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Abstract: The prediction of mechanical behavior and fatigue life is of major importance for design
and for replacing costly and time-consuming tests. The proposed approach for polymers is a com-
bination of a fatigue model and a governing constitutive model, which is formulated using the
Haward–Thackray viscoplastic model (1968) and is capable of capturing large deformations. The
fatigue model integrates high- and low-cycle fatigue and is based on the concept of damage evolution
and a moving endurance surface in the stress space, therefore memorizing the load history without
requesting vague cycle-counting approaches. The proposed approach is applicable for materials in
which the fatigue development is ductile, i.e., damage during the formation of microcracks controls
most of the fatigue life (up to 90%). Moreover, damage evolution shows a certain asymptote at
the ultimate of the low-cycle fatigue, a second asymptote at the ultimate of the high-cycle fatigue
(which is near zero), and a curvature of how rapidly the transition between the asymptotes is reached.
An interesting matter is that similar to metals, many polymers satisfy these constraints. Therefore, all
the model parameters for fatigue can be given in terms of the Basquin and Coffin–Manson model
parameters, i.e., satisfying well-defined parameters.

Keywords: modeling and experimentation; ratcheting deformation; fatigue; plastic; model calibration

1. Introduction

The experimental determination of material properties is of major importance to the
development of the most capable materials for use in demanding circumstances during
their service lives. Development can be intensified by model predictions, with at least part
of the costly and time-consuming tests able to be replaced by model predictions, i.e., model
predictions can rapidly and systematically scan a vast number of material grades and
loading situations. Examples of components that are manufactured from polymers and are
subjected to cyclic fatigue loads range from uses in automotive and aeronautic equipment,
healthcare instruments, marine structures, and sporting goods. The current value of the
polymer market is huge—approximately USD 600 billion solely for the most common
polymers—and it is further increasing [1]. Concurrently, fatigue failures of components
have been evaluated to be the most important origin of immense financial losses [2–4].
Despite the huge importance of polymer engineering components, the volume of research
for fatigue has concentrated mostly on metallic materials, while the fatigue characteristics
of polymers are still under-researched, and much effort is required to enhance their fatigue
resistance [5,6] and to develop accomplished simulation tools for failure assessment [7–11].

A capable simulation tool for fatigue must include a capable constitutive and fatigue
damage model. Recent ambitious constitutive models for large deformations (without
fatigue) are presented in [12–18]. For the investigation of both low- and high-cycle fatigue
regimes in highly crystalline and semi-crystalline polymers, References [10,19] provided
capable tools based on a hyperelastic–viscoplastic model and an elastic viscoplastic (parallel
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rheological network) model, respectively. However, when considering many polymers,
especially amorphous (glassy) polymers, both the viscoelastic and plastic elements are
required to accurately predict the long-term creep and recovery and, thus, the long-term
cyclic and fatigue deformation behavior (shape of the loops and ratcheting) [20]. The
models introduced in [7,21–24] include these elements, despite being demonstrated by
ambiguous material parameter calibration.

An abundance of fatigue models rely on the fatigue-limit criteria wherein the fatigue
strength or limit is determined by exploiting a set of identical cycles, and the models
are equipped with cumulative damage theories and cycle-counting techniques [11,25,26].
However, it may be difficult to define a standard cycle from complex load spectra in
practical applications. Another frequently applied concept is failure diagrams [27], e.g.,
Kitagawa-Takahashi, but their application to viscous polymers is difficult due to a certain
controversy regarding the threshold and driving force for fatigue crack propagation [20].
Therefore, a continuum mechanics framework based on an incremental formalism is used
in this work [28]. In contrast to cycle-counting methods, damage evolution and movement
of the endurance surface are defined in terms of stress increments, not of stress cycles:
the continuum mechanics framework is unified and consistent as it contains stress-based
fatigue limits and the accumulation of damage for arbitrary stress histories (without a
specific material-based constitutive theory).

The present work focuses on modeling the cyclic deformation behavior and fatigue
of solid polymers with well-defined parameter fitting based on principles used for metal
fatigue, i.e., all of the model (material) parameters are defined using the celebrated Basquin-
Coffin–Manson formulas, which are well defined in the fatigue literature [29,30]. This
model calibration can be termed a physically grounded parameter calibration strategy for
polymers. A similar idea has previously been applied to polymer foams [31], and [32]
investigated the interaction between multi-axial ratcheting and fatigue in an ABS-polymer,
showing that a slightly modified Basquin model can be applied. The motivation is that [1]
many polymers satisfy the constraint that fatigue behavior is ductile, i.e., damage during
the development of microcracks distinctively governs most of the fatigue life (even up
to 90%) [23,33,34]. This property is correlated with a high proportion of fracture tough-
ness, which is K1c/E ∼ 1E − 3 m1/2 for polymers and, for instance, ∼ 0.5E − 3 m1/2 for
steels [35], cf. Figure 1(left). Accordingly, since polymers and metals are macroscopically
homogeneous materials, they show constantly increasing accumulation of fatigue damage
as demonstrated in Figure 1(right). Ref. [2] Many polymers also satisfy the prerequisite
for the existence of an endurance limit and fatigue under this limit is suppressed [7,23,33].
Moreover, Ref. [3] many polymers show a similar nonlinear S-N curve (fatigue stress ampli-
tude vs. number of fatigue cycles) to metals, indicating that the Basquin relation (high-cycle
fatigue, HCF) and Coffin–Manson (low-cycle fatigue, LCF) formula are applicable [36,37].

Figure 1. Ashby plot of the fracture toughness vs. Young’s modulus for a range of established
engineering materials taken from [35] (left). Bulk metallic glasses (BMGs) and their composites
show ultimate fracture toughness [35,38]. Sketched fatigue damage evolution of composites and
homogeneous materials (incl. steels and polymers) [39] (right).
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The article continues by introducing the fatigue damage model for polymers and the
steps for the calibration of the model (based on the Basquin-Coffin–Manson formulas).
Based on the proposed endurance function, a novel rule for quantifying the impact of mean
and alternating stresses on the fatigue life (the Haigh diagram) is also proposed, and it can
consider the asymmetry between compression and tension (an alternative to the celebrated
Gerber’s rule (1874)). The capability of the approach under different cyclic loads for the
technologically important polycarbonate (PC) polymer is addressed.

2. Material and Methods

The PC polymer (Lexan® 223R granulate, a density of 1.2 g/cm3) characterized by
high impact and fatigue resistances was applied in the cyclic fatigue tests. The motivation
of this material was that PC is one of the most commonly used polymers [1]. The geometry
of the injection-molded flat (dog-bone shape) tensile specimen is in accordance with the
standard (type IV specimen) [40]. The only deviation from the standard was that the gauge
length was chosen to be 40 mm to obtain better compatibility with the extensometer, with
its gauge length of 25 mm. A comparison was made with a tubular specimen’s geometry
shown in Figure 2a,b, which is based on the standard [41]. The tubular geometry was used
to avoid premature necking and buckling under tension and compression, respectively (the
reduced inner diameter of 9 mm was applied to avoid premature necking and buckling).
Optic 3D metrology (Alicona analyzer) was used to verify the excellent quality of the final
shape of the specimens. The found surface faults were under 0.03 mm, and their influence
on the test results was interpreted to be infinitesimal because of the inaccuracies they
caused, for instance, in the outer diameter (12 mm) and cross-section of the gauge section
of the tubular specimen were only 0.5% and 1.1%, respectively.

Figure 2. Geometryof the test specimen (a,b) and the testing equipment (c).

Tests

The cyclic alternating (tension–compression) and pulsating (tensile) tests according
to the standard [42] were conducted by applying an Instron®Electropulse E10000 test
machine with a load capacity of 10 kN and a displacement capacity of ±30 mm:

- cyclic fatigue tests at f = 5 Hz (sinusoidal, force-control) until rupture at the stress
ratios R = −1, R = 0.1, and 0.5. The maximum stresses were 25, 35, and 50% of the
rupture (ultimate) stress, 60 MPa, for R = −1, 15, 37.5, 50, 75, 90, and 97% for R = 0.1,
and 37.5, 50, 75, 90, and 97% for R = 0.5.
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The test set setup was designed to investigate the influence of the stress amplitude and
mean stress on the deformation (ratcheting) and fatigue life. The axial elongation u and the
corresponding force F were recorded by the testing machine. In addition, the elongation
was measured by an extensometer (Instron 2620.601, capacity of 20% strain) glued onto the
surface of the specimens’ web, cf. Figure 2c. Data acquisition was 1000 Hz. The strain was
defined as ϵ := u/Lg, where Lg is the gauge length of the extensometer. The nominal (1st
Piola–Kirchhoff) stress σ = F/A, where A is the original cross-sectional area of the gauge
section (e.g., A = π(d2

o − d2
i )/4 for the tubular specimens), was used. The error in relation

to the Cauchy or true stress was small because the strains were rather small (less than
10%). However, the observed deformation behavior was plastic because the stress-strain
σ − ϵ relationship was nonlinear, and ratcheting was observed. Also, scanning electron
microscope (SEM) imaging (FEI Quanta 450 W EDS EDAX) was performed from the surface
of the gauge section of the specimens to observe the micromechanical mechanisms and
progress of fatigue failure at different stages before final rupture (after interrupted tests at
500, 1500, and 3500 cycles for R = 0.1 and 75% of the ultimate stress, 60 MPa).

