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Abstract The reliable estimation of the wavenumber space (k-space) of the plates remains a long-

term concern for acoustic modeling and structural dynamic behavior characterization. Most current

analyses of wavenumber identification methods are based on the deterministic hypothesis. To this

end, an inverse method is proposed for identifying wave propagation characteristics of two-

dimensional structures under stochastic conditions, such as wavenumber space, dispersion curves,

and band gaps. The proposed method is developed based on an algebraic identification scheme

in the polar coordinate system framework, thus named Algebraic K-Space Identification (AKSI)

technique. Additionally, a model order estimation strategy and a wavenumber filter are proposed

to ensure that AKSI is successfully applied. The main benefit of AKSI is that it is a reliable and

fast method under four stochastic conditions: (A) High level of signal noise; (B) Small perturbation

caused by uncertainties in measurement points’ coordinates; (C) Non-periodic sampling;

(D) Unknown structural periodicity. To validate the proposed method, we numerically benchmark

AKSI and three other inverse methods to extract dispersion curves on three plates under stochastic

conditions. One experiment is then performed on an isotropic steel plate. These investigations

demonstrate that AKSI is a good in-situ k-space estimator under stochastic conditions.
� 2024 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).
1. Introduction

In the field of the transportation industry, characterizing the

vibroacoustic dynamic behavior of structures is essential for
structural optimization,1–4 noise control,5,6 and damage detec-
tion.7–11 In the last few decades, inverse methods on wavenum-
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ber identification of 2D structures have attracted increasing
attention due to their ability to achieve characterization of
structural dynamic behavior, such as dispersion relation,

wavenumber space (k-space), band gaps, and damping loss fac-
tors. By solving an inverse problem, the extracted wavenumber
can be used to determine the mechanical parameters of struc-

tures.12–14 Numerous 2D inverse methods are available in the
literature. These inverse methods use only the responses of
the structure as input parameters to extract wavenumber, lead-

ing to their wide range of applications in industrial practice. In
general, these methods can be divided into non-linear inverse
methods and linear Prony family inverse methods.

In the non-linear family inverse methods. The Inhomoge-

neous Wave Correlation (IWC) method is the most popular
inverse method. This method was proposed by Berthaut et al.,15

which aims to find complex wavenumbers that maximize the

correlation between an inhomogeneous wave mode and mea-
sured wave field at a fixed wave propagation angle h. At a given
frequency, the k-space can be formed by repeating the IWC

procedure at each angle h. In the past years, this method has
been applied to extract k-space on a series of complex struc-
tures, such as locally resonant metamaterial,16 honeycomb

sandwich plate,12 and curved structures.5 These works show
that IWC is a reliable inverse method in the medium and
high-frequency domain, even in the presence of measurement
error.17,18 Furthermore, this method is not limited by periodic

sampling. However, as the IWC is close to the Fourier trans-
form, the extracted wavenumber is less accurate in the low-
frequency range. In addition, this method involves a non-

linear iterative process, leading to a high computational cost.
A very similar method, called Spatial Laplace Transform for
ComplexWavenumber recovery (SLaTCoW)method, has been

proposed in Ref. 19 which differs from IWC in that it applies
the Laplace transform to the signal. This method has been used
to extract dispersion curves for a polycrystalline aluminum

plate.20 In addition to the same limitations as IWC, another dif-
ficulty with this method is the choice of a suitable cost function.

In the Prony family inverse method, the classical Prony
method is well known for high-resolution parameter identifica-

tion in noiseless conditions. In the context of vibroacoustic, the
classical Prony method has been applied to extract dispersion
curves of a constrained-layer damping sandwich plate21 and

the k-space of a wooden plate.22 Margerit et al.23 proposed
the High-Resolution Wavevector Analysis (HRWA) method,
allowing the automatic k-space identification without the need

to the selection of angles in prior. However, its practical imple-
mentation is challenging due to several factors, including the
estimation of the total number of waves propagating in 2D
structures and the use of 2D Finite Impulse Response (FIR)

Filter. These factors limit the ability of HRWA to extract a
smooth and full k-space even in perfect condition. Recently,
Boukadia et al.24 proposed INverse COnvolution MEthod
Table 1 Comparison of general properties between popular 2D inv

Method Solver Sampling limit Robu

IWC Nonlinear None Yes

SLaTCoW Nonlinear None Yes

HRWA Linear Periodicity No

INCOME Linear Periodicity No

BWI Linear Periodicity Yes
(INCOME) to overcome this problem. This method draws
the inspiration of the Wave Finite Element Method (WFEM)
to rebuild the formula of the Prony method in the convolution

framework, allowing us to extract a full and accurate k-space
by a single 2D convolution kernel in the noiseless condition.
Unfortunately, this method is limited to periodic sampling

and sensitive to signal noise. In terms of the application of
the Prony method on periodic structures, Ribeiro et al.25 pro-
posed a Bloch Wavenumber Identification method, called

‘‘BWI”, to extract the Bloch wavenumber of periodic struc-
tures. An important conclusion can be obtained from BWI:
the Prony method requires that the periodicity of the sampling
must be an integer multiple of the structural periodicity. In

practice, however, the structural periodicity is often not accu-
rately known due to structural deformation or unknown when
periodic structures are surrounded by other materials, result-

ing in the failure of wavenumber extraction using linear Prony
family inverse methods.

In Ref. 26, the authors proposed the Algebraic Wavenum-

ber Identification (AWI) method to extract wavenumbers of
1D structures and this method has been validated to have a
good performance under different stochastic conditions.27

However, it is worth noting that AWI is designed for 1D struc-
tures and it is not able to extract the k-space of 2D structures
alone. In addition, the methodology of AWI does not take into
account direction parameters in 2D structures. Based on this

context, the present work aims to extend AWI to extract the
k-space of 2D structures, overcoming the main limitations of
other 2D inverse methods mentioned in Table 1. To differenti-

ate AWI, the method proposed is named Algebraic K-Space
Identification (AKSI) technique.

