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Abstract

This paper primarily summarize the research efforts conducted within the AS2M department of the
FEMTO-ST institute, focusing on topology optimization of piezoelectric structures. In this regard,
the principles and the possibilities offered by topology optimization with a specific emphasis on the
SIMP approach (Solid Isotropic Material with Penalization) are highlighted. The design processes of
piezoelectric micro-actuators and energy harvesters are described, The optimized piezoelectric struc-
tures are presented and the improvements over classical designs are assessed. Moreover, in this paper,
we present the eigenvalue optimization of the piezoelectric energy harvester by tuning the mass of
attachment as an optimization variable. The theoretical development is accompanied by the developed
MATLAB code to implement the topology optimization algorithm. This code is the update and exten-
sion of the previously published codes by authors for piezoelectric structures while it will be the first
published code of its kind that considers the tuning of the natural frequency of the piezo structure.
Finally, the paper discusses the feasibility and the potential of multi-material topology optimization.

Keywords: Piezoelectric micro-actuator, piezoelectric energy harvester, topology optimization, Matlab code

1 Introduction

The interest of miniaturized systems is consid-
erable and well established [1]. Based on smart
materials like piezoelectric materials, they can
change their inherent properties in response to

external stimuli in a controllable manner. Taking
this advantage, they are widely used in several
applications such as: biomedical, optics, fluidics,
car industry, energy harvesting, electronics, etc.
However, due to their size and density of integra-
tion, their design remains challenging because it
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requires taking into account the coupling between
the structure and its mechanisms through a global
design strategy. This requirement is induced by
smart materials that play a significant role in the
technological design of these systems. To address
this challenge, various design methodologies have
been proposed such as optimal arrangement of
actuators/sensors [2–4], interval method [5, 6] or
blocks method [7, 8]. Nevertheless, most of these
methods lack generalization since they act only
on the geometric parameters of the structure.
This limits efficient shape design of the active
mechanisms (actuation and measurement) and
consequently that of the resulting structure.

In this regard, topology optimization [9], and
particularly the SIMP (Solid Isotropic Mate-
rial with Penalization) method seems to be a
promising solution. Unlike classical optimization
methods, it gives rise to efficient structures in
response to requirement specifications. Its princi-
ple is mainly based on optimal material distribu-
tion within a specified design domain. Presented
initially by Sigmund et al. [9–11], this powerful
method is suitable for the design of passive struc-
tures. Since becoming a conceptual design tool,
it has been particularly applied to design smart
structures based on piezoelectric materials [12].
However, it remains challenging to handle due to
the non-intuitive and non-unified integration of
piezoelectric materials.

To tackle this limitation, the AS2M depart-
ment has been actively working since 2018 to
enhance the SIMP method by extending it to
include piezoelectric materials. The objective is
to provide a straightforward strategy for inte-
grating the physics of the piezoelectric materials
within the SIMP method. This gave rise to sev-
eral challenges related to: smart materials mod-
eling, finite-elements formulation, computational
and numerical implementation. All these chal-
lenges have been or are being investigated at
AS2M/FEMTO-ST institute.

This paper provides first a comprehensive sum-
mary of the research that has been conducted
at the AS2M department/FEMTO-ST institute,
the works that are currently underway, and the
potential directions for future advancements con-
cerning the design of piezoelectric actuators and
energy harvesters. Secondly, we present topology
optimization of piezoelectric energy harvesters in
which the natural frequency of the structure will

be tuned with the help of considering the Mass
of attachment as an optimization variable. The
theoretical aspects in this regard are accompanied
by the implementation MATLAB code. The pro-
vided MATLAB code is the development of the
previously published codes by author for topology
optimization of piezoelectric structures [13] that
were the first topology optimization MATLAB
codes published in the area of piezoelectricity.
All the MATLAB codes published in the litera-
ture for topology optimization in different physics
are reviewed in [14]. The published code in this
paper will be the first published MATLAB code in
the area of topology optimization of piezoelectric
structure with frequency tuning.

In the last part of the paper, we discuss the
possibility of multi material topology optimization
in which both active (piezo) and passive material
will be developed and optimized to obtain more
efficient designs.