3. Theory-Modeling
3.1. Kinematics and Constitutive Theory

To allow notable deformations to be investigated, the applied model is founded on the
multiplicative decomposition of the deformation gradient [7], i.e.,

F = FeFvep, (1)

where Fe and Fvep define the local deformation due to the elastic and viscoelastic–plastic
mechanisms of the chain network, respectively (cf. the Kröner–Lee decomposition, FeFp,
for the elastic-plastic mechanical behavior). Whereas the elastic part represents the re-
versible elastic mechanisms of the chain network, the viscoelastic–plastic part denotes the
partially reversible mechanisms of chains, macroscopically corresponding to the recovery of
strain after a stress removal (viscoelasticity) and long-term creep strain and stress relaxation
(viscoplasticity) [7,43]. The plastic effect is due to irreversible, dissipative mechanisms, such
as chain breakage and the slippage of chain entanglements [13,43–45] due to the growth
and coalescence of nano/microscale voids [7,23,46,47].

In the applied constitutive model introduced in [7,22], the elastic portion of the de-
formation is described by a single element (a) clearly separated from viscoelastic–plastic
elements (b) and (c) in accordance with the classical [48] model, cf. Figure 3. As a result, the
viscoplastic nonlinear Langevin spring (c) applied in the model to describe the anisotropic
hardening of amorphous network structures (in large strains) is modeled solely using
the viscous deformation driven by the backstress τB (as originally proposed in [49] for
three dimensions). Moreover, the specified stress τA in Figure 3 defines the stress in each
viscoelastic–plastic micromechanism.

The applied constitutive model is governed by the internal variables, s(1) (shear
resistance), φ (average nano-to microscopic free volume), and µ1, cf. Figure 3. Considering
the macroscopic stress vs. large strain relationship shown in Figure 4 (including softening
followed by hardening [49]). First, the backstress modulus µ1 defines the slope of the
initial response when the viscoelastic–plastic deformations start governing the macroscopic
deformation behavior (σ varies between 20 and 30 MPa). The second internal model
variable φ influences the pre-peak slope (before the yield peak) through the third internal
model variable s(1), which also influences the peak yield stress and its post-peak slope.
It was observed that the free volume φ (driven by the τA) is one that strongly influences
the shape and value of the yield peak, whereas the backstress τB influences the hardening
in large strains before material rupture. The shape and value of the yield peak are of major
importance when investigating low-cycle fatigue.
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Figure 3: Representation of the constitutive model Barriere et al. (2020). The model is gov-
erned by the elements: a) an elastic spring, b) a nonlinear element (a dashpot (1) in series with
a Kelvin-Voigt-like element (2)), and c) a nonlinear Langevin spring. Evolution equations for
the internal variables s(1) (shear resistance), ϕ (free volume), and µ1 (backstress modulus)
are shown.

specified stress τA in Fig. 3 defines the stress in each viscoelastic-plastic mi-
cromechanism.

The applied constitutive model is governed by the internal variables, s(1)

(shear resistance), ϕ (average nano-to microscopic free volume), and µ1, cf.
Fig. 3. Considering the macroscopic stress vs. large strain relationship shown
in Fig. 4 (including softening followed by hardening Boyce et al. (1989)). First,
the backstress modulus µ1 defines the slope of the initial response when the
viscoelastic-plastic deformations start governing the macroscopic deformation
behavior (σ varies between 20...30 MPa). The second internal model variable ϕ
influences the pre-peak slope (before the yield peak) through the third internal
model variable s(1) which also influences the peak yield stress and its post-peak
slope. It was observed that the free volume ϕ (driven by the τA) is the one that
strongly influences the shape and value of the yield peak, whereas the backstress
τB influences the hardening in large strains before material rupture. The shape
and value of the yield peak have a major importance when investigating the
low-cycle fatigue.

The proposed constitutive model is restricted to amorphous glassy polymers
(thermoplastics without crystallization). A detailed account for the kinematics
and constitutive theory of the model including a numerical procedure was dis-
cussed in Barriere et al. (2020) and, including the applied internal variables (ϕ,
s(1), µ1), in Barriere et al. (2019). For convenience, the rheological represen-
tation of the constitutive model including the internal variables and material
parameters applied is illustrated in Fig. 3.
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Figure 3. Representation of the constitutive model [7]. The model is governed by the following
elements: (a) an elastic spring, (b) a nonlinear element (a dashpot (1) in series with a Kelvin–Voigt-like
element (2)), and (c) a nonlinear Langevin spring. Evolution equations for the internal variables s(1)

(shear resistance), φ (free volume), and µ1 (backstress modulus) are shown.
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Figure 4: Experimentally observed, typical macroscopic stress vs. large strain curve for the
applied polycarbonate. The peak yield stress σy before softening is slightly more than 60
MPa.

3.2. Prediction of fatigue life

Based on the loading intensity, three ranges of fatigue life can be classi-
fied: ultra-low-, low-, and high-cycle ranges Lampman (1990); Murakami (2019);
Kermajani et al. (2020). In the HCF-region, the macroscopic deformation be-
havior of the material is primarily elastic, whereas in the ultra-low - and LCF
-regions, notable plastic deformation evolves. The number of cycles during
which the transition from LCF to HCF develops has been reported to range
from few thousands to tens of thousands, whereas ultra-LCF ranges from tens
to hundreds cycles. Engineering components, such as high-pressure pump hous-
ings, shafts and gears for power transmission, when subjected to abnormal high
loadings are examples of components and structures subjected to ultra-LCF
loadings Ramkumar et al. (2010); Kermajani et al. (2020); Dong et al. (2023).

The proposed fatigue model governs all the fatigue regimes and it is an an-
nex of an appealing HCF-model proposed by Ottosen et al. (2008). Although
this approach is aimed for use in the context of metal fatigue, essentially char-
acterized by dislocation micromechanisms, its formulation is rather general and
suitable for various ductile solids that macroscopically show many similar fatigue
characteristics, Chaboche (1997); Anand and Gurtin (2003); Holopainen and Barriere
(2018). The most important property is the macroscopical asymptotical ex-
tremes of lifetimes, i.e., the endurance limits can be determined and fatigue un-
der this limit is attenuated, Janssen et al. (2008a); Lugo et al. (2014); Holopainen et al.
(2017); Holopainen and Barriere (2018). To generalize the endurance limit, the
proposed fatigue model makes use of an endurance surface in the stress space.
If the stress state is inside the endurance surface, no fatigue damage develops
whereas damage may develop if the stress state is outside the endurance sur-
face. According to the proposed model, the endurance function representing the
endurance surface is defined as

β = (σ̄ + g(I1; a, a2)− σ0)/σ0 (2)

wherein σ0 is the fatigue strength limit or the endurance limit (experimentally
observed stress amplitude for the alternating stress R = −1 under which fatigue
damage does not develop) and the effective stress is

σ̄ =
√

3
2 (s−α) : M : (s−α), (3)
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Figure 4. Experimentally observed, typical macroscopic stress vs. large strain curve for the applied
polycarbonate. The peak yield stress σy before softening is slightly more than 60 MPa.

The proposed constitutive model is restricted to amorphous glassy polymers (ther-
moplastics without crystallization). A detailed account for the kinematics and constitutive
theory of the model, including a numerical procedure, was discussed in [7] and, including
the applied internal variables (φ, s(1), µ1), in [22]. For convenience, the rheological represen-
tation of the constitutive model, including the internal variables and material parameters
applied, is illustrated in Figure 3.
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3.2. Prediction of Fatigue Life

Based on the loading intensity, three ranges of fatigue life can be classified: ultra-low-,
low-, and high-cycle ranges [30,50,51]. In the HCF region, the macroscopic deformation
behavior of the material is primarily elastic, whereas in the ultra-low and LCF regions,
notable plastic deformation evolves. The number of cycles during which the transition from
LCF to HCF develops has been reported to range from a few thousand to tens of thousands,
whereas ultra-LCF ranges from tens to hundreds of cycles. Engineering components, such
as high-pressure pump housings, shafts, and gears for power transmission, when subjected
to abnormally high loadings, are examples of components and structures subjected to
ultra-LCF loadings [50,52,53].