Similar to AWI, the methodology of AKSI is also devel-

oped in the algebraic parameter estimator framework,28

involving the transformation of signals: spatial domain !
wavenumber domain ! spatial domain. However, the param-

eter estimation of multidimensional systems (such as 2D struc-
tures) by the algebraic parameter estimator needs to solve the
inverse Laplace transforms for complex higher-order partial
differential equations, which is more problematic than ordi-

nary differential equations in unidimensional systems (such
as 1D structures). To address this problem, we established
AKSI with the direction parameter in the polar coordinate sys-

tem based on the conversion of the wavenumber and the geo-
metric coordinates of the measurement points between the
Cartesian and polar coordinate systems. This results in that

the essence of the proposed method lies in estimating the
unknown parameters of an ordinary differential equation,
avoiding the introduction of partial differential equations,
which allows us to extract the wavenumber in each direction

of 2D structures under stochastic conditions. In addition, we
proposed a model order estimation and a wavenumber filtering
strategy adapted to AKSI to guarantee the successful applica-
erse methods for dispersion curves extraction of 2D structures.

st to perturbation Unknown periodicity K-space

Yes Yes

Yes Yes

No Yes

No Yes

No No
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tion of AKSI in the k-space extraction of 2D structures under
stochastic conditions. The main contributions are the
following:

� Extend AWI to extract the k-space of 2D structures under
stochastic conditions. Moreover, the proposed strategy for

model order estimation and wavenumber filtering is neces-
sary for the proposed method to be implemented
successfully.

� As the AKSI inherits the advantages of an algebraic estima-
tor, it exhibits good robustness under perturbation condi-
tions. In addition, AKSI only needs to solve several linear
algebraic equations, which can reduce computational costs

compared to nonlinear methods such as Inhomogeneous
Wave Correlation (IWC).

� Consider a more realistic signal model that takes into

account external signal noise and small perturbations. In
addition, the performance of the proposed method is inves-
tigated when the structural periodicity of periodic structures

is unknown.
� Compare the proposed method with the other three popular
2D inverse methods numerically and experimentally, vali-

dating that the proposed method can overcome the main
limitations of other popular inverse methods listed in
Table 1. The investigations provide a benchmark for devel-
oping inverse methods in the future.

First, briefly review the tested inverse methods, including
IWC, BWI, and INCOME. Secondly, a stochastic signal

model of the plate is presented, and then the formula of AKSI
is given. Thirdly, benchmark AKSI and other inverse methods
in three numerical studies. Then, an experimental result of

identifying the dispersion curve and k-space using AKSI and
IWC for a thin isotropic plate is presented. Finally, conclu-
sions and open issues to be addressed in the future are

provided.

2. Review of tested inverse methods

2.1. Inhomogeneous Wave Correlation (IWC) method

The principle of IWC is similar to the Modal Assurance Crite-

rion (MAC).29 At a fixed frequency, assuming that the displace-

ments U xj; yj
� �

of the N measurement points are known at a

fixed wave propagation angle h, the complex wavenumber can
be obtained by maximizing the IWC function:

IWC k; hð Þ ¼
PN

j¼1U xj; yj
� �br�

k; h xj; yj
� �

Xj

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1jU xj; yj

� �j2Xj

PN
i¼1jbrk; h xj; yj

� �j2Xj

q ð1Þ

where inhomogeneous wave model br�
k;h xj; yj
� �

is defined as

e�jk hð Þ xj cos hþyj sin hð Þ; the superscript � denotes the complex con-

jugate; Xj is an estimation of surface around point at xj; yj
� �

; k

is the complex wavenumber.

2.2. Bloch Wavenumber Identification (BWI)

The Prony method is extended to extract the Bloch wavenum-
ber of periodic structures.25 The core of this method is that the
measurement points first need to be grouped. The measure-
ment points in each group need to satisfy two requirements:
(A) The measurement points have the same sampling interval;
(B) The sampling interval is an integer multiple of the struc-

tural periodicity. Then the wavenumber in x and y directions
can be estimated along the line of the Prony method. When
only one wave type propagates in an infinite plate, two groups

of measured data U and U0 need to be first arranged, then the

coefficients of the characteristic polynomial ak2x þ bkx þ c ¼ 0

can be estimated using the least-squares method. The whole
process can be expressed in matrix format:

U1

U2

U2

U3

U3

U4

..

. ..
. ..

.

UN�2 UN�1 UN

266664
377775

U0
1

U0
2

U0
2

U0
3

U0
3

U0
4

..

. ..
. ..

.

U0
N�2 U0

N�1 U0
N

266664
377775

266666666666666664

377777777777777775

a

b

c

264
375 ¼

0

0

0

264
375 ð2Þ

Based on the obtained coefficients vector a b c½ �T, propa-
gation constants kx can be calculated by the characteristic
polynomial. Finally, one can obtain the wavenumber by

kx ¼ e�jkxDx with sampling interval Dx. The wavenumber ky
can be done in the same way.

2.3. INverse COnvolution MEthod (INCOME)

The main contribution of INCOME is that all properties of the
k-space of 2D structures can be estimated by only a 2D convo-

lution kernel. Moreover, the k-space can be extracted with
high numerical precision in perfect conditions. To simplify
the explanation of INCOME, only one wave type is assumed

to propagate in the 2D structure. The wavenumber can be esti-
mated in three steps. The first step is to design the 2D convo-
lutional kernel as

S1;3 S2;3 S3;3

S1;2 S2;2 S3;2

S1;1 S2;1 S3;1

264
375 ¼

e h f

g d g

f h e

264
375 ð3Þ

The second step is to estimate the elements of this 2D convo-
lutional kernel by calculating the convolution of displacements

U xj; yj
� �

i;jð Þ2 1;N½ �� 1;M½ � with the 2D convolution kernel S as

V ¼ U � S ¼ 0 ð4Þ
where ‘‘*” is the convolution symbolic.

The explicit form of Eq. (4) can be expressed as

8 p; qð Þ 2 1;N� 3½ � � 1;M� 3½ �
Vp;q ¼

P
i;jð Þ2 1;3½ �2Si;jUpþ3�i;qþ3�j ¼ 0

(
ð5Þ

Once elements of the 2D convolution kernel are calculated,
the propagation constants can be obtained by

aþ b kx þ 1

kx

� �
þ c ky þ 1

ky

� �
þ d

kx
ky

þ ky
kx

� �
þ e kxky þ 1

kxky

� �
¼ 0 ð6Þ
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The final step is to calculate the wavenumber using the
relationship:

kx ¼ e�jkxDx ¼ e�jk cos h Dx

ky ¼ e�jkyDy ¼ e�jk sin h Dy

(
ð7Þ

where Dx and Dy are the sampling interval along x and y direc-

tions. The essence of INCOME is the Prony method because
the elements of the 2D convolution kernel are calculated along
the way of the Prony method. The difference is that the Prony

method can only extract the wavenumber in one direction
using the characteristic polynomial with a single variable, as
explained in Section 2.2. In contrast, INCOME proposes a

characteristic polynomial containing two variables kx and ky
in the WFEM framework, allowing a full k-space to be

extracted by changing the angle h.
Fig. 1 Coordinate system transformation and 2D grid

distortion.
3. Algebraic K-Space Identification (AKSI)

Concerned with introducing the theory of AKSI in polar coor-
dinate systems. First, Section 3.1 establishes a stochastic signal
model considering the influence of signal noise and the small

perturbation problem. Then, Section 3.2 introduces the formu-
lation of AKSI in polar coordinates, the essence of which lies
in the identification of the unknown parameters of an Ordi-

nary Differential Equation (ODE). Next, Section 3.3 describes
two essential signal processing tools for implementing the
AKSI algorithm. The first aims to estimate model order and

the second concerns the wavenumbers filtering. Finally,
Section 3.4 presents the implementation procedure of AKSI.