2 Topology optimization

2.1 SIMP approach

Topology optimization and in particular the SIMP
approach is a mathematical design methodology
aiming to find an optimal layout within a limited
design domain [9]. Based on material distribu-
tion, the method allows minimizing or maximiz-
ing an objective function while subjected to one
or several constraints. Its key principle consists
of introducing a density penalization law. The
method is largely integrated into several design
softwares such as COMSOL, ALTAIR Inspire,
Ansys Discovery, SOlIDWORKS, etc. As a global
and systematic approach, it is largely used in
the engineering and design of passive mechani-
cal structures because it offers several advantages
such as weight reduction while enhancing perfor-
mance and efficiency.

The method has also been applied for the topo-
logical design of active structures in particular
piezoelectric structures [12]. However, the existing
methodology lacks some mathematical develop-
ment regarding the optimization of the polarity
in addition to the topology. These mathemati-
cal limitations include the explicit formulation of
the sensitivity analysis. Moreover, the realization
of the optimized topologies of the piezoelectric
structures received a very little attention in the
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upper electrode
piezoelectric material

lower electrode

Fig. 1 Piezoelectric material sandwiched between two
electrodes.

literature. We addressed these limitations by (i)
developing analytical and theoretical aspects of
topology optimization of piezoelectric structures,
(ii) developing algorithms and computer codes and
(iii) fabricating and investigating experimentally
the obtained structures. The common underlying
factors in these developments were piezoelectric
material modeling and numerical implementation.

2.2 Piezoelectric modeling

Our primary investigations focused on planar
piezoelectric structures. Thus, the starting design
domain consists of a piezoelectric layer sand-
wiched between two electrodes as illustrated in
Fig. 1. Its modeling involves several simplifying
assumptions [15, 16] including plan-stress assump-
tion which enable us to derive a 2D model from
the IEEE 3D model [17] of piezoelectric material.
To discretize the design domain and obtain the
finite element modeling, the four-node rectangular
element is employed as shown in Fig. 4-(a). With
discretization of the design domain, the global
finite element equilibrium equation can be derived
as [18]

[
M 0
0 0

] [
Ü

Φ̈

]
+

[
Kuu Kuϕ

Kϕu −Kϕϕ

] [
U
Φ

]
=

[
F
Q

]
(1)

where U and ϕ are the vectors of the mechanical
displacement and electric potential respectively.
F and Q are the applied external mechanical
force and electrical charge. M , Kuu, Kuϕ, Kϕϕ

are the global mass matrix, mechanical stiff-
ness matrix, piezoelectric coupling matrix and
piezoelectric permittivity matrix respectively. The
global matrices are formed by assembling the
elemental matrices [13]. The global equilibrium
equation (1) can be normalized to avoid the
numerical instabilities and can be re-written based
on the normalization which is provided in Ref.
[13]. The normalization starts by factorizing the
highest value of each elemental matrix,

k̃uu = kuu/k0, k̃uϕ = kuϕ/α0

k̃ϕϕ = kϕϕ/β0, m̃ = m/m0 (2)

where k0, α0, β0,m0 are the highest values of
the corresponding matrices. Then, the new FEM
equation for piezoelectric actuator, can be written
as

K̃uuŨ + K̃uϕΦ̃ = F̃ (3)

In equation (3), ( ˜ ) stands for the normalized
quantities and

F̃ = F/f0, Ũ = U/u0, Φ̃ = Φ/ϕ0

u0 = f0/k0, ϕ0 = f0/α0 (4)

and the new FEM equation for energy harvesting
is derived as[

K̃uu − M̃Ω̃2 K̃uϕ

K̃ϕu −γK̃ϕϕ

] [
Ũ

Φ̃

]
=

[
F̃
0

]
(5)

where

Ω̃2 = Ω2m0/k0, γ = k0β0/α
2
0 (6)

In equation (5), B is a Boolean matrix to apply
the equipotential condition on the electrodes with
dimension Ne × NP where Ne is the number of
nodes and NP is the number of potential elec-
trodes where for 2D case NP = 1. Ω̃ is the
normalized excitation frequency (Ω), Vp is the
generated voltage by mechanical vibration and γ
is the normalized factor that keeps the solution
of the system equal before and after applying the
normalization.