The proposed fatigue model governs all the fatigue regimes, and it is an annex of
an appealing HCF model proposed by [28]. Although this approach is aimed for use in
the context of metal fatigue, essentially characterized by dislocation micromechanisms, its
formulation is rather general and suitable for various ductile solids that macroscopically
show many similar fatigue characteristics [9,43,54]. The most important property is the
macroscopical asymptotical extremes of lifetimes, i.e., the endurance limits can be deter-
mined, and fatigue under this limit is attenuated [9,23,34,55]. To generalize the endurance
limit, the proposed fatigue model makes use of an endurance surface in the stress space.
If the stress state is inside the endurance surface, no fatigue damage develops, whereas
damage may develop if the stress state is outside the endurance surface. According to the
proposed model, the endurance function representing the endurance surface is defined as

β = (σ̄ + g(I1; a, a2)− σ0)/σ0 (2)

wherein σ0 is the fatigue strength limit or the endurance limit (experimentally observed
stress amplitude for the alternating stress R = −1 under which fatigue damage does not
develop) and the effective stress is

σ̄ =
√

3
2 (s − α) : M : (s − α), (3)

where s = σ − 1/3I1i is the deviatoric component of the stress tensor (the fatigue model
is given in terms of the Cauchy stress σ = 1/Jτ), I1 = trace(σ) = σ : i is the first stress
invariant, and i is the identity tensor. The coefficient matrix M is defined as

(s − α) : M : (s − α) = (s − α)2
ii + M(s − α)2

ij, (4)

i ̸= j = 1, 2, 3; M is a material parameter. The coefficient matrix M allows the adjustment
of the relationship between the uniaxial and torsional (shear) stresses, and its aim is to
improve fatigue prediction under shear. In the original model by [28], low uniaxial stress
states were investigated, and M was considered identity therein. Moreover, the linear
relation aI1 in the [28] model is replaced by the nonlinear function g(I1; a, a2) = (a + a2 I1)I1
to encompass a large range of mean stresses as demonstrated in Figure 5(left). Using the
steps in ([28], Section 4), it can be shown that the endurance surface (2) in a cyclic uniaxial
loading (the stress varies between σm − σa and σm + σa, where σm and σa are the mean
stress and stress amplitude) reduces to the form

σ2
a +

σa

a2
+ σ2

m +
a
a2

σm − σ0

a2
= 0, (5)

or equivalently

(σa +
1

2a2
)2 + (σm +

a
2a2

)2 = K =
1 + a2 + 4a2σ0

4a2
2

(6)
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which formula represents the Haigh diagram for polymers and is an alternative to the
celebrated Gerber’s rule (1874) for ductile materials (inaccurate to predict the asymmetry
between tension and compression). When σm = 0 (R = −1), Equation (5) provides a small
safety margin between σa and σ0 (σa < σ0). This difference is motivated by the fact that the
determination of the final value of σ0 requires very time-consuming and costly tests, i.e.,
the Formulas (5) and (6) take this concern automatically into account. The solution of (5) is

σa =
1

2a2
(
√

1 + 4a2(σ0 − aσm − a2σ2
m)− 1). (7)

A conclusion is that the first stress invariant I1 in the endurance function (2) reflects
the effect of the hydrostatic stress, I1/3: the hydrostatic tension promotes the fatigue
accumulation whereas fatigue is attenuated under hydrostatic compression, Figure 5(left).
It should be mentioned that the Haigh diagrams do not reach the same point on the ultimate
of the horizontal axis as the conventional metals do [28]. The positive parameter a ∼ 0.2 defines
in uniaxial fatigue loadings the initial (negative) slope of the Haigh diagram. Furthermore,
selecting σm(σa = 0) = σ̄m, the solution (7) provides that σ0 − aσ̄m − a2σ̄2

m = 0 or

a2 =
σ0 − aσ̄m

σ̄2
m

. (8)

Because a2 is constant, one is free to select the Haigh diagram of almost σ0 for the
HCF-limit, which is illustrated in Figure 5(right).

The endurance surface, as demonstrated in Figure 6, is spherical in the deviatoric
plane, and it is the α tensor that determines the midpoint. The evolution of α is described by

dα = C(s − α)dβ (9)

where C is a material parameter [28]. Once a fatigue loading is actuated, the endurance
surface can track the current stress due to the movement of α, which is, according to (9),
always in the direction of s − α [28], see Figure 6. The evolution Equation (9) further reveals
that the α tensor can memorize the load history because its evolution allows the value
β = 0, i.e., the movement of the endurance surface in the stress space. It is solely postulated
that fatigue damage D and the backstress α, which is an overall force for D, only evolve on
or outside the endurance surface (β ≥ 0) and only when dβ > 0, i.e., when the stress has
crossed the surface and recedes from it, cf. [28]. This situation is demonstrated in Figure 6.
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Figure 5: The Haigh-diagrams for 40,000, 25,000, 13,000, and 5000 cycles (left). Markers �
are the data points and x are the points used in the model calibration. The red marker for
data of a slightly different test specimen and PC is taken from Lu et al. (2018). The linear
approximation g ∼ aI1 (I1 = σm) for HCF (endurance limit) is also shown. The parameter
a2 vs σm (N = 40, 000) (right).

Because a2 is constant one is free to select the Haigh-diagram of almost σ0 for
the HCF-limit, which is illustrated in Fig. 5(right).

The endurance surface, as demonstrated in Fig. 6, is spherical in the devia-
toric plane, and it is the α tensor that determines the midpoint. The evolution
of α is described by

dα = C(s−α)dβ (9)

where C is a material parameter Ottosen et al. (2008). Once a fatigue loading
is actuated, the endurance surface is able to track the current stress due to the
movement of α, which is, according to (9), always in the direction of s − α
Ottosen et al. (2008), see Fig. 6. The evolution equation (9) further reveals
that the α tensor can memorize the load history because its evolution allows
the value β = 0, that is, the movement of the endurance surface in the stress
space. It is solely postulated that fatigue damageD and the backstress α, which
is an overall force for D, only evolve on or outside the endurance surface (β ≥ 0)
and only when dβ > 0, i.e., when the stress has crossed the surface and recedes
from it, cf. Ottosen et al. (2008). This situation is demonstrated in Fig. 6.

Proposition 3.1. The fatigue damage D only develops under the conditions

β ≥ 0, dβ > 0 ⇒ dD > 0, dα 6= 0. (10)

Fatigue damage evolution

When dealing with fatigue from low to high cycles, an appropriate dam-
age rule, in addition to the constitutive (plasticity) model, composes an inte-
gral part of the approach and analysis. The damage evolution is computed
by exploiting an evolution law based on a scalar valued damage variable. De-
scription of fatigue damage by a scalar is valid because it solely represents
the formation of micro-cracks in average (macroscopically) that, most of all,
typically governs a majority of the total fatigue life (over 90% for polymers),
Bhattacharya and Ellingwood (1998); Marissen et al. (2001); Janssen et al. (2008b);
Lugo et al. (2014); Hughes et al. (2017); Barriere et al. (2020).

10

Figure 5. The Haigh diagrams for 40,000, 25,000, 13,000, and 5000 cycles (left). Markers ■ are the
data points, and x are the points used in the model calibration. The red marker for data of a slightly
different test specimen and PC is taken from [56]. The linear approximation g ∼ aI1 (I1 = σm) for
HCF (endurance limit) is also shown. The parameter a2 vs. σm (N = 40, 000) (right).

Proposition 1. The fatigue damage D only develops under the conditions

β ≥ 0, dβ > 0 ⇒ dD > 0, dα ̸= 0. (10)
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σ1

σ2 σ3

α’

α

dα’

dα

A

ds

B

β < 0

β > 0

σ1

σ2 σ3

α’
α
dα’

dα

A

ds

B

β < 0

β > 0

Figure 6. Movement of an endurance surface in deviatoric stress plane under a fluctuating loading
(possibly non-proportional) (left) and unloading (right). The endurance surface reaches the current
stress point and then starts to move between the states A and B (not necessarily fixed [28]). Peripheries
of the surfaces in the current and an initial state are highlighted by the solid and dashed curves,
respectively. Marking d signifies a small increment.

Fatigue Damage Evolution

When dealing with fatigue from low to high cycles, an appropriate damage rule,
in addition to the constitutive (plasticity) model, composes an integral part of the approach
and analysis. The damage evolution is computed by exploiting an evolution law based on a
scalar-valued damage variable. Description of fatigue damage by a scalar is valid because it
solely represents the formation of microcracks in average (macroscopically) that, most of all,
typically governs a majority of the total fatigue life (over 90% for polymers) [7,33,34,57–59].

Let then x0 and t0 be the initial material placement and initial time, and xb and tb the
final critical placement and critical time instant for critical fatigue failure (over 90% of the
total fatigue life), respectively. Then, damage at an initial instant is D(x0, t0) = D0 ∼ 0, and
a local fatigue failure instantaneously prior to a notable progress of small cracks to a form
of large cracks is given by D(xb, tb) = Db ∼ 1 (the error in fatigue life is less than 10%).
Since damage never decreases, based on Proposition 1 (dβ > 0), an exponential expression,

dD =
K

1 − BD
exp(𭟋(β; L, L̃, κ))dβ ≥ 0 (11)

where B, K, κ, L, and L̃ are positive parameters and are valid for the damage evolution.
The parameter B defines the final asymptote of damage prior to a rapid macrostructural
rupture (after 90% of the fatigue life [23,34]). Since the final damage evolution is rapid, the
value of B needs to be sufficiently large (>0.5).