3.1. Stochastic signal model

Under perfect conditions, the harmonic displacement at any
measured point x; yð Þ of a plate can be modeled by nw plane
waves as

U x; yð Þ ¼
Xnw
m¼1

Ame
jkx;mxejky;my ð8Þ

where Am is the complex amplitude of m th wave; kx;m and ky;m
are the components of the m th wavenumber km in x and y

directions, respectively. Fig. 1(a) illustrates the displacement
field of the isotropic aluminum plate, studied in Section 4.1,
at 150 Hz. As shown in Fig. 1(a), when the wave propagation
angle h is given, the displacement U xn; ynð Þ of any Point P in

this direction can also be expressed as

U h; xn; ynð Þ ¼
Xnw
m¼1

Ame
jkh;x;mxnejkh;y;myn ð9Þ

In practice, the structural responses will inevitably be
affected by various disturbances. To create a more realistic sig-
nal model, two disturbance factors are considered: (A) Small

perturbation due to the geometrical coordinates’ uncertainty;
(B) External signal noise. Small perturbations are common
in practice and can lead to mesh distortion, as shown in

Fig. 1(b). The direct consequence is that the geometric coordi-
nates of the measured points do not match the actual struc-
tural response. For example, under the influence of the small

perturbation, Point P moves to Point P0 with an unknown
and random coordinate, leading to a mismatch between the
actual response of the structure (the response of Point P0)
and the coordinates of the measured point (coordinate of Point
P). Furthermore, in contrast to the 1D case, the small pertur-
bation of the 2D measurement points is more complex,

because the coordinates of the measurement points can be per-
turbed randomly in any direction. To solve this problem, in a
probabilistic framework, the small perturbation problem can

be quantified by introducing two random variables into the
coordinate of each point.

x̂n ¼ xn � nnDxn

ŷn ¼ yn � fnDyn
n ¼ 1; 2; � � � ;N

�
ð10Þ

where random variables nn and fn are defined as the small per-
turbation ratio which can obey different distributions, such as

uniform distribution and gradient distribution. Therefore, the
signal model in the presence of small perturbation can be
expressed as

U h; bxn; bynð Þ ¼
Xnw
m¼1

Ame
jkh;x;m xn�nnDxnð Þejkh;y;m yn�fnDynð Þ ð11Þ

where the small perturbation part can be expanded by a first-
order Taylor series for illustration of measurement error
caused by the small perturbation problem:
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U h; bxn; bynð Þ ¼
Xnw
m¼1

Ame
jkh;x;mxn 1� jkh;x;mnnDxn þO n2nDx

2
n

� �� �
ejkh;y;myn

� ð1� jkh;y;mfnDyn þO f2nDy
2
n

� � 	 Xnw
m¼1

Ame
jkh;x;mxn ejkh;y;myn

� Ame
jkh;x;mxn ejkh;y;myn 1þ jkh;x;mnnDxn þ jkh;y;mfnDyn

�
þkh;x;mnnDxnkh;y;mfnDynÞ ð12Þ

where the first part is the unperturbed part, which is the same as
the model in perfect condition, as shown in Eq. (9). The second
part is the perturbed part which is not additive noise but
depends on the degree of uncertainty of the geometric coordi-

nates, the properties of the structure, and the frequency. It
should be noted that in practice, the random variables nn and
fn are unknown, and therefore, the random coordinate of each

measurement point can only be considered as the unperturbed
coordinate. Based on this, the stochastic signal model in the
presence of small perturbation can be represented asbU h; xn; ynð Þ ¼ U h; bxn; bynð Þ ð13Þ

Then additive noise, such as external signal noise
e h; xn; ynð Þ, is considered. Thus the stochastic signal model is

S h; xn; ynð Þ ¼ bU h; xn; ynð Þ þ e h; xn; ynð Þ ð14Þ
The signal model described in Eq. (14) is built in the Cartesian

coordinate system. As shown in Fig. 1(a), according to the trans-
formation of the coordinate system, the coordinate of the mea-

surement Point P can be expressed in the polar coordinate system:

xn ¼ rn cos h

yn ¼ rn sin h

�
n ¼ 1; 2; � � � ;N ð15Þ

where rn is the distance between the excitation Points O and P.

The relationship between the wavenumber and its components
in x and y directions are given by

kh;x;m ¼ kh;m cos h

kh;y;m ¼ kh;m sin h

�
n ¼ 1; 2; � � � ;N ð16Þ

The displacement of Point P in the polar coordinate system
can be obtained by substituting Eqs. (15) and (16) into Eq. (9):

U h; rnð Þ ¼
Xnw
m¼1

Ame
jkh;mrn ð17Þ

where the model is the signal model in perfect condition. The

corresponding stochastic signal model is

S h; rnð Þ ¼ bU h; rnð Þ þ e h; rnð Þ ð18Þ
where e h; rnð Þ is the additional noise part; bU(h; rn) is the part
affected by the small perturbation problem which can be
expressed as

bU h; rnð Þ ¼
Xnw
m¼1

Ame
jkh;mbrn

¼
Xnw
m¼1

Ame
jkh;m cos h rn cos h�nnDxnð Þejkh;m sin h rn sin h�nnDynð Þ

¼
Xnw
m¼1

Ame
jkh;m rn�nnDxn cos h�fnDyn sin hð Þ ð19Þ

where it is clear that brn is related to nn and fn.

3.2. AKSI formula in polar coordinate system

Introduce the formula of AKSI on wavenumber identification
of a plate in the polar coordinate system framework. To facil-
itate the expression of the general formula for AKSI, the signal
noise part e h; rð Þ is ignored for the moment. Thus, Eq. (18) can
be rewritten as

S h; rnð Þ ¼
Xnw
m¼1

Ame
Rmbrn ð20Þ

where Rm is equal to jkh;m. In the wavenumber domain,

Eq. (20) can be written in the wavenumber domain by Laplace
transform:

S h; sð Þ ¼ A13

s� R1

þ A2

s� R2

þ � � � þ Anw

s� Rnw

ð21Þ

where s is the variable in the wavenumber domain.