After solving the FEM , we need to rollback
the normalization and calculate the real outputs
of the system (i.e. ϕ and U). In actuation mode,
the input of the system is potential and hence the
value of Φ0 is assumed by user a priory. As such,
the real value of displacement can be calculated by

U = U0Ũ = Φ0α0Ũ/k0 (7)

In the energy harvesting case, the force is the
input and the value of f0 is assumed by user a
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priory. Therefore, the real value of potential can
be calculated by

Φ = Φ0Φ̃ = f0Φ/α0 (8)

With the developed finite element model, it is
possible to formulate the optimization problem for
piezoelectric actuators and energy harvesters.

3 Piezoelectric
micro-actuators

The use of piezoelectric materials to actuate
microbotics systems is of particular interest. As
a smart material, they have several advantages
such as: high displacement resolution, large out-
put force, high dynamics response and significant
scaling-down possibilities [19]. However, due to
their crystalline arrangement, they provide a low
relative deformation (0.1% of actuator’s size) that
limits their stroke [20]. To overcome this limita-
tion, we employed topology optimization frame-
work [16] to optimize both the topology and the
polarity of the actuator. This simultaneous opti-
mization allows combining material expansion and
compression in order to increase the stroke of
the actuator without using any passive amplifica-
tion mechanism. This enables the miniaturization
of the optimal design. Two 1D actuators were
designed starting from a full domain considered
as a basic reference piezoelectric actuator. The
first design considered only the optimization of
topology while the second one took into account
the optimization of the topology and polariza-
tion profile simultaneously. This section recaps
the problem formulation, the optimization and
the main results of this study. To find out more
theoretical details, readers can refer to [15, 16].

3.1 Problem formulation

To formulate the topology optimization problem,
we use the SIMP (Solid Isotropic Material with
Penalization) approach. In this approach, opti-
mization variables are attributed to each element
in the design domain to relax the physical proper-
ties from binary values to continuous values [21].
The extension of SIMP approach for piezoelectric
materials known as ”Piezoelectric Material with

Penalization and Polarization (PEMAP-P)” can
be expressed as follows [22, 23]:

k̃uu(x) = (Emin + xpuu(E0 − Emin)) k̃uu

k̃uϕ(x, P ) = (emin + xpuϕ(e0 − emin))(2P − 1)pP k̃uϕ

k̃ϕϕ(x) = (εmin + xpϕϕ(ε0 − εmin))k̃ϕϕ

m̃(x) = xm̃ (9)

where Emin, emin and εmin are small numbers
to define the minimum values for stiffness, cou-
pling and dielectric matrices while E0, e0 and ε0
are equal to one to define the maximum values
of the respected matrices. The definition of mini-
mum values are provided to avoid the singularities
during the optimization iterations. x is the density
ratio of each element which has a value between
zero and one. P is the polarization variable which
also has the value between zero and one and deter-
mines the direction of polarization. puu, puϕ, pϕϕ
and pP are penalization coefficients for the stiff-
ness, coupling, dielectric matrices and polarization
value respectively. It is obvious that in equation
(9), the normalized form of piezoelectric matrices
are used. However, the interpolation function is
true for non-normalized matrices as well.

Now, the optimization problem can be for-
mulated by definition of objective function, con-
straints and optimization variables. The objective
function can be defined using the compliant mech-
anism analysis in which the goal is to maximize the
deflection of a structure in a particular direction.
Different objective functions can be considered
for compliant mechanisms which are reviewed in
[24]. Here, a simple objective function is chosen
with a modeled spring to simulate the stiffness
of the target object as it is illustrated in the
Fig. 2-(a). Moreover, a constraint on the volume
of the material can be defined to minimize the
consumed material and to increase the flexibility
of structure in favor of higher displacement. The
optimization variables also defined in the material
interpolation scheme (9). Therefore, the optimiza-
tion problem for piezoelectric micro-actuators can
be formulated as follows

minimize Jact = −LT Ũ
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Subject to V (x) =

NE∑
i=1

xivi ≤ V

0 < xi ≤ 1

0 ≤ Pi ≤ 1 (10)

where L is a Boolean vector with a value of one
that corresponds to the output displacement node
and zero otherwise. V is the target volume which
is a fraction of the overall volume of the design
domain while vi is the volume of each element and
NE is the total number of elements and i is the
number of each element in the design domain.