Many polymers show an endurance limit that is remarkably lower than the fatigue
strength under LCF loads, and fatigue under this limit is attenuated [29,58,60]. Moreover,
polymers exhibit only a small accumulation of fatigue strength as the cyclic lifetime de-
creases in the ultimate of the LCF region. To capture these charasteristics, a function 𭟋 with
two distinct linear asymptotes for a β-function is defined, i.e.,

𭟋(β; L, L̃, κ) :=
[

L − L̃2

κβ

(
exp(− κ

L̃
β)− 1

)]
β. (12)

The function 𭟋 has the asymptote (L + L̃)β as β is near zero in the ultimate of the
HCF region and the expression Lβ when β > 1 is large in the ultimate of the LCF region
(κ >> L̃ or κ is the magnitude greater than L̃), see Figure 7. The curvature κ completes the
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definition of how rapidly the transition between the asymptotes is reached. Using 𭟋 (12) in
(11) results in the following multiplicative composition of the damage evolution:

dD =
K

1 − BD
exp(Lβ) exp

(
− L̃2

κ

(
exp(− κ

L̃
β)− 1

))
dβ, (13)

where the first and latter exponential functions represent the fatigue damage evolution
in the HCF and LCF regions, respectively. The numerical integration of the evolution
Equations (9) and (13) is discussed in the Appendix A. The proposed continuum mechanics
framework including damage is unified and consistent as it contains stress-based fatigue
limits and accumulation of damage for arbitrary stress histories without a material-based
constitutive theory, i.e., D is not e.g., a measure of the loss of stiffness ((1− D)E) [61,62], but
it represents the ductile formation of microcracks on average (macroscopically) that governs
a majority of the total fatigue life (over 90% for polymers) as has been demonstrated by the
experiments (D and the Young´s modulus E can be regarded as uncoupled) [7,33,34,57–59].

0 0.5 1 1.5 2
0

1

2

3

4

5

̥
,
L
β
,
(L

+
L̃
)β

β

Figure 7: Function ̥ and the asymptotes Lβ and (L+L̃)β for the LCF and HCF, respectively.

7. The curvature κ completes the definition of how rapidly the transition be-
tween the asymptotes is reached. Using ̥ (12) in (11), results in the following
multiplicative composition of the damage evolution:

dD =
K

1−BD
exp(Lβ) exp

(
− L̃2

κ

(
exp(− κ

L̃
β)− 1

))
dβ, (13)

where the first and latter exponential functions represent the fatigue damage
evolution in the HCF- and LCF-regions, respectively. The numerical integra-
tion of the evolution equations (9) and (13) is discussed in the Appendix. The
proposed continuum mechanics framework including damage is unified and con-
sistent as it contains stress-based fatigue limits and accumulation of damage for
arbitrary stress histories without a material-based constitutive theory. That is,
D is not e.g., a measure of the loss of stiffness ((1−D)E) Chaboche and Lesne
(1988); Lemaitre and Chaboche (1999), but it represents the ductile forma-
tion of micro-cracks in average (macroscopically) that governs a majority of
the total fatigue life (over 90% for polymers) as has been evidenced by the
experiments (D and the Young´s modulus E can be regarded as uncoupled)
Bhattacharya and Ellingwood (1998); Marissen et al. (2001); Janssen et al. (2008b);
Lugo et al. (2014); Hughes et al. (2017); Barriere et al. (2020).

3.3. Model calibration

3.3.1. Constitutive model parameters

The model was implemented by using the Intelr Fortran application. The
constitutive variables shown in Fig. 3 were regarded as uncoupled from fatigue,
i.e., the evolution equations (9) and (11) for fatigue were solved once the consti-
tutive variables were known. This treatment is motivated by the experimental
observations showing that the fatigue damage represents essentially the long-
term formation of micro-cracks that typically covers majority of the fatigue life
(over 90 %) and that has not a distinct influence on the macroscopic defor-
mations and stresses Janssen et al. (2008b); Lugo et al. (2014); Hughes et al.
(2017); Barriere et al. (2020) (the remaining fatigue life, ∼ 10 % when the con-
stitutive variables and parameters (Young’s modulus, E) and fatigue damage D
must be regarded as coupled, is not significant for applications in practise).

12

Figure 7. Function 𭟋 and the asymptotes Lβ and (L + L̃)β for the LCF and HCF, respectively.

3.3. Model Calibration
3.3.1. Constitutive Model Parameters

The model was implemented using the Intel® Fortran application. The constitutive
variables shown in Figure 3 were regarded as uncoupled from fatigue, i.e., the evolution
Equations (9) and (11) for fatigue were solved once the constitutive variables were known.
This treatment is motivated by the experimental observations showing that the fatigue
damage represents essentially the long-term formation of microcracks that typically covers
the majority of the fatigue life (over 90%) and that has not a distinct influence on the
macroscopic deformations and stresses [7,33,34,58] (the remaining fatigue life, ∼10% when
the constitutive variables and parameters (Young’s modulus, E) and fatigue damage D
must be regarded as coupled, is not significant for applications in practice).

The measurement of the elastic component Fe in the decomposition of the deformation
gradient (1) under force-controlled uniaxial (fatigue) loadings (for the model calibration)
is straightforward: divide the measured uniaxial stress with the observed Young’s (elas-
tic) modulus. Then, based on the generalized Hooke’s law (in three dimensions), the
well-known Poisson’s ratio is applied to define other components of Fe. Instead, owing
to path dependency of the viscoelastic–plastic deformation, Fvep, its observation is very
challenging, and therefore, it is just a kinematic model measure, solved numerically. A de-
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tailed discussion of the numerical treatment and calibration of the constitutive model in
relation to the data was discussed in [7,22]. The constitutive model parameters used in the
predictions are given in Tables 1 and 2.

Table 1. Elastic and viscoelastic model parameters for the PC (Lexan 223R).

Parameter E ν v̇0 α m1 s(2) c1 · 10−6 µ1,sat µ0
1

Unit MPa s−1 MPa MPa MPa MPa
Value 2000 0.37 0.031 0.204 0.19 12 4.5 2500 8000

Table 2. Viscoplastic parameters for the PC (φ(0) = 0).

Parameter s0 m0 CR N h0 b̂ g0 scv φcv

Unit MPa MPa MPa MPa
Value 28.0 0.037 14.0 1.65 3500 600 0.015 26.5 0.0013

3.3.2. Fatigue Model Parameters

The model parameters for fatigue were extracted from uniaxial in situ measurements
(smooth specimen) for the applied stress vs. number of cycles (S − N curves). The parame-
ters a∼0.2, a2∼0.015, σ0∼9 MPa, and B∼0.7, were defined above, whereas the remaining
parameters are more complicated because they are related to the intrinsic development
of the high-cycle damage (K∼10−5, L∼1 . . . 3), backstress α (C∼1) [28], and deformation
history of the low-cycle damage (L̃, κ). These parameters can be determined using a
heuristic (trial-and-error) iteration, clustering of scattered parameters [63], least-squares
fitting, or an optimization procedure [7,21,64]. Then, however, parameters do not have a
clear physical or mechanical interpretation, and they may show different optimal values
depending on the applied object function. An example is demonstrated in Figure 8, which
shows that the stress response is highly nonlinear on the part of constitutive parameter
spaces and almost zero elsewhere. Consequently, the tolerance for the optimum is achieved
on different parameter values, i.e., the optimum is not unique or difficult to find.

Figure 8. The weightedstress object, σ̃ = ΣÑ
i=1

(
ψ∥σ̄UC,i − σUC,i∥2 + ∥σ̄PSC,i − σPSC,i∥2

)
as a function

of the constitutive parameters (a) CR and N and (b) CR and h0 (see Figure 3). The bar indicates
the experimental stress response (extracted from [65]), Ñ is the number of stress increments (up
to rupture), and ψ = 5 is the weight factor. The fitting is performed through uniaxial (UC) and
plane strain compression (PSC) modes taken the two strain rates ϵ̇ = 0.001 s−1 and ϵ̇ = 0.01 s−1

into account.