It is obvious that Eq. (20) can be regarded as a solution to an
ordinary differential equation. Thus, in the wavenumber domain,
the characteristic polynomial of this ODE can be defined as

W sð Þ ¼
Ynw
m¼1

s� Rmð Þ ¼
Xnw
i¼0

c nw � ið Þsi ð22Þ
where c nw � ið Þ i2 0;nw½ �½ � are the unknown coefficients of the char-

acteristic polynomial. It is to be noted that if these unknown
coefficients are estimated, the wavenumber can be calculated

by solving this characteristic polynomial. Therefore, the fol-
lowing paragraphs start with the estimation of the coefficients
c nw � ið Þ i2 0;nw½ �½ � in three steps based on the algebraic identifica-

tion scheme: (A) By Laplace transform, an ordinary differen-

tial equation with unknown coefficients is established in the
wavenumber domain; (B) Inverse Laplace transform is applied
to the differential equation to obtain the corresponding expres-

sion in the spatial domain; (C) Least-squares method is used to
estimate the unknown coefficients, which are closely related to
the wavenumber.

The first step is establishing an ODE in the wavenumber

domain. A polynomial formula can be obtained by multiplying
Eqs. (21) and (22) as

S h; sð ÞW sð Þ ¼ A1

s� R1

þ A2

s� R2

þ � � � þ Anw

s� Rnw

� �Ynw
m¼1

s� Rmð Þ

¼
Xnw
m¼1

Am

Ynw
i¼1; i–m

s� Rið Þ ð23Þ

It is easy to see that Eq. (23) is a polynomial of order

nw � 1. Thus, a differential equation can be built by taking
the derivative of Eq. (23) with respect to the variable snw times:

dnwS h; sð ÞW sð Þ
dsnw

¼ dnw S h; sð ÞPnw
i¼0c nw � ið Þsi	 


dsnw
ð24Þ

To calculate Eq. (24), two formulas are presented as

dnwS h; sð ÞW sð Þ
dsnw

¼
Xnw
j¼0

nw

j

� �
dnw�jS h; sð Þ

dsnw�j
� d

jW sð Þ
dsj

ð25Þ

dnw sjð Þ
dsnw

¼ j!

j� nwð Þ! s
j�nw ð26Þ

where
nw
j

� �
¼ nw !

j! nw�jð Þ! with nw! is the factorial of nw. Eq. (25) is

a Leibniz formula and Eq. (26) is a formula for higher-order
algebraic derivatives. Substituting these two formulas into

Eq. (24), Eq. (27) can be obtained:

Xnw
i¼0

Xnw
j¼i

nw

j

� �
nw � i

nw � j

� �
nw � jð Þ!sj�i d

jS h; sð Þ
dsj

c ið Þ ¼ 0 ð27Þ
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Now, the second step needs to proceed, which aims to
return Eq. (27) into the spatial domain using the inverse
Laplace transform. For this purpose, the following inverse

Laplace transform is introduced:

L�1 1

sI
� d

JS h; sð Þ
dsJ

� �
¼ 1

I� 1ð Þ!
Z rn

0

vI�1;J sð ÞS h; sð Þds ð28Þ

with

vI;J sð Þ ¼ rn � sð ÞI �sð ÞJ ð29Þ
where s is integral variable; J and I are two indices, represent-

ing the order of the derivative and the exponent of the variable
s, respectively.

To satisfy inverse Laplace transform Eq. (28), Eq. (27)

requires first dividing by snwþ1:Xnw
i¼0

Xnw
j¼i

nw

j

� �
nw � i

nw � j

� �
nw � jð Þ! 1

snwþ1þi�j
� d

jS h; sð Þ
dsj

c ið Þ ¼ 0

ð30Þ
Then, after applying the inverse Laplace transform Eq. (28)

to Eq. (30), one can obtain Eq. (31) in the spatial domain:Xnw
i¼0

Xnw
j¼i

nw

j

� �
nw � i

nw � j

� �
nw � jð Þ! 1

nw þ i� jð Þ!

�
Z rn

0

rn � sð Þnwþi�j �sð ÞjS h; sð Þds c ið Þ ¼ 0 ð31Þ

Eq. (31) can also be expressed asXnw
i¼0

/ i; h; rnð Þc ið Þ ¼ 0 ð32Þ

with

/ i; h; rnð Þ ¼
Xnw
i¼0

Xnw
j¼i

nw

j

� �
nw � i

nw � j

� �
nw � jð Þ! 1

nw þ i� jð Þ!

�
Z rn

0

rn � sð Þnwþi�j �sð ÞjS h; sð Þds ð33Þ

where the integrals can be calculated using numerical integra-
tion, such as the trapezoidal rule.

Finally, the third step is to estimate c ið Þ of Eq. (32) using

the least-squares method. Eq. (32) can be expressed in the
matrix format as

HX ¼ M ð34Þ
with

H ¼

/ nw; h; r1ð Þ / nw � 1; h; r1ð Þ
/ nw; h; r2ð Þ / nw � 1; h; r2ð Þ

� � � / 0; h; r1ð Þ
� � � / 0; h; r2ð Þ

..

. ..
.

/ nw; h; rNð Þ / nw � 1; h; rNð Þ
..
.

� � � / 0; h; rNð Þ

26664
37775

X ¼

c nwð Þ
c nw � 1ð Þ
..
.

c 0ð Þ

26664
37775

M ¼

0

0

..

.

0

26664
37775

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:
ð35Þ
where X is the eigenvector corresponding to the smallest eigen-

value of HTH. Once coefficients vector X of the characteristic
polynomial are obtained, the Rm can be calculated by Eq. (22).
Then the wavenumber kh;m can be obtained by kh;m ¼ �jRm.

It is worth noting that the integrals of the AKSI formula
resemble low-pass filter,30,31 which can reduce the influence

of the measurement error, such as signal noise and the small
perturbation problem. Moreover, the AKSI treats the signals
as a continuous function. Therefore, it is not limited to peri-

odic sampling. On the other hand, AKSI requires only simple
linear problems to be solved, thus reducing the computational
cost. In addition, this method is an h-dependent method that

requires only a small number of samples on the line grid as
input parameters, thus reducing the time needed to arrange
the 2D measurement points in the experimental situation.
The sampling characteristics of AKSI increase its applicability

in periodic structures with unknown periodicity.

