - 0.4 0.37

4. Simulation Results of the Mold Filling in HE

Various behavior laws were applied to PMMA and PC to analyze their effects on
mold-filling efficiency in micro HE. The influences of friction coefficient and embossed
temperature were also involved in this research. Numerical simulation was performed
with the identified parameters as shown in Table 4.

4.1. Effect of Imposed Displacement

The elastic behavior was considered in this simulation to observe the filling evolution
of PC substrate with different imposed displacements (0.05, 0.10, 0.15, and 0.20 mm). Based
on Figure 12a–d, the filling evolution of polymer was represented. As a conclusion of
simulation, the maximal von Mises stress was obtained at the mold corner, which was
independent of imposed displacement. The lowest value of von Mises stress was 0.62
MPa, obtained with the imposed displacement of 0.05 mm. The highest value was 1.60
MPa, obtained with the imposed displacement of 0.2 mm. The mold filling ratio increased
with the imposed displacement, but a micro-gap was unfilled in the process, even with a
maximum imposed displacement.
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(a) 0.05 mm, (b) 0.1 mm, (c) 0.15 mm, and (d) 0.2 mm.

4.2. Effect of Plasticity of PC

The elastoplastic behavior (Equations (2) and (3)) was considered in this simulation to
observe the filling evolution of PC with different imposed displacements (0.05, 0.10, 0.15,
and 0.20 mm). Figure 13 shows the evolution of von Mises stress values of PC substrate
in HE. The maximal value of von Mises stress was approximately 0.9 MPa. Because
of the plasticity of polymer, the concentration of stress increased in size with imposed
displacement, confirmed by the maximum stress zone enlarged with imposed displacement.
Similar with the observation in Section 4.1, the mold filling ratio increased with imposed
displacement.
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4.3. Effect of TLVP Model

The elastic–viscoplastic constitutive behavior (TLVP model) of PC and PMMA was
applied in this numerical simulation. The material parameters were set based on the
value obtained in Table 4. A comparison of the cavity filling ratio with the case of elastic
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behavior was effectuated to analyze the effects of TLVP model on the deformation of
polymer in micro HE, as shown in Table 5. The filling ratio increased as a function of
imposed displacements for PMMA and PC.

Table 5. A comparison of filling ratio of PMMA and PC with different imposed displacements from
0.05 mm to 0.20 mm and constitutive behavior laws (elastic and elastic–viscoplastic).

Imposed Displacement (mm)
Elastic Elastic–Viscoplastic

PC PMMA PC PMMA

0.05 43.22% 43.00% 52.10% 98.40%
0.10 76.15% 88.00% 90.50% 98.90%
0.15 89.10% 91.50% 96.60% 99.16%
0.20 97.30% 95.34% 98.00% 99.99%

With the same imposed displacement, the polymer flow filled better in the cavity
mold when the elastic–viscoplastic behavior was applied. At the imposed displacement
of 0.2 mm, the micro-cavity mold was filled completely in the numerical simulation. It is
necessary to consider the elastic, plastic, and viscous properties of PC and PMMA substrates
to achieving a filling ratio close to 100% of the mold cavity.

4.4. Effect of Friction

The objective was to investigate the effects of the friction between the mold and the
polymer substrate on the filling ratio of micro cavity. The numerical and experimental
research on the measurement of friction coefficient was realized by Nuño et al. [38], in
which the value of friction coefficient µ was from 0.17 to 0.45. In this simulation, the value
of 0.4 was selected to study its influence on mold filling. The TLVP model was used to
describe the viscoplastic behavior of PC at Tg + 20 ◦C with an imposed displacement
0.2 mm.

The results of the numerical simulation with and without friction are shown in
Figure 14. This figure illustrates the displacement of polymer in the horizontal direction. In
the mold/polymer contact area, the displacement of polymer was 5.10 × 10−4 mm without
friction and 2.13 × 10−4 mm with friction (green color). Because the friction between
the mold and polymer limited the displacement of polymer, the micro cavity was better
filled without friction, confirmed by the smaller empty area shown in Figure 14. It can be
concluded that mold/polymer friction affected the filling ratio.
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Tg + 20 ◦C, (a) without friction and (b) with friction (µ = 0.4).

The filling ratio with and without friction was calculated in order to investigate
quantitatively its effects. As shown in Table 6, the filling ratio was improved without
friction for PMMA and PC. But, it should be pointed out that the difference was quite small.
The contribution of friction on the filling ratio was less important than other processing
parameters, such as embossing temperature and imposed displacement.
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Table 6. Friction effect on the cavity filling ratio.

Polymer With Friction Without Friction

PMMA 99.99% 100%
PC 98.00% 98.45%

4.5. Effect of Temperature

The filling ratio of micro cavity with PC substrate was investigated at different tem-
perature above Tg to analyze its effect during HE. The polymer substrate was embossed at
Tg + 20 ◦C and Tg + 30 ◦C with elastic and elastic–viscoplastic behaviors in the simulation.
The material parameters of polymer at different temperatures are summarized in Table 2.