The S-N curves of polymers exhibit a fairly straight slanting portion with a negative
slope at low numbers of cycles and a virtually horizontal line in high cycles when the
maximum stress equals to the endurance limit. Therefore, many polymers show a nonlinear
S-N curve similar to metals [29], indicating the well-defined Basquin relation (HCF) and
Coffin–Manson (LCF) formula are applicable [36,37].
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The interpretation of the Basquin and Coffin–Manson formulas is evident from the
strain amplitude under uniaxial fully reversed fatigue loads (R = −1):

∆ϵ

2
=

∆ϵp

2
+

σa

E
= ξ

′
f(2Nf)

−c +
σ
′
f

E
(2Nf)

−b, (14)

where ξ
′
f (fatigue ductility coefficient), c (fatigue ductility exponent), σ

′
f (fatigue strength co-

efficient), and b (fatigue strength exponent) are parameters ([51,66] page 678, Equation (9)),
see Figure 9. Despite the similar fatigue characteristics between polymers and metals, there
is no data for these parameters for polymers. The steps to define these parameters for
polymers are also discussed next.

101 102 103 104 105

10-3

10-2

10-1

reversals 2Nf to failure

ǫa

ξ
′
f

σ
′
f

E

Figure 9: Strain amplitude vs. fatigue life based on the Basquin (HCF) and Coffin-Manson
(LCF) formulas.

The stress is presumed to alter periodically between σ2 = σm + σa and σ4 =
σm − σa, see Fig. 10, and the stresses σ1 and σ3 are the stress states on the
endurance surface, where β1 = β3 = 0.
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Figure 10: Periodic uniaxial sinusoidal stress state. Simultaneous damage development and
movement of the endurance surface are designated by a double curve.

HCF-region

Considering first the HCF model parameters (L, C, K̄). Noting β is near
zero in the HCF-region, integration of the damage evolution (13) from state 1
to state 2 yields

D2 −D1 =
K̄

L
(exp(Lβ2)− exp(Lβ1)),

where K̄ = K/(1−BD) ∼ K/0.7 holds for the most of the fatigue life (B ∼ 0.7
and 0.2 < D < 0.5 for the most of the fatigue life). Observing that state 1 is
located on the endurance surface, i.e., β1 = 0,

D2 −D1 =
K̄

L
(exp(Lβ2)− 1),

15

Figure 9. Strain amplitude vs. fatigue life based on the Basquin (HCF) and Coffin–Manson (LCF) formulas.

Polymer vs. Metal Fatigue Parameters

Considering a periodic uniaxial loading with sufficiently low mean stress (σm ∈
(−5, 15) MPa, see Figure 5(left)), the function g in (2) and the effective stress (3) are reduced
to g ∼ aI1 and

σ̄ = k(σ − 3/2α), k = 1 if σ − 3/2α > 0 and k = −1 otherwise, (15)

respectively. The endurance function (2) can then be given as

β =
1
σ0

(k(σ − 3/2α) + aσ − σ0), (16)

cf. [28]. Turning to the evolution Equation (9) for the backstress α and taking advantage
of (16),

dα =
2C
3σ0

(k(dσ − 3/2dα) + adσ)(σ − 3/2α). (17)

The stress is presumed to alter periodically between σ2 = σm + σa and σ4 = σm − σa,
see Figure 10, and the stresses σ1 and σ3 are the stress states on the endurance surface,
where β1 = β3 = 0.
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Figure 10. Periodic uniaxial sinusoidal stress state. Simultaneous damage development and move-
ment of the endurance surface are designated by a double curve.

HCF Region

Considering first the HCF model parameters (L, C, K̄). Noting β is near zero in the
HCF region, integration of the damage evolution (13) from state 1 to state 2 yields

D2 − D1 =
K̄
L
(exp(Lβ2)− exp(Lβ1)),

where K̄ = K/(1− BD) ∼ K/0.7 holds for most of the fatigue life (B ∼ 0.7 and 0.2 < D < 0.5
for most of the fatigue life). Observing that state 1 is located on the endurance surface, i.e.,
β1 = 0,

D2 − D1 =
K̄
L
(exp(Lβ2)− 1),

cf. [28]. Likewise, integration from state 3 to 4 yields

D4 − D3 =
K̄
L
(exp(Lβ4)− 1).

The damage evolution during one complete cycle becomes

∆D = (D2 − D1) + (D4 − D3) =
K̄
L
(exp(Lβ2) + exp(Lβ4)− 2). (18)

Using (16) in (18), it follows that during N cycles to failure (D = 1)

L
K̄N

= exp(
L
σ0

(k(σ2 −
3
2

α2) + aσ2 − σ0)) + exp(
L
σ0

(k(σ4 −
3
2

α4) + aσ4 − σ0))− 2. (19)

Two standard testing loads are examined: alternating, R = −1, and pulsating, R = 0 [29].
When R = −1, dσ4 = dσ2 = 0, σ4 = −σ2, and Equation (17), at states 2 and 4, provides

dα2 =
2C
3σ0

(−3/2kdα2)(σ2 − 3/2α2), (20)

dα4 =
2C
3σ0

(−3/2kdα4)(−σ2 − 3/2α4). (21)

The solutions of (20) and (21) are

σ2 − 3/2α2 =
σ0

C
, k = −1, (22)
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and
−σ2 − 3/2α4 =

σ0

C
, k = −1. (23)

Substitution of (22) and (23) into (19) results in

L
K̄N

= exp(
L
σ0

(aσ2 +
σ0

C
− σ0)) + exp(

L
σ0

(−aσ2 +
σ0

C
− σ0))− 2. (24)

It is compulsory that L/(K̄N) → 1 as σ2 → σ0 and R = −1. Then, from (24), one ob-
tains after rearrangements (noting exp(La) + exp(−La) ∼ 2):

C =
L

L + ln(3/2)
. (25)

When R = 0, dσ4 = dσ2 = 0, σ4 = 0, and using (17), in a similar way as above,
it follows that

σ2 − 3/2α2 =
σ0

C
, k = −1, (26)

and
−3/2α4 =

σ0

C
, k = −1. (27)

Substitution of (26) and (27) into (19) results in

L
K̄N̄

= exp(
L
σ0

(aσ2 +
σ0

C
− σ0)) + exp(

L
σ0

(
σ0

C
− σ0))− 2, (28)

where N̄ is the number of cycles to fatigue failure when R = 0. Using σ2 = 2σa = 2σm =
2ζσ0 in (28) yields (noting exp(2Laζ) + 1 ∼ exp(2Laζ + 1/2))

C =
L

L(1 − 2aζ) + ln( L
K̄N̄ + 2) + 1/2

. (29)

A comparison of (25) and (29) yields

L =
ln(( L

K̄N̄ + 2)/3) + 1/2
2aζ

. (30)

The Basquin equation for HCF is σ0 = σ
′
f (2N)−b, where b and σ

′
f are positive material

parameters [29]. For R = 0, when N̄ is the number of cycles for failure (D = 1), the relation
σ
′′
f (2N̄)−b = σ

′
f (2N)−b yields

1
N̄

= (
σ
′
f

σ
′′
f

)1/b 1
N

. (31)

Certain enhancements have been developed to the Basquin formula for the effect of
mean stress, R ̸= −1 (σm ̸= 0, ζ ≥ 1) [67]:

σ
′′
f = ϖ−1σ

′
f exp(−(

σm

σu
)σyi/σu), (32)

where σm, σyi, and σu are the mean, yield, and ultimate stresses, respectively [67], and
ϖ < 1 ∼ 0.9 accounts for a slightly reduced elastic portion of strain σ

′′
f /(E/ϖ) for polymers

when the mean stress relative to the stress amplitude increases ([7], Figures 13 and 14), cf.
Figure 9. Using (32) in (30) and (31) yields (noting L/(K̄N) → 1)

L =
ln((ϖ(exp(( σm

σu
)σyi/σu))1/b + 2)/3) + 1/2

2aζ
. (33)
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Finally, making use of the relation σ0 = σ
′
f (2N)−b = σ

′
f (2L/K̄)−b yields

K̄ = 2L(
σ0

σ
′
f

)1/b. (34)

Equations (25), (33) and (34) result in the eligible expressions for the fatigue model
parameters C, L, and K, that is, the proposed fatigue model relies on the well-defined
parameters σu and σy, and the values of the parameters σ

′
f and b (Basquin), which are well

defined and documented for metal fatigue [29].

LCF Region

The model parameters for the LCF are L̃ and κ. In the LCF region, β can vary largely
and the integration of the damage evolution (13) from state 1 to state 2 yields

D2 − D1 = K̄ exp(−c̄)
(

1
L
(exp(Lβ2) exp(c̄ exp(−b̄β2))− exp(c̄)) +

c̄b̄
L(L − b̄)

(exp((L − b̄)β2)·

exp(c̄ exp(−b̄β2))− exp(c̄)) +
(c̄b̄)2

L(L − b̄)

∫ β2

β1

exp((L − 2b̄)β) exp(c̄ exp(−b̄β))

)
,

(35)

where the constraint β1 = 0 was considered, and b̄ = κ/L̃ and c̄ = −L̃2/κ. Since
exp(Lβ2) >> exp((L − b̄)β2) >> exp((L − 2b̄)β2) (κ >> L̃ > L, β2 > 0) while the
coefficients 1/L, c̄b̄/L(L − b̄), and (c̄b̄)2/L(L − b̄) differs relatively slightly, Equation (35)
is reduced to

D2 − D1 =
K̄
L

(
exp(Lβ2) exp(c̄(exp(−b̄β2)− 1))− 1

)
. (36)

Likewise, integration from state 3 to 4 yields

D4 − D3 =
K̄
L

(
exp(Lβ4) exp(c̄(exp(−b̄β4)− 1))− 1

)
.