3.3. Model order estimation and wavenumber filtering

In the theory of AKSI in Section 3.2, the model order nw (the
number of waves) is assumed to be known a priori. However,
this parameter is unknown in most practical cases. Because

incorrect estimation of the model order affects the accuracy
of the extracted wavenumber, the signal requires pre-
processing (model order estimation). Many model order esti-
mation methods are available. In general terms, they can be

divided into two categories: information-theoretic criteri,32,33

and subspace-based methods.34–36 The first category of meth-
ods can be applied to signals obtained by any sampling way,

but it is sensitive to signal noise. Comparatively, the second
category of methods is robust to signal noise but only works
with periodic signals. Maximum Description Length (MDL)

and ESTimation of ERror (ESTER), the representative of
these two categories of model order estimation methods, are
used to constitute a model order strategy. As the theory of

MDL33 and ESTER34 has been well established, focused on
introducing the model order estimation strategy, which is suit-
able for different stochastic conditions:

� Periodic samples: ESTER is preferred because of its robust-
ness to noise. The interested reader can be referred to Refs.
23,37 where ESTER has been used in the HRWA method

for estimating the number of waves in one- and two-
dimensional structures.

� Non-periodic samples less affected by perturbations: MDL

is used to estimate the model order. MDL has been used to
estimate the number of waves.38

� Non-periodic samples affected by perturbations in a bigger

degree: the interpolation method is first used to generate the
periodic samples from the non-periodic samples, and then
ESTER is used to estimate the model order.

� Non-periodic samples or periodic samples strongly affected

by perturbations: the most effective way is first to divide the
frequency band into several sub-frequency bands, and then
manually adjust the model order in each sub-frequency

band until a better dispersion curve is obtained, and finally
repeat the second step in the other frequency bands.

The application of ESTER on model order estimation is
illustrated by using the extraction of the wavenumber of the
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isotropic plate studied in Section 4.1 as an example. Blue aster-
isks in Fig. 2 show the estimation results when ESTER is
applied to the 50 periodic displacements along x direction at

8.5 kHz when nw 2 [1,20]. It can be seen that the ESTER value
reaches the minimum when nw = 8. Thus the model order at
this frequency is taken as 8. The zoomed sub-pictures show

that the dispersion curve between 8.0 kHz and 9.0 kHz
obtained by AKSI with nw = 8 is accurate, while AKSI fails
to estimate wavenumber when nw = 4, which also illustrates

that ESTER can provide reliable model order estimation for
AKSI.

The value of model order may vary with frequency, result-
ing in the number of extracted wavenumbers may also vary at

different frequencies. Therefore, the dominant wavenumber
kh;m of propagating waves needs to be selected through

wavenumber filtering:

kh;m ¼
Re kh;mð Þ > 0

Im kh;mð Þ > 0

�
jRe kh;mð Þj > jIm kh;mð Þj

8><>: ð36Þ

where the first condition reflects the characteristic of the prop-
agating wave, and the second condition aims to filter out

evanescent waves.

3.4. Implementation of AKSI procedure

The flowchart for extracting dispersion curves and k-space
using the AKSI procedure is shown in Fig. 3. The good perfor-
mance of the AKSI algorithm under stochastic conditions is
attributed to the nature of the algebraic identification estima-

tor, which has been proven to be a fast algebraic estimation
process with high robustness to signal noise and structured
perturbations.28,30 It is worth noting that AKSI has only been

able to identify the imaginary part of the wavenumbers of
plane waves or approximated plane waves. This limitation is
because the signal model used in AKSI is a plane wave model,

as shown in Eq. (8). A characteristic of the plane wave is that
the wavefront is a straight line. However, the wave field of the
2D structure often presents a non-straight wavefront, espe-

cially for low-damped thin plates. As a result, the 2D non-
plane wave signal cannot be represented by a sum of damped
exponential functions, resulting in the fact that the imaginary
part of the wavenumbers of 2D structures remains the most
Fig. 2 Model ord
challenging parameter to be identified for the plane wave
model-based inverse methods. This effect comes mainly from
the fact that the imaginary part of the wavenumber is related

to the decay of wave propagation, which is influenced by a
variety of factors, such as interference from evanescent waves,
energy transformation in different media, and the geometry of

the sources, leading to the challenge of accurately extracting
the imaginary part of wavenumber. Assessing the impact of
these factors on the extraction of the imaginary part is outside

the scope of this paper. For this reason, AKSI is only applied
to extract the imaginary part of the wavenumber of the Levy-
Type (LT) periodic plate studied in Section 4.3. Due to the
high damping effect of LT periodic structures, the displace-

ment field has an approximately straight wavefront.

4. Numerical study and parametric survey

The performance of AKSI in extracting dispersion curves and
k-space of 2D structures under stochastic conditions is verified
by a series of numerical cases. The stochastic conditions here

include: (A) High signal noise; (B) Small perturbation prob-
lems; (C) Non-periodic sampling; (D) Periodic structures with
approximately known and unknown periodicity. In addition,

we compare AKSI with three other popular inverse methods,
including IWC, INCOME, and BWI, to show that AKSI over-
comes some main limitations of these inverse methods. We

organized various case studies in Fig. 4 in which the type of
plates tested, the purpose of the tests, the stochastic conditions
tested, and the methods compared are all mentioned.

To facilitate obtaining disturbed 2D displacement fields

under signal noise and small perturbation conditions, the
transverse displacements of the plates in the first two numerical
cases are calculated by analytical methods. In contrast, in the

third numerical case, the transverse displacements of the LT
periodic plate are obtained with the finite element software
COMSOL for ease of modeling. The inverse methods are com-

pared objectively based on the same data set from the 2D grid
in each case. The k-space is formed from the extracted
wavenumber of 24 angles in the first two case studies, as shown

in Fig. 5, where these angles ensure that AKSI can use the dis-
placements measured on the 2D grid as input parameters.
These angles in the first quadrant are in the following order:

h1 = 0


, h2= 18:4349



, h3 ¼ 26:5651



, h4 ¼ 45



,

h5 ¼ 63:4349


, h6 ¼ 71:5651



, and h7 ¼ 90



. The angles in the
er estimation.



Fig. 3 Flowchart for dispersion curve and k-space identification using AKSI procedure.

Fig. 4 Tree diagram of numerical study.
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Fig. 5 Schematic representation of angle h distribution of k-

space extracted in numerical study.
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other quadrants can be obtained symmetrically from those in

the first quadrant.
Fig. 6 Comparison of dispersion curve and k-space at 500 Hz

obtained by IWC, INCOME, and AKSI for isotropic aluminum

plate under perfect condition.
4.1. Numerical study 1: An isotropic plate

AKSI is used to extract dispersion curves and k-space of a sim-

ply supported thin isotropic plate subjected to a point load
under perfect and signal noise conditions. Section 4.1.1 com-
pares the performance of AKSI, INCOME, and IWC under
perfect conditions, whereas Section 4.1.2 compares the perfor-

mance of these three inverse methods under signal noise
conditions.