3.2 Sensitivity analysis

To solve the optimization problem, we use the
gradient based solvers like Optimality Criteria
(OC) and method of moving asymptotes (MMA)
[25, 26]. As such, the sensitivity of objective func-
tion with respect to optimization variables should
be calculated. Based on the material interpolation
scheme (9), we have two optimization variables
known as density (x) and polarization (P ). The
sensitivity with respect to (x) is calculated by
using the adjoint method as

∂J

∂xi
= λT

i

∂k̃uu
∂xi

ũi + λT
i

∂k̃uϕ
∂xi

ϕ̃i (11)

where λ is the adjoint vector at elemental level.
λ is introduced to avoid taking the derivative of
displacement with respect to design variable i.e.
∂ũi

∂x . The sensitivity with respect to polarization is

∂J

∂Pi
= λT

i

∂k̃uϕ
∂Pi

ϕ̃i (12)

The following adjoint equation should be
solved to find the adjoint vectores,

−LT + ΛT K̃uu = 0 (13)

Where Λ is the adjoint vector at system level
(global level).

Based on equations (11) and (12), the deriva-
tive of piezoelectric stiffness and coupling matrices
with respect to design variables are required which
can be derived with the help of equation (9) as

∂k̃uu
∂xi

= puu(E0 − Emin)x
puu−1
i k̃uu

∂k̃uϕ
∂xi

= puϕ(e0 − emin)x
puϕ−1
i (2Pi − 1)pP k̃uϕ

(14)

∂k̃uϕ
∂Pi

= 2pP (e0 − emin)(2Pi − 1)pP−1x
puϕ

i k̃uϕ

(15)

When the sensitivity analysis is provided, the
SIMP algorithm can be developed. Beforehand,
the design domain and application should be
defined.

3.3 Definition of design domain and
application

Figures 2-(a,b) illustrates the definition and the
mechanical formulation of 1D piezoelectric actu-
ator. The bottom side of the domain is clamped
while the middle point of the top side is con-
sidered as the actuator output. In addition, the
actuator-object interaction is modeled as a spring
that modulates the actuator displacement: a lower
stiffness value results in a higher displacement and
vice versa. Using this configuration, two optimized
designs are obtained where the difference lies in
whether or not the polarization is optimized. In
both cases, the volume fraction is set to 0.3, mean-
ing that only 30% of the initial domain is used for
the optimized designs.

After performing the sensitivity analysis, and
defining the constraint, the topology optimization
algorithm can be implemented.

3.4 Algorithm, optimization and
simulation

Following the modeling and formulation of the
problem, an optimization algorithm was devel-
oped and implemented under MATLAB [15]. The
application of this algorithm leads to the designs
depicted in Figs. 2-(c,e). Layout (c) comprises a
uniform electrode while layout (e) comprises two
different electrodes with opposite polarities. The
second design comprises two regions with inverse
polarities. When one region retracts the other
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Fig. 2 Topology optimization of a piezoelectric micro-actuators. a) Problem definition, b) Problem formulation, c) Opti-
mized layout without polarity, d) Simulated layout without polarity, e) Optimized layout with polarity, f) Simulated layout
with polarity.

Fig. 3 Fabricated prototypes, a) Full plate (reference
actuator), b) Prototype without polarity optimization, c)
Prototype with polarity optimization.

extends resulting in a considerable improvement of
output displacement. This analysis is confirmed by
FEA simulations illustrated in Figs. 2-(d,f) where
the obtained results show that the displacement
of the design with optimized polarity is almost
twice the displacement of the design with uni-
form polarity. More comparison results between
the full actuator plate (reference actuator) and the
optimized designs are reported in Table 1.