The damage evolution during one cycle (D = (D2 − D1) + (D4 − D3)) becomes

∆D =
K̄
L

(
exp(Lβ2) exp(c̄(exp(−b̄β2)− 1)) + exp(Lβ4) exp(c̄(exp(−b̄β4)− 1))− 2

)
. (37)

In the LCF region, the pulsating stress (R = 0) is high, resulting in ratcheting [7].
This characteristic limits the capability of the Coffin–Manson formula for LCF. Therefore,
considering solely the alternating stress (R = −1, dσ4 = dσ2 = 0, σ4 = −σ2). Using (16),
(22), and (23) in (37), it follows that during Ñ cycles to fatigue failure (D = 1):

L
K̄Ñ

= exp(−c̄)
(

exp(
L
σ0

(aσ2 +
σ0

C
− σ0)) exp(c̄(exp(

−b̄
σ0

(aσ2 +
σ0

C
− σ0))))+

exp(
L
σ0

(aσ4 +
σ0

C
− σ0)) exp(c̄(exp(

−b̄
σ0

(aσ4 +
σ0

C
− σ0))))

)
− 2.

(38)

Using σ2 = ζ̄σ0 (ζ̄ > 1 in LCF region), (38) becomes
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L
K̄Ñ

= exp(−c̄)
(

exp(L(aζ̄ +
1
C
− 1)) exp(c̄(exp(−b̄(aζ̄ +

1
C
− 1))))+

exp(L(−aζ̄ +
1
C
− 1)) exp(c̄(exp(−b̄(−aζ̄ +

1
C
− 1)))

)
− 2

≈ exp(−c̄)
(

exp(L(aζ̄ +
1
C
− 1)) exp(c̄(exp(−b̄(aζ̄ +

1
C
− 1))))

)
− 2,

(39)

because C ∼ 1, b̄ = κ/L̃ >> 1, and c̄ = −L̃2/κ < 0. From (39), one obtains after
rearrangements:

b̄ =
κ

L̃
=

−const2

aζ̄ + 1
C − 1

, const2 = ln
(

1
c̄
(ln(

L
K̄Ñ

+ 2)− L(aζ̄ +
1
C
− 1) + c̄)

)
. (40)

The parameters κ and L̃ for LCF are yet undetermined. Therefore, considering third
alternating stress σ2 = ¯̄ζσ0, ¯̄ζ > ζ̄ > 1 such that N < 1000 for ultimately LCF. Then
exp(−b̄β2) ∼ 0 (b̄ >> 1 and β2 > 1), and the damage evolution (37) during one complete
cycle further reduces to

∆D =
K̄
L

(
exp(−c̄) exp(Lβ2)− 2

)
. (41)

Using (16) in (41) and noting (22) and (23), it follows, during ˜̃N cycles to failure
(D = 1), that

L

K̄ ˜̃N
= exp(−c̄) exp(L(aζ̄ +

1
C
− 1))− 2. (42)

From (42), one obtains after rearrangements:

C =
L

ln( L
K̄ ˜̃N

+ 2) + c̄ + L(1 − a ¯̄ζ)
. (43)

A comparison of (25) and (43) yields

c̄ = La ¯̄ζ − ln(
2
3
(

L

K̄ ˜̃N
+ 2)) = −const3 = − L̃2

κ
(44)

or
L̃ =

√
κ
√

const3. (45)

Furthermore, a comparison of (40) and (45) reveals that

κ =

( −const2

aζ̄ + 1
C − 1

)2

const3. (46)

In the end, equalizing the Ramberg–Osgood (for dynamic stress-strain relations) and
Coffin–Manson formulas for the plastic strain amplitude, i.e.,

ϵ
p
a = (

σa

σ
′
c
)1/nc = ξ

′
f(2Ñ)−c,

results in
Ñ =

1
2
[ 1

ξ
′
f

(
σa

σ
′
c
)1/nc

]−1/c, σa = ζ̄σ0, (47)
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where σ
′
c denotes the strength coefficient and nc is the strain hardening coefficient [29,66].

One can equalize (39) and (42) with negligible error in the LCF region by choosing ¯̄ζ → ζ̄

( ˜̃N → Ñ).
In summary, the fatigue model parameters are defined as follows:

L =
ln((ϖ(exp(( σm

σu
)œy/œu))1/b + 2)/3) + 1/2

2aζ
, ζ ≥ 1, ϖ ∼ 0.9,

C =
L

L + ln(3/2)
,

K̄ = 2L(
σ0

σ
′
f

)1/b, K = 0.7 . . . 0.8K̄,

κ =

( −const2
1
C + aζ̄ − 1

)2

const3,

const2 = ln(
1

−const3
(ln(

L
K̄Ñ

+ 2)− L(aζ̄ +
1
C
− 1)− const3)),

const3 = −La ¯̄ζ + ln(
2
3
(

L
K̄Ñ

+ 2)), ¯̄ζ → ζ̄ > ζ ≥ 1,

L̃ =
√

κ
√

const3,

(48)

where Ñ is given by the Equation (47). It can be observed that the model parameters
for fatigue of polymers are definable by the well-defined parameters σ

′
f (fatigue strength

coefficient), b (fatigue strength exponent), ξ
′
f (fatigue ductility coefficient), c (fatigue ductility

exponent), σ
′
c (strength coefficient), and nc (strain hardening coefficient) included in the

Basquin, Coffin–Manson, and Ramberg–Osgood formulas [29,66].

4. Results
4.1. Fatigue Parameter Values and Sensitivity

The fatigue strength (endurance) limit for PC ranges between σ0 = 8 . . . 10 MPa
(R = −1) [68]. The parameter a is positive and represents the negative value of the
slope in the Haigh diagram, see Figure 5(left), i.e., it can be calculated from the rela-
tion a = (σ0/σ+0)− 1, in which σ+0 is the fatigue strength for uniaxial tensile pulsating
loading (R = 0, σm > 0). Using data for R = 0.1 ∼ 0, σ+0 = 6.5 . . . 8.0 MPa and then
a = 0.15 . . . 0.25. An extension aI1 → g in the endurance surface (2) to encompass large
mean stresses is governed by the single parameter a2 ∼ 0.015 (8) as illustrated in Fig-
ure 5(right).

To govern the ultimate fatigue life of the HCF region, ζ = 1, i.e., σa = σ0 for the stress
ratios R = −1 (σm = 0) and R = −0.3 (σm = 0.5σa) was used to calculate L, C, and K
defined in (48). These two points are shown in Figure 5(left). To find their exact values
to also govern the intermediate region from LCF to HCF, the sensitivity of the Basquin
model parameters (b, σ

′
f ) for HCF and the Coffin–Manson model parameters (ξ

′
f, c) for LCF

on them were investigated, see Figure 11(left). Due to the similar characteristics of the
S-N curves between metals and polymers, the initial values of Basquin-Coffin–Manson
model parameters for polymers were found from the values for metals [29]. The fatigue
ductility coefficient ξ

′
f representing the ultimate of the strain amplitude ϵa (logarithmic)

for the fatigue life of a few tens of cycles (R = −1) was approximated to be ξ
′
f < 0.8,

as demonstrated in Figure 9. In this treatment, c (fatigue ductility exponent) defining
the slope of the ϵa − N (S-N) curve in the LCF region was observed to vary 15% when
σ0 = 7.5 . . . 10 MPa varies 30%, see Figure 11. Moreover, the fatigue strength coefficient
σ
′
f was considered to vary 6%, and the values close to the true tensile rupture (ultimate)

stress, as have been used in the Basquin relationship for metals, were applied [29,66]. Based
on the observations for R = −1, R = 0.1, and R = 0.5, the fatigue strength exponent b
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defining the slope of the ϵa − N (S-N) curve in the HCF region was observed to be virtually
constant, and it is the parameter K most affected by b. In view of the results in Figure 11, the
impact of the fatigue strength limit and the Basquin model parameters on the parameters L
(weights the endurance function β in the rate of damage evolution, see (13) and Figure 7)
and particularly C (influences the midpoint of the endurance surface, see (9) and Figure 6)
is low.

To calculate κ and L̃ in (48) for LCF, ζ̄ → ¯̄ζ = 5.1 (R = −1), i.e., σa = ¯̄ζσ0 ∼ 1.1σyi was
used to result in N ≤ 1000, as it was restricted above. This point is shown in Figure 5(left).
In this treatment, σ

′
c (strength coefficient) and nc (strain hardening coefficient) applied in

the Ramberg–Osgood formulas similar to metals were defined. The strength coefficient
σ
′
c represents the strength when the material shows a significant yielding [66] and it was

observed to be close to the fatigue strength coefficient σ
′
f used in the Basquin equation.