The structure is a 200 cm � 200 cm aluminum plate (elastic

modulus E = 79 GPa, Poisson’s ratio m = 0.3, density of plate
q = 2700 kg/m3, damping loss factor g = 0.005) with the
thickness of 0.17 cm. The point load is put on the center of

the plate. The transverse displacement U x; y;xð Þ of this Kirch-
hoff plate can be calculated using39

U x; y;xð Þ ¼
X1
n¼1

X1
m¼1

F0Unm x0; y0ð ÞUnm x; yð Þ
p4D n2

l2
1

þ n2

l2
2

� �2

� qhx2


 � R l1
0

R l2
0
U2

nm x; yð Þdxdy

ð37Þ

with

D ¼ E 1þ igð Þh3
12 1� m2ð Þ ð38Þ
Unm x; yð Þ ¼ sin
npx
l1

sin
mpy
l2

ð39Þ

where F0 the force and it is defined as 10 N in this case; l1, l2,

and h are the length, width, and thickness of the plate, respec-
tively; x is angular frequency; D is bending stiffness; Unm x; yð Þ
is eigen-modes. The transverse displacements calculated on a

501 � 501 mesh grid with the 4 mm sampling interval
along x and y directions are used as the input parameters of
INCOME and IWC. AKSI was performed on 50 measurement
points distributed along each direction.
4.1.1. Comparison of inverse methods under perfect condition

Under the perfect condition, the dispersion curves in x direction

extracted by INCOME, IWC, and AKSI are shown in
Fig. 6(a). INCOME and AKSI can provide accurate dispersion
curves in the full frequency range, while IWC performs better

at higher frequencies. This is because that displacement cannot
contain many wavelengths in the low-frequency range, result-
ing in fluctuations in the dispersion curve obtained by IWC.
The k-space comparison at 500 Hz is provided in Fig. 6(b),

where all three tested inverse methods have a good perfor-
mance on k-space identification, although the k-space obtained
by IWC is not as smooth as that extracted from INCOME and

AKSI. It is noted that INCOME is a method that can provide
wavenumber with high numerical precision under the perfect
condition24 but has a poor performance in noisy environments,

especially when the signal is disturbed by the high level of sig-
nal noise.

4.1.2. Comparison of inverse methods under signal noise
condition

Fig. 7 shows the wavenumbers extracted by AKSI when con-
sidering displacements affected by different signal noise levels

as input parameters. The additive noise here is Gaussian white
noise with the Signal-to-Noise Ratio (SNR) generated by the
AWGN function in MATLAB and it can be measured by
SNR. Fig. 7 shows that the dispersion curve obtained by AKSI

is reliable when SNR is higher than 20, having a good agree-
ment with the analytical solution.



Fig. 7 Dispersion curve obtained by AKSI for isotropic aluminum plate under different levels of signal noise conditions in different

frequency ranges.

Fig. 8 Comparison of dispersion curve and k-space at 300 Hz

obtained by INCOME and AKSI for isotropic aluminum plate

under signal noise condition (SNR = 25).
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Figs. 8(a) and (b) show the comparison of the dispersion
curves along x direction and the k-space extracted by AKSI,

IWC, and INCOME when SNR = 25, respectively. The k-
space is formed by estimated wavenumbers along 24 angles
of interest at 300 Hz. From Figs. 8(a) and (b), one can observe

that AKSI results are in good agreement with the analytical
solution even only using 25 measurement points, which indi-
cates that AKSI is a reliable method to extract dispersion

curves and k-space in noisy environments. The dispersion
curve and k-space extracted by IWC are also acceptable even
though the dispersion curve is full of fluctuation at low fre-
quencies. Comparatively, the wavenumbers extracted by

INCOME deviate significantly from the analytical wavenum-
bers at some frequencies in extracted dispersion curve and
some angles in extracted k-space. This is mainly because the

nature of INCOME is Prony which suffers from a severe ill-
conditioned problem when the input parameters are affected
by undesirable noise level.

4.2. Numerical study 2: An orthotropic plate

Compare the performance of AKSI, INCOME, and IWC in

extracting bending wavenumbers of a strongly orthotropic thin
plate under the small perturbation and the non-periodic sam-
pling conditions. The structure is a 180 cm � 180 cm orthotro-
pic plate of thickness h = 10�3 m, E1 = 120 GPa, E2 = 10

GPa, shear modulus G12 = 4.9 GPa, m12 = 0.3,
q = 1510 kg/m3, g1 = 0.005, and g2 = 0.005. This plate has
the simply supported boundary condition and is excited with

a point load on the center of the plate. The transverse displace-
ment U x; y;xð Þ of this orthotropic plate is given by Ref. 40
where the same pate has been tested:
U x; y;xð Þ ¼
X1
n¼1

X1
m¼1

FoUnm x0; y0ð ÞUnm x; yð Þ
p4 D1

n
z1

� �4

þD2
m
z2

� �4

þ 2 D12 þD66ð Þ n
z1

� �2
m
z2

� �2

 �

� qhx2

� �R z1
0

R z2
0
U2

nm x; yð Þdxdy
ð40Þ



Fig. 9 Comparison of perfect displacement field and noisy displacement field of the isotropic plate at 200 Hz.

Fig. 10 Comparison of displacement curves at 200 Hz along 0



direction under perfect and small perturbation conditions.

Fig. 11 Dispersion curves at five different directions obtained by
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with

D1 ¼ E1 1þ ig1ð Þh3
12 1� m12m21ð Þ ð41Þ

D2 ¼ E2 1þ ig2ð Þh3
12 1� m12m21ð Þ ð42Þ

Unm x; yð Þ ¼ sin
npx
z1

sin
mpy
z2

ð43Þ

where D1, D2, and D12 are the bending stiffness; D66 is the tor-
sional stiffness; m12 and m21 are the major and minor Poisson’s

ratios. Their relationship is explained in Refs. 41,42:

D3 ¼ D12 þD66 ¼ m12D2 þ G12h
3

6
ð44Þ

m12E2 ¼ m21E1 ð45Þ
The transverse displacements on a 901 � 901 mesh grid are

calculated from Eq. (40) and used as the input parameters of
INCOME. It should be noted that smaller sampling intervals
can improve the accuracy of the numerical integration in
Eq. (33) and hence the robustness of the AKSI to perturba-

tions. Based on this, the sampling intervals in x and y direc-
tions are chosen as 2 mm. The AKSI is carried out using 100
samples at each angle. In Section 4.2.1, the comparison of

INCOME and AKSI on wavenumber identification is pro-
vided when periodic samples are affected by the small pertur-
bation problem. Section 4.2.2 compares the performance of

IWC and AKSI using non-periodic samples as input parame-
ters under perfect conditions.