3.5 Fabrication and experimental
validation

Starting from a piezoelectric plate, the three pro-
totypes shown in Fig. 3 were fabricated. The
fabrication process started by cutting the designs
from piezoelectric plates (commercial piezoelectric
material PSI-5H4E from Piezo Systems Inc) using
a laser machine (Siro Lasertec GmbH, Pforzheim,
Germany). Then, the wires are glued to the elec-
trodes of the PZT plates. Moreover, to follow the
polarization profile, the top electrode is divided
into two sections to avoid charge cancellation.
An experimental bench was set and a series of
measurements were performed under a maximum
excitation voltage of 5V which respects the lin-
ear assumption of the piezoelectric model. The
resulting average displacements are reported in

Table 1. As expected, there is a satisfying agree-
ment between the experimental and the simulation
results. In addition, the superiority of the opti-
mized designs versus the full piezoelectric plate in
terms of stroke is observed.

3.6 Discussion

The developed algorithm reduces drastically the
material amount while enhancing the actuator
energy density and stroke. Indeed, only 30% of
the material was optimally distributed in order to
provide a displacement greater than the displace-
ment of an actuator with a uniform polarization.
Although the actuator output force decreased,
the optimization led to a compact and economi-
cal design. This is particularly interesting in the
context of miniaturization since the non-occupied
space can be utilized to implement additional
functionalities such as sensors or electronic cir-
cuits.

4 Piezoelectric energy
harvesters

In parallel to actuation, piezoelectric materials
are widely used in energy harvesting applica-
tions. Converting vibration to electrical energy,
these devices, i.e, Piezoelectric Energy Harvesters
(PEHs) offer a potential alternative to batteries
in low-power-wireless devices such as wireless sen-
sors [27], small-scale robots [28], etc. Thanks to
the direct effect of piezoelectricity, they can con-
vert mechanical to electrical energies with a simple
mechanism. This simplicity makes the piezoelec-
tric energy harvester more efficient than their
rivals like electromagnetic and triboelectric at
small scales. At AS2M department, we mainly
worked on the optimization of the mechanical
structures of PEHs.
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Table 1 Summary of simulation and experimental results [16]

Simulation ( Input voltage = 5V )
Full plate Opt without pol Opt with pol

Displacement (nm/V) 57 81 161
Displacement gain w.r.t.f.p - 1.42 2.82

Blocking force (N) 2.56 0.21 0.18
Blocking force gain w.r.t.f.p - 0.08 0.07

Energy density (J/m3) 4.55 1.81 3.10
Energy density gain w.r.t.f.p - 0.39 0.68

Experiment ( Input voltage = 5V )
Full plate Opt without pol Opt with pol

Displacement (nm/V) 62 86 174
Displacement gain w.r.t.f.p - 1.38 2.8
* w.r.t.f.p : with respect to full plate

Fig. 4 Piezoelectric Energy Harvesters designed by topology optimization. a) single-layer piezo plate modeled by 2D finite
element method [29]. b) Optimized topology, c) Optimized polarity, d) Fabricated prototype, e) Bi-morph piezo plate
modeled by 3D finite element method [30], f) Optimized topology without polarization optimization, g) Optimized topology
with polarization optimization

Mostly known and still used configuration for
the vibrational PEH is the cantilever configuration
with tip attachment due to its largely produced
strains and feasibility of fabrication. Consider-
ing this configuration as the first approach to
increase the efficiency of the cantilever PEH, we
proposed to have in-span attachments in addi-
tion to tip attachment in order to harvest the
energy from higher modes and resonance frequen-
cies [31]. Based on an analytical approach to
find the output voltage, we proposed a neural
network-based genetic algorithm (GA) approach
to optimize the placement and geometry of the
in-span attachments. However, the major prob-
lem with cantilever configuration is that it is
one degree of freedom configuration, which can
absorb the energy from one direction of excita-
tion. This will restrict the possible applications
of the cantilever PEHs, where the excitation can
come from different directions. There are some

designs for multi-directional PEHs in the litera-
ture [32, 33]. However, the miniaturization of these
mechanism-based designs is challenging. To tackle
this problem, we employed SIMP topology opti-
mization to obtain new and previously unknown
configurations for the PEH.