The strain hardening coefficient nc defines the nonlinear relationship between the (plastic)
strain and stress amplitudes, and in double logarithmic scale, when the relationship is
linear, it defines the slope of the line as demonstrated in Figure 12(right). The variation
of nc was 50 % (for σ0 = 7.5 . . . 10 MPa), cf. Figure 11. In view of the results in Figure 11,
the impact of the fatigue strength limit and the Ramberg–Osgood model parameters on
the parameters L̃ (weights the endurance function β and influences the damage rate, see
(13) and Figure 7) and κ (completes the damage evolution of how rapidly the transition
between the LCF and HCF is reached, see (12)) is significant; the greater σ0 and σ

′
c, and

the lower nc, the greater L̃ (damage rate) and κ. This observation is consistent with our
general experimental observations for LCF (stress levels near σy), which show more brittle
and rapid damage evolution when the strength (σy, σ0, σ

′
c) and consequently the brittleness

of the polymer material increase (many materials with brittle characteristics exhibit greater
strength and hardness [69]).
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Figure 11: Fatigue parameters C (dash-dot), L (solid), K (dashed) (left), and L̃ (solid)
and κ (dashed) (right). The black and green colors refer to the final parameter values
and the parameter values depending on the range σ0 =7.5...10 MPa: σy = 34...42

MPa, b = 0.19...0.17, σ
′
f = 55...58 MPa (C, L; HCF), ξ

′
f = 0.6...0.9, c = 0.54...0.62,

σ
′
c = 52...55 MPa, and nc = 0.08...0.04 (L̃, κ; LCF).
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Figure 12: Stress vs. strain amplitudes based on the Ramberg-Osgood formula (green curves)
for PC: linear scale (left) and logarithmic scale (right). The black curves (left) denote the
experimental stress vs. strain responses showing the nonlinear plastic behavior (dashed) and
total deformation (solid).

S-N curves between metals and polymers, the initial values of Basquin-Coffin-
Manson model parameters for polymers were found from the values for metals
Lampman (1996). The fatigue ductility coefficient ξ

′
f representing the ultimate

of the strain amplitude ǫa (logarithmic) for the fatigue life of few tens of cycles
(R = −1) was approximated to be ξ

′
f < 0.8, as demonstrated in Fig. 9. In

this treatment, c (fatigue ductility exponent) defining the slope of the ǫa − N
(S-N) curve in the LCF-region was observed to vary 15 % when σ0 = 7.5...10
MPa varies 30 %, see Fig. 11. Moreover, the fatigue strength coefficient σ

′
f

was considered to vary 6 %, and the values close to the true tensile rupture
(ultimate) stress, as have been used in the Basquin relationship for metals, were
applied Lampman (1996); Nieslony et al. (2008). Based on the observations for
R = −1, R = 0.1, and R = 0.5, the fatigue strength exponent b defining the
slope of the ǫa −N (S-N) curve in the HCF-region was observed to be virtually
constant, and it is the parameter K most affected by b. In view of the results
in Fig. 11, the impact of the fatigue strength limit and the Basquin model

21

Figure 11. Fatigue parameters C (dash-dot), L (solid), K (dashed) (left), and L̃ (solid) and κ (dashed)
(right). The black and green colors refer to the final parameter values and the parameter values
depending on the range σ0 =7.5. . . 10 MPa: σyi = 34 . . . 42 MPa, b = 0.19 . . . 0.17, σ

′
f = 55 . . . 58 MPa

(C, L; HCF), ξ
′
f = 0.6 . . . 0.9, c = 0.54 . . . 0.62, σ

′
c = 52 . . . 55 MPa, and nc = 0.08 . . . 0.04 (L̃, κ; LCF).

A conclusion is that the relationship between the fatigue model parameters (L, C,
K, κ, L̃) and the Basquin, Coffin–Manson, and Ramberg–Osgood model parameters is
highly nonlinear for polymers, but the relationship can be defined. The final parameter
values to construct the S-N curves are shown in Table 3. An interesting detail is that the
final parameter values for the Basquin-Coffin–Manson and the Ramberg–Osgood model
parameters (in the title of Table 3) are almost the average values of their ranges; see the
title of Figure 11. The proposed concept to define fatigue parameters L, C, K, κ, and L̃ for
polymer fatigue is demonstrated in Figure 13.
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Figure 12. Stress vs. strain amplitudes based on the Ramberg–Osgood formula (green curves) for PC:
linear scale (left) and logarithmic scale (right). The black curves (left) denote the experimental stress
vs. strain responses, showing the nonlinear plastic behavior (dashed) and total deformation (solid).

Table 3. Fatigue model parameters for the PC applied. The final values b = 0.18, σ
′
f = 57 MPa,

ξ
′
f = 0.7, c = 0.59, σ

′
c = 53 MPa, and nc = 0.052 were used. The strengths were σyi = 40 MPa and

σu = 60 MPa.

Source σ0 [MPa] a a2 [MPa]−1 C K L κ L̃ B

Parameter 8.3 0.18 0.014 0.75 4.0·10−5 1.1 160 18 0.7

Figure 13. Flowcharts for model calibrations and predictions based on unavailable (left) and available
(right) Basquin–Coffin–Manson and Ramberg–Osgood model parameters.

4.2. Macrostructural Aspects

The value κ∼100 . . . 200, which defines the transition from the viscoelastic behavior
(HCF region) to the plastic (LCF region), is limited and represents, therefore, preferably
viscoplastic rather than viscoelastic (infinitely large value of κ) material behavior. When κ
increases infinitely, damage evolution (13) reduces to
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dD =
K

1 − BD
exp(Lβ)dβ ≥ 0, (49)

which a bulk form represents a long-term damage evolution similar to that of elastic
metals [28]. However, the value κ for the transition is notable and is in accordance with the
experimental observations and proposed constitutive theory for the irreversible, dissipative,
and prolonged effects (area of the loops, cyclic creep, or ratcheting); the S-N curves show a
reduced negative slope at a low number of cycles, a fairly straight slanting portion with
an increased negative slope during long numbers of cycles (predicted essentially by κ),
a re-reduced negative slope at a high number of cycles, and almost horizontal asymptote
in the ultimate of the HCF region, cf. Figure 14(left). Also, the stress vs. strain loops
and ratcheting strain responses for asymmetric loadings are well predicted, as shown in
Figures 14(right) and 15. The largest difference between the model predictions and data for
fatigue life occurs in the ultimate of the HCF region when R = 0.1, Figure 14(left). What is
notable is that the influence of the stress amplitude is dominant [23]: the maximum stress
for R = −1 remains well below compared to those for R > 0 (up to 60 MPa).
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predicted as shown in Figs. 14(right) and 15. The largest difference between
the model predictions and data for fatigue life occurs in the ultimate of the
HCF-region when R = 0.1, Fig. 14(left). What is notable is that the influence
of the stress amplitude is dominant Janssen et al. (2008a): the maximum stress
for R = −1 remains well below compared to those for R > 0 (up to 60 MPa).

Based on the curvatures of the observed S-N curves shown in Fig. 14(left), it
can be suggested that the LCF-region covers less than 4,000...10,000 cycles and
the HCF-region greater than 30,000...60,000 cycles; the S-N curves show a small
negative slope at low number of cycles (LCF-region) and a re-reduced negative
slope or almost horizontal asymptote in the ultimate of the HCF-region. These
characteristics make the modeling challenging and they are achieved by the
proposed damage model (13) which is the composition of the LCF- and HCF-
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flat specimen), R = 0.1 (• flat specimen; ■ tubular specimen), and R = 0.5 (▲ flat specimen) (left).
The 40th, 400th, and 3100th (prior to rupture) loops for the LCF region when R = 0.1 (right). The
green and black colors denote the model results and data, respectively.
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predicted as shown in Figs. 14(right) and 15. The largest difference between
the model predictions and data for fatigue life occurs in the ultimate of the
HCF-region when R = 0.1, Fig. 14(left). What is notable is that the influence
of the stress amplitude is dominant Janssen et al. (2008a): the maximum stress
for R = −1 remains well below compared to those for R > 0 (up to 60 MPa).

Based on the curvatures of the observed S-N curves shown in Fig. 14(left), it
can be suggested that the LCF-region covers less than 4,000...10,000 cycles and
the HCF-region greater than 30,000...60,000 cycles; the S-N curves show a small
negative slope at low number of cycles (LCF-region) and a re-reduced negative
slope or almost horizontal asymptote in the ultimate of the HCF-region. These
characteristics make the modeling challenging and they are achieved by the
proposed damage model (13) which is the composition of the LCF- and HCF-
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Figure 15. Ratcheting strains ϵr := 1
2 (ϵmin + ϵmax) (ϵmin and ϵmax are the minimum and maximum

strains in each cycle) when R = 0.1 (left); the markers • and the green curves mean data and predicted
results. The maximum stresses were 50%, 75%, 90%, and 97% of the ultimate tensile stress, 60 MPa.
Ratcheting strains for R = 0.5 (right). The maximum stress values were 50%, 75%, and 90%.