4.2.1. Comparison of inverse methods under small perturbation
condition

To create samples in the small perturbation condition, two
small perturbation ratios n and f are introduced into the coor-

dinates of eigen-modes at each measured point x; yð Þ in
Eq. (41) as

Unm bx;byð Þ ¼ sin
npbx
a

sin
mpby
b

ð46Þ
with

bxn ¼ xn � nnDxnbyn ¼ yn � fnDyn

�
n ¼ 1; 2; � � � ; N ð47Þ

where n and f obey the uniform distribution, and their maxi-
mum value is 5. Fig. 9 compares the displacement field at

200 Hz under perfect and small perturbation conditions. It
can be seen that the displacement field is perturbed under
the small perturbation condition. The effect of the small per-

turbation problem on transverse displacements can also be
AKSI under small perturbation condition.



Fig. 12 Comparison of dispersion curve at 0


direction and k-

space at 200 Hz obtained by INCOME and AKSI for orthotropic

plate under small perturbation condition.
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observed by the displacement curve at 0


direction, as shown in

Fig. 10. Under this condition, the dispersion curves obtained
by AKSI at different angles, including h1, h3, h4, h5, and h7
of Fig. 5, are plotted in Fig. 11. Fig. 11 shows that the accept-

able dispersion curve can be extracted from AKSI under per-
turbation conditions. Figs. 12(a) and (b) present the
comparison of the dispersion curve along x direction and the

k-space at 200 Hz obtained by IWC, INCOME, and AKSI,
respectively. Figs. 12(a) and (b) show that on the one hand,
AKSI is a good candidate for identifying the dispersion curve

and k-space under small perturbation conditions due to its
remarkable filtering capabilities. On the other hand, the profile
of the
Fig. 13 Comparison of dispersion curves obtained by AKSI and IW

perfect condition.
k-space from AKSI illustrates that the tested plate has ortho-

tropic dynamic behavior. For IWC, the extracted dispersion
curve at low frequencies is full of fluctuations and the disper-
sion curve becomes smoother with frequency increasing. The

expected k-space can also be used to approximately identify
the orthotropic dynamic behavior of the plate. In contrast,
the results of the dispersion curve and k-space extracted by
INCOME in Figs. 12(a) and (b) illustrate that this method is

not able to extract reliable wavenumber under small perturba-
tion conditions due to the nature of the Prony method.

4.2.2. Comparison of inverse methods under non-periodic
sampling condition

To compare the performance of AKSI and IWC on the disper-
sion curve identification under the non-periodic sampling con-

dition, 20 non-periodic displacements are created based on the
36 periodic unperturbed displacements with the sampling

interval of 1 cm at 90


direction. Fig. 13(a) shows the corre-

sponding displacement curves at 100 Hz. The resulting disper-
sion curves are shown in Fig. 13(b), indicating that AKSI and
IWC are not limited to periodic sampling. Furthermore, as was

described in Section 4.1.1, the dispersion curve extracted from
AKSI is more accurate than that extracted from IWC in the
low-frequency range. The ability of AKSI to be free from peri-

odic sampling comes from the fact that AKSI treats the signal
as a continuous signal function.

4.3. Numerical study 3: A periodic LT plate

To study the sensitivity of AKSI, IWC, and BWI to the struc-
tural periodicity, they are applied to extract the dispersion
curve of a periodic LT plate under two stochastic conditions:

(A) Structural periodicity is precisely known or approximately
known; (B) Structural periodicity is unknown. These two
stochastic cases are studied in Sections 4.3.1 and 4.3.2, respec-

tively. The structure is modeled by the solid element of COM-
SOL Multiphysics. A boundary force excitation is applied on
the left side of the periodic structure along x direction, and

the boundary condition is set to be free-free. The overall model
is made of 5 unit cells and has a total of 742548 degrees of free-
dom. Fig. 14 shows the structural geometry, the composition
of the unit cell, the distribution of measurement points, and

the displacement field at 700 Hz. It can be seen that unit cell
is made of two parts: steel part (E = 200 GPa, m = 0.3,
q = 7800 kg/m3, g = 0.0001) and nylon part (E = 2 GPa,
C based on 20 non-periodic displacements at 90


direction under



Fig. 14 5-UC LT periodic structure with a 2D grid and its displacement field at 700 Hz.

Fig. 16 Complex wavenumbers obtained by BWI for LT

periodic structure when structural periodicity (length of a unit

cell) is approximately known.
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m = 0.33, q = 1150 kg/m3, g = 0.0001). Both parts have the
same lengths of 5 cm and the same width of 10 cm, while the

thickness of the steel and nylon parts are 3 mm and 2 mm.
The simulated transverse displacements are measured on a reg-
ular 50 � 11 grid at the frequency range from 10 Hz to

1500 Hz with the step of 10 Hz, which is the input parameter
of BWI and IWC, while the displacements on the midline of
the plate along x direction (as shown by the blue dot in

Fig. 14(a)) are used for AKSI. In addition, Figs. 14(c) and
(d) presents the displacement field at 700 Hz and the corre-
sponding displacement curve on the midline of the plate
along x direction.

4.3.1. Structural periodicity is precisely known or approximately
known

For the following extracted results, we use kAWI, kBWI, kIWC,

and kWFEM as the wavenumber from AWI, BWI, IWC, and
WFEM, respectively. To extract the dispersion curve of peri-
odic structures and identify band gaps accurately, BWI

requires that the periodicity of the sampling interval must be
an integer multiple of the structural periodicity. As shown in
Fig. 15, BWI can provide an accurate dispersion curve when

the periodicity of the structure is precisely known under the
perfect condition. From extracted dispersion curve, one can
clearly distinguish three band gaps displayed as green patches

in Fig. 15. The band gap refers to the frequency range where
the wave cannot propagate in the medium. The displacement
Fig. 15 Complex wavenumbers obtained by BWI for LT

periodic structure when structural periodicity (length of a unit

cell) is exactly known.
field at 700 Hz shown in Fig. 14(c) can also illustrate the effect
of the band gap on wave attenuation. Furthermore, the

wavenumbers extracted by BWI are restricted to the first Bril-
louin zone, where the wavelengths are longer than the length of
the unit cell. Such wavenumbers are known as Bloch

wavenumbers of periodic structures.
However, due to structural deformation or damage, the

structural periodicity cannot be determined precisely in reality.
Fig. 17 Comparison of complex wavenumbers obtained by

IWC, BWI, and AKSI for LT periodic structure when structural

periodicity (length of a unit cell) is unknown.



Fig. 19 Coherence and Frequency Response Function (FRF) of

measured points.
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Considering an approximate unit-cell length (9 cm), the corre-
sponding dispersion curve obtained by BWI is shown in
Fig. 16. The dispersion curve shows significant scatter, result-

ing in the incorrect identification of band gaps.