4.1 Single-layer piezoelectric energy
harvester

4.1.1 Modeling & problem formulation

Utilizing the piezoelectric constitutive equations,
first, a 2D finite element model of a single piezo-
electric plate sandwiched between two electrodes
(Fig. 1) is developed. The plan-stress assumption
is employed to derive the constitutive equation.
The normalized equilibrium equation is mentioned
in equation (5).
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TO formulate the problem, objective function
is defined as the weighed sum of the mechanical
and electrical energy. Similar to actuation case, a
constraint is defined on the volume of the mate-
rial and optimization variables are considered as
density and polarization. Therefore, the problem
is formulated as follows,

minimize JEH = wjΠ
S − (1− wj)Π

E

Subject to V (x) =

NE∑
i=1

xivi ≤ V

0 < xi ≤ 1

0 ≤ Pi ≤ 1 (16)

ΠE and ΠS are electrical and mechanical ener-
gies respectively which are defined in the following
form [22, 34]

ΠS = (
1

2
)ŨTKuuŨ , ΠE = (

1

2
)V T

p KϕϕVp

Kuu =
[
K̃uu − M̃Ω̃2

]
bc

, Kϕϕ = γBT K̃ϕϕB

(17)

In optimization equation (16), wj is the weigh-
ing factor which has the value between 0 and 1 and
will be found by using trial and error approach.
The basis for choosing this value can be the max-
imum energy conversion factor of the plate under
the same force.

4.2 Sensitivity analysis

After defining the mechanical and electrical ener-
gies, the sensitivity of each energy with respect to
density ratio x can be found as [29, 30, 34]

∂ΠS

∂xi
= (

1

2
ũT
i + λT

1,i)
∂(k̃uu − m̃Ω̃2)

∂xi
ũi+

λT
1,i

∂k̃uϕ
∂xi

ϕ̃i + µT
1,i

∂k̃ϕu
∂xi

ũi − µT
1,i

γ∂k̃ϕϕ
∂xi

ϕ̃i (18)

∂ΠE

∂xi
=

1

2
ϕ̃T
i

γ∂k̃ϕϕ
∂xi

ϕ̃i − µT
2,i

γ∂k̃ϕϕ
∂xi

ϕ̃i+

λT
2,i

∂(k̃uu − m̃Ω̃2)

∂xi
ui + λT

2,i

∂k̃uϕ
∂xi

ϕ̃i + µT
2,i

∂k̃ϕu
∂xi

ũi

(19)

in which µ and λ are the elemental adjoint vec-
tors which are calculated by the following global
coupled system

[
Kuu Kuϕ

Kϕu −Kϕϕ

] [
Λ1

Υ1

]
=

[
−KuuŨ

0

]
[
Kuu Kuϕ

Kϕu −Kϕϕ

] [
Λ2

Υ2

]
=

[
0

−KϕϕVp

]
(20)

where Λ and Υ, are the global adjoint vectors
which need to be disassembled to form the elemen-
tal adjoint vectors

[λ1]bc = Λ1, [λ2]bc = Λ2, [µ1] = BΥ1, [µ2] = BΥ2

(21)

Now, the sensitivities with respect to polariza-
tion (P ) is calculated as well [29, 30]

∂ΠS

∂Pi
= λT

1,i

∂k̃uϕ
∂Pi

ϕ̃i + µT
1,i

∂k̃ϕu
∂Pi

ũi

∂ΠE

∂Pi
= λT

2,i

∂k̃uϕ
∂Pi

ϕ̃i + µT
2,i

∂k̃ϕu
∂Pi

ũi (22)

Based on sensitivity equations in (19) and (22),
the derivative of all piezoelectric matrices with
respect to the design variables are required. The
derivative of stiffness and coupling matrices are
found in equations (14) and (15). Here, the deriva-
tive of dielectric matrix and mass matrix is also
required which are

∂k̃ϕϕ
∂xi

= pϕϕ(ε0 − εmin)x
pϕϕ−1
i k̃ϕϕ

∂m̃

∂xi
= m̃i (23)

In addition to derivative of piezoelectric matri-
ces with respect to density, derivation of the piezo-
electric coupling matrix with respect to polariza-
tion variable is also required

8
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∂k̃uϕ
∂Pi

= 2pP (2Pi − 1)pP−1x
puϕ

i k̃uϕ (24)

After calculation of sensitivities, the optimiza-
tion variables can be updated in each iteration of
optimization with the help of gradient-based opti-
mizers like optimality criteria (OC) and Method
Moving Asymptotes (MMA) [26].