Based on the curvatures of the observed S-N curves shown in Figure 14(left), it
can be suggested that the LCF region covers less than 4000. . . 10,000 cycles and the HCF
region greater than 30,000. . . 60,000 cycles; the S-N curves show a small negative slope at
low number of cycles (LCF region) and a re-reduced negative slope or almost horizontal
asymptote in the ultimate of the HCF region. These characteristics make the modeling
challenging, and they are achieved by the proposed damage model (13), which is the
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composition of the LCF and HCF regions, including the curvature κ that completes the
damage definition of how rapidly the transition between the asymptotes of the LCF and
HCF regions is reached.

4.3. Microstructural Aspects

From the microstructural point of view, fatigue failure is due to the nucleation, growth,
and coalescence of nanoscopic voids on the polymer chain network [47] governing over 90%
of the entire lifetime [9,23,33,34,70]. In more detail, the increase in the free volume (repre-
senting a reduced chain density from the nano-to microscale [21,22,71]) has frequently been
connected to the nucleation, growth, and coalescence of tiny voids affecting stable growth
of shear bands (SBs) and microcracks (primary stage I) to form of macrocracks (secondary
stage II) [20,47] and has been used to model damage [72], see Figure 16(top). The effect of
the free volume φ is included in fatigue through the constitutive model as demonstrated in
Figure 3, [7]. Furthermore, crazing, i.e., changes in the chain disentanglement and fibril
(extended chain crystals or bundles between voids), explains the origin of plastic defor-
mation for fatigue failure in crack tips at the stages I–II [13,44,45,73], see Figure 16(bottom
right). Once most of the fatigue life (∼60%) is reached, vein-like and rippled zones of SBs
start to develop, preventing the enlarging of the microcracks [74,75], see Figure 16(bottom
left). This microstructural characteristic explains the long-term stable deformation behavior
(and the large value of κ representing the long-term transition from LCF region to HCF)
before complete failure (rupture) when the unstable macro-crack propagation progresses
rapidly (tertiary stage III). The fatigue failure stages I–III and predicted fatigue damage
representing the stages I and II are shown in Figure 17.

Crack and void propagation →

Increasing voids ր

Crack propagation →

Nucleated voids ↑

500 cycles 1,500 cycles

3,500 cycles, stage II

Figure 16: Microstructure at 500 cycles, 1,500 cycles, and 3,500 cycles (local SBs are
shown in the inset; the tubular specimen used broke at 4,800 cycles) when R = 0.1
and σmax = 45 MPa (75 % of the ultimate tensile strength). Demonstration of the
failure mechanism in crack tip (bottom right)).

regions including the curvature κ that completes the damage definition of how
rapidly the transition between the asymptotes of the LCF- and HCF-regions is
reached.
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Figure 17: Predicted fatigue damage including the stages I - II when R = 0.1, σmax = 45
MPa, and f = 5 Hz.

25

Figure 16. Microstructure at 500 cycles, 1500 cycles, and 3500 cycles (local SBs are shown in the
inset; the tubular specimen used broke at 4800 cycles) when R = 0.1 and σmax = 45 MPa (75% of the
ultimate tensile strength). Demonstration of the failure mechanism in the crack tip (bottom right).
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Crack and void propagation →

Increasing voids ր

Crack propagation →

Nucleated voids ↑

500 cycles 1,500 cycles

3,500 cycles, stage II

Figure 16: Microstructure at 500 cycles, 1,500 cycles, and 3,500 cycles (local SBs are
shown in the inset; the tubular specimen used broke at 4,800 cycles) when R = 0.1
and σmax = 45 MPa (75 % of the ultimate tensile strength). Demonstration of the
failure mechanism in crack tip (bottom right)).

regions including the curvature κ that completes the damage definition of how
rapidly the transition between the asymptotes of the LCF- and HCF-regions is
reached.
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Figure 17: Predicted fatigue damage including the stages I - II when R = 0.1, σmax = 45
MPa, and f = 5 Hz.
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Figure 17. Predicted fatigue damage including the stages I–II when R = 0.1, σmax = 45 MPa, and
f = 5 Hz.

5. Conclusions

The article proposes a compact viscoelastic–plastic constitutive model and fatigue
model for polymers, able to predict the macroscopic short- to long-term cyclic deformation
behavior and fatigue life. The applied concept of a fatigue damage evolution and a
moving endurance surface in the stress space averts the need for equivocal cycle-counting
techniques. Meanwhile, the concept governs the effect of loading histories. Based on the
proposed endurance function, a rule, as an alternative to the celebrated Gerber’s rule (1874)
to quantify the Haigh diagram, was proposed, capable of considering the asymmetry of
polymers between compression and tension. Furthermore, the similar macroscopic fatigue
characteristics between polymers and metals motivated the use of the Basquin (HCF) and
Coffin–Manson (LCF) formulas also for polymers; the fatigue parameters were determined
in terms of the univocal, well-defined Basquin and Coffin–Manson parameters. Considering
further research, the promising results motivate us to define and collect the Basquin and
Coffin–Manson parameters for various polymers similar one has collected to metals. Due
to the compact formulation and calibration procedure, the proposed model is easy to
implement and use as a built-in feature in finite-element packages to perform in-depth
looks at different polymer systems and loading scenarios. Therefore, model predictions
can intensify the material development, and one can build digital (numerical) twins (a
test setup and an up-to-date model representation of a test setup [76]) to avoid costly and
time-consuming (trial-and-error) iterations needed for testing arrangements, as well as for
model calibration. The digital twins can be used to predict the future mechanical behavior
of the asset and to refine the control (manufacturing) and material development and
characterization. Lastly, the integration of microstructural mechanisms with the proposed
continuum damage model provides an interesting avenue for future research.
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Nomenclature
ϵ uniaxial strain
F deformation gradient
σ, s stress and its deviatoric component
S − N true stress range vs. number of cycles N to failure
σy peak yield stress
σu ultimate tensile strength
σa stress amplitude
σm mean stress
β(σ̄, g; σ0) endurance function
σ̄(s, α) equivalent stress
α(C) fatigue variable (kinematic)
C model (material) parameter
σ0, σ+0 fatigue strengths for alternating and pulsating uniaxial loads
g(I1; a, a2) function in β for the mean stress σm
I1 first stress invariant
a, a2 slope parameters of the Haigh diagram for low and high values of σm
D fatigue damage
HCF, LCF high-cycle fatigue, low-cycle fatigue
K, L, C fatigue damage parameters for HCF
L̃, κ fatigue damage parameters for LCF
R stress ratio σmin/σmax
ζ stress ratio σa/σ0
σ

′
f , b parameters of Basquin equation

ξ
′
f , c parameters of Coffin-Manson formula

σ
′
c, nc parameters of Ramberg-Osgood formula

ϵr ratcheting strain
SBs Shear bands

Appendix A. Integration of the Fatigue Model

An implicit Euler scheme was used for updating fatigue model variables (9) and (13).
Their integration resulted in the following nonlinear residual functions:

R = α − αn − dα,

R = D − Dn − dD,
(A1)

where n refers to the last state of equilibrium, and the increment of the endurance func-
tion (2) needed in them is

dβ =
1

σ0 + Cσ̄
(

3
2
(s − α) : ds

σ̄
+ (a + 2a2 I1)trace(dσ)) (A2)
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In (A1), dD = Ḋdt, dα = α̇dt, and dt is the time increment. In the numerical
calculations, dt is replaced by the time step ∆t. Since the calculation of long fatigue lives is
time-consuming, it is worth investigating how to reduce the time step. Considering the
applied sinusoidal cyclic loads with the stress amplitude σa and frequency 1 Hz. An error
in the area of one cycle is

e = σa(
∫ 1

0
sin(2πt)dt −

I

∑
i
(∆t sin(2πn∆t − ∆t

2
))) = σa(

1
π

−
I

∑
i
(∆t sin(2πn∆t))),

where 2πn∆t >> ∆t/2 was taken into consideration and I = 1/∆t. Requiring the error
always is less than 1%, one obtains for σa = 9 MPa (R = −1) ∆t ∼ 0.06 s, σa = 40 MPa
(R = −1) ∆t ∼ 0.004 s, and for σa = 6 MPa (R = 0.5) ∆t ∼ 0.015 s. Then, the fitted time
step can be approximated by

∆t = c1(
σ0

σa
)c2 exp(−c3

σm

σa
),

where σa > 0 holds for fatigue loads and c1 = 0.065, c2 = 1.7, and c3 = 0.7 are fitted parameters.
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