4.3.2. Structural periodicity is unknown

In some cases, the periodicity of periodic structures may be

completely unknown, such as when the periodic structures
are covered by other materials. To investigate this condition,
the sampling interval is set to 1 cm instead of 10 cm (the struc-

tural periodicity).
Fig. 17 shows the comparison of dispersion curves

extracted by IWC, BWI, and AKSI. Two phenomena can be

observed from Fig. 17: (A) The location and width of the band
gaps can be identified by the dispersion curves extracted by
AKSI and IWC under this stochastic condition. This is

because these two methods have no sampling requirement,
and their performance is not related to the periodicity of peri-
odic structures. Comparatively, the BWI requires that the peri-
odicity of the sampling interval must be an integer multiple of

the structural periodicity. Therefore, it is not able to provide
the accurate wavenumber when structural periodicity is
unknown. (B) The dispersion curve identified by AKSI is lim-

ited to the first Brillouin zone, where the wavelengths are
longer than one period of the structure. That means that the
real part of the wavenumber is always within [0, 31.4 rad/m]

(31.4 rad/m is calculated by p=D, where D is the length of
the unit cell which is 10 cm in this case). This is because the sig-
nal model in AKSI is defined as a sum of exponential func-

tions, as shown in Eq. (8), which is also the displacement
model of the Bloch wave theorem43 for periodic structures.
Therefore, the wavenumber obtained from AKSI can agree
well with that of WFEM, having the characteristics of the

Bloch wavenumber. Comparatively, IWC considers the signal
model as an inhomogeneous wave propagating in the whole
structure without the characteristics of the Bloch wavenumber,

resulting in the dispersion curve that can be bigger than
31.4 rad/m. It is worth noting that both formats of dispersion
Fig. 18 Experimental set-up of a thin isotropic steel plate.

Fig. 20 Comparison of dispersion curve at 0


direction and k-

pace at 534.375 Hz obtained by IWC and AKSI for isotropic steel

plate using experimental data.
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curves can be used to describe dispersion characteristics of
periodic structures and identify the locations of band gaps.

5. Experimental study

Apply AKSI and IWC to extract the dispersion curve of a thin
isotropic steel plate based on experimental data. The plate has

dimensions of 0.95 m � 0.60 m, and its thickness is 2 mm. The
values of mechanical properties are E = 210 GPa, m = 0.3,
q= 7850 kg/m3. Fig. 18 presents the experimental setup where

the free-free boundary condition was used by suspending the
plate at a fixed frame, and the plate was excited by a point
force at the red point using an electrodynamic shaker. AKSI

and IWC are performed on the out-of-plane displacements
along the white dotted lines in Fig. 18. In each line, 50 periodic
FRFs with a sampling interval of 0.44 cm were measured via

PSV-400 scanning vibrometer. The measured data are located
far away from the excitation and boundary conditions, avoid-
ing the influence of evanescent waves. With a pseudo-random
excitation, measurements were conducted in the frequency

domain (resolution of 3.125 Hz, 50 averages).
Fig. 19(a) shows the envelope of coherence calculated at all

measurement points. The smaller the value of the coherence

function, the more the signal is affected by signal noise. For

example, the FRFs curve in the 0


direction at 1190.625 Hz,

as shown in Fig. 19(b), presents the samples are disturbed by

relatively large signal noise. Figs. 20(a) and (b) present the
comparison of the dispersion curves extracted by AKSI and
IWC, and the k-space at 534.375 Hz along seven considered

directions, respectively. As a widely used nonlinear inverse
method, IWC has been validated to be robust to signal noise
in many previous works.17,18 From Fig. 20, the dispersion

curve and k-space extracted by AKSI agree well with the ana-
lytical solutions, indicating that AKSI can be comparable with
IWC in the dispersion curve and k-space identification under
noisy environments. This is mainly because the introduction

of integrals of AKSI can improve its robustness to signal noise.
It is worth noting that AKSI only requires solving several lin-
ear problems, which can reduce the computational cost com-

pared to IWC.

6. Conclusions

The Algebraic K-Space Identification (AKSI) technique is pro-
posed in the algebraic estimator framework. The main contri-
bution of the proposed method is to achieve dispersion curve

and k-space identification of 2D structures under a series of
stochastic conditions, making it possible to study the dynamic
behavior of 2D structures in realistic conditions. The main

conclusions are summarized as follows:

(1) The proposed method draws inspiration from the alge-
braic estimator to overcome some main issues of other

popular inverse methods. It can extract the wavenum-
bers from a more stochastic signal model, which consid-
ers the influence of external signal noise and the small

perturbation on the structural responses. The small per-
turbation is reflected in the geometric variability of mea-
suring points’ coordinates, which can be caused by

various uncertainties, such as grid distortion, structural
uncertainty, and operational error.
(2) This paper benchmarks the proposed method and three

other representative inverse methods, including IWC,
INCOME, BWI, on three numerical applications under
different stochastic conditions. These numerical cases

involve the extraction of the k-space and dispersion
curve of an isotropic plate under signal noise conditions,
the extraction of the k-space and dispersion curve
extraction of an orthotropic plate under small perturba-

tion and non-periodic sampling conditions, and the
band gap identification of an LT-periodic structure
under the condition of unknown structural periodicity.

These numerical investigations show: (A) Compared to
INCOME, AKSI performs better under perturbations
conditions such as signal noise and small perturbations.

In addition, AKSI is not limited to periodic sampling;
(B) Compared to BWI, the performance of AKSI is
not related to the structural periodicity, significantly
improving its application to periodic structures under

stochastic conditions; (C) Compared to IWC, AKSI
has a better performance in the low-frequency range.
In addition, IWC is a nonlinear iterative method with

a high computational cost, whereas AKSI only requires
solving several linear problems, reducing the computa-
tional cost.

(3) The proposed method was experimentally used to
extract the dispersion curve and k-space of a large-
scale thin steel plate under a noisy environment. The

high level of signal noise can be reflected by the low cor-
relation function values. This experimental case can fur-
ther validate the robustness of the proposed method to
signal noise. In addition, the comprehensive comparison

between the popular inverse methods under different
stochastic conditions can be a benchmark for developing
wavenumber identification methods in the future.

Up to now, AKSI can extract the imaginary part of the
wavenumbers of the plate only when the shape of the displace-

ment field is close to a plane wave. This is mainly because the
mathematical model of AKSI is a plane wave model, which is
defined as a sum of exponential functions. This is also a limi-
tation of inverse methods based on the plane wave model, and

a deeper investigation into how to overcome this limitation is
desirable in future work.
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