Based on Table 7, the filling ratio of PC substrate at an elevated temperature was
higher than that at a lower temperature when the same behavior law was applied. The
filling ratio was higher at an elevated temperature with the same imposed displacement. It
can be concluded that the embossing temperature improved the filling ratio of micro cavity.

Table 7. Cavity filling ratio vs. different imposed displacements from 0.05 mm to 0.20 mm for PC
with elastic and elastic–viscoplastic behavior laws.

Imposed Displacement
(mm)

Elastic Elastic–Viscoplastic

Tg + 20 ◦C Tg + 30 ◦C Tg + 20 ◦C Tg + 30 ◦C

0.05 43.22% 44.12% 52.10% 53.00%
0.10 76.15% 77.15% 90.50% 91.20%
0.15 89.10% 89.96% 96.60% 97.90%
0.20 97.30% 97.83% 98.00% 98.93%

5. Experimental Validation

A uniaxial compressive testing equipment was improved to carry out HE to validate
the numerical results. The whole system was placed in a heating furnace to ensure the
temperature conditions during the process. An aluminum mold with micro structured
features was inserted in the cross head, as shown in Figure 15. The polymer sample was
placed on the fixed mold plate. The micro cavity was cylindrical and obtained by micro
milling process, with a diameter of 0.20 mm and a height of 0.05 mm, which was coherent
with the simulation model. The profile of the micro cavity was measured using the 3D
optical profilometer, as shown in Figure 15. Some rugosities were observed on the mold
surface, due to the milling process and material.
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The polymer sample was placed in the center of the plate to ensure the homogeneity
of the distribution of applied pressure. It was polished to reduce the friction between the
polymer and mold surfaces. HE was piloted by the imposed displacement and temperature
in different steps (embossing, packing, cooling). The evolution of imposed displacement
and temperature as a function of time are shown in Figure 16. The mold and polymer were
heated to the embossing temperature. The mold insert moved to compress the polymer
sample at the temperature above Tg. After the maintain and cooling steps, the mold insert
was separated from the polymer sample.
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The replicated polymer samples were characterized by 3D optical profilometer Alicona.
The obtained profile was compared with the mold insert, as shown in Figure 17. The
polymer replica was embossed at Tg + 20 ◦C, with an imposed displacement of 0.2 mm. The
micro feature was successfully replicated on the polymer. The experimental investigation
confirmed the numerical results.
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6. Conclusions and Perspectives

This research concerned the investigation of the viscoplastic behaviors of PC and
PMMA polymers and their influence on the filling efficiency of micro HE. The TLVP model
was proposed to describe the deformation of polymer above its Tg. The material parameters
were identified by inverse method, based on the thermomechanical compression tests. The
numerical model was applied in FEM simulation with different temperatures and friction
conditions.

The simulation results showed that the filling efficiency increased with the imposed
displacement. The proposed TLVP model was confirmed to be more accurate than the
elastic model. The micro cavity was completely filled with optimized processing parameters
for PMMA (99.99%). The effect of the friction parameter was investigated by considering
the viscoplastic properties of PC and PMMA at Tg + 20 ◦C. The polymer flowed better
in the micro cavity without friction. The filling ratio of the microchannel improved with
higher embossing temperature. The numerical approach was validated by experimental
observation of micro HE, associated with the 3D optical profilometer.
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The manufacturing process of an embossing mold could be enhanced by micro electri-
cal discharge machining to guarantee the dimensional accuracy. The behavior model may
be improved by taking into account of the effects of molecular weight, polymer chain, and
other microstructural features. The optimization of the HE processing parameters will be
effectuated to improve the replication efficiency.
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Glossary

DSC Differential scanning calorimetry
FEM Finite element method
HE Hot embossing
PC Polycarbonate
PMMA Poly (methyl methacrylate)
TLVP Two-layer viscoplastic model
Notation
A Strength coefficient
a, b Constants
c Equilibrium stress
D Diameter of specimen
d Mold displacement
E Elastic modulus
Ep Elastic modulus in elastoplastic
E(X) Assessment function
Ev Elastic modulus in viscoelastic
F Force
f Proportion of elasticity in viscoelastic to total elasticity
H Power law hardening
H0 Initial height
H1 Final height
K, m1 Material constants
L Length of specimen
m Time hardening
N Number of parameters
n1 Work hardening exponent
n2 Strain hardening exponent
S Final cross section
S0 Initial cross section
Tg Glass transition temperature
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t Time
X Constant vector
yc

i Calculated true stress–strain
ym

i Measured true stress–strain
ε Total strain
.
ε Strain rate
εel

v Elastic strain in viscoelastic
εel

p Elastic strain in elastoplastic
εel Elastic strain
εpl Plastic strain
εv Viscous strain
εY Strain at the initial yield stress
.
ε

el Elastic strain rate
.
ε

pl Plastic strain rate
.
ε

vp Viscoplastic strain rate
σ Stress
.
σ Stress rate
σp Plastic stress
σv Viscous stress
σr Relaxation stress
σY Yield stress
η Viscosity
υ Poisson’s ratio
µ Friction coefficient
Ω Inverse analysis space
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