For the single layer piezoelectric plate, the
goal is to design a two degrees of freedom energy
harvester that can harvest the energy from exter-
nal in-plane harmonic force coming from different
directions. In this regard, the configuration of load
and boundary conditions in Fig. 4-(a) is proposed.
The most challenging problem in this case is the
charge cancellation due to a combination of ten-
sion and compression in different parts of the
plate. However, optimization of polarization pro-
file overcomes the problem of charge cancellation.
Moreover, low volume fraction (optimized design
volume/full plate volume) decreases the stiffness
of the piezoelectric plate against in-plane forces.

4.2.1 Numerical results, simulation &
experiment

In panels (b) and (c) of the same figure, the final
optimized layout and polarization profile for PZT
plate under excitation of two harmonic forces in
two directions can be seen [29]. In panel (c), the
red color and blue color represent positive and
negative polarization in the z direction.

To analyze the performance of the optimized
design, COMSOL multiphysics is used to compare
the performance of the optimized design with the
full plate. The simulation results proved the supe-
riority of the optimized designs over the classical
full plate while having less amount of material
[29]. On the other hand, the amount of produced
voltage and electrical power is not the same for
every direction of the force. This is due to the fact
that the stiffness of the plate in different direc-
tions is not the same. For the sake of brevity, we
do not present the simulation results here. Inter-
ested readers are referred to the published paper
[29].

The fabrication process is similar to what has
been explained for the piezoelectric actuators. The
difference here is that magnets are attached at the

tip of the beam to generate vibrations force when
excited by an electromagnet as it is shown in figure
4-(d). The magnets are attached in two different
directions so they can excite the designs in two
different directions.

Experimental results demonstrated that for an
excitation frequency equal to 20 Hz, the volt-
age and power of the optimized design are 8.75
and 7.54 times higher than the full plate. These
improvements are due to the fact that the opti-
mized design is having better strain distribution
and more importantly, it has separated electrodes
that avoid charge cancellation.

4.3 Bi-morph piezoelectric energy
harvester

In the next phase of our research, a bi-morph
piezoelectric plate instead of the single-layer piezo-
electric plate is considered as a design domain to
consider out-of-plane forces and deformations [30].

4.3.1 Modeling & problem formulation

Similar objective and constraints from single-layer
PEH are considered in the optimization problem
of the multi-directional Bi-morph PEH i.e. reduc-
tion of weight while maximizing the efficiency
of the harvested energy from excitation coming
from different directions. In the case of bi-morph
PEH, the configuration of the boundary condition
remains the same while a 3-load case is applied
at the tip of the structure (Fig. 4-(e)). The bi-
morph plate consists of 3 electrodes on the top,
middle and bottom surfaces of the plate. The finite
element modeling of the system is done by dis-
cretizing the design domain with a finite number
of 3D hexahedron elements.

4.3.2 Algorithm & optimization

The sensitivity analysis and optimization algo-
rithm for 3D and 2D finite element modeling is for-
mulated similarly. However, the implementation
MATLAB code changes considerably to include
the third dimension and application of electrical
boundary conditions regarding the existence of
several electrodes.

9
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4.3.3 Numerical results, simulation &
experiment

The results of the optimization for two cases are
shown in Fig. 4-(f,g) [30]. The optimized design (1)
is the result of optimization without optimizing
the polarity and design (2) is the result of opti-
mization with optimizing polarity. In design (1),
in the case of planar forces, there will be charge
cancellation due to compression and tension in
different parts of the layer. To remedy, in design
(2), the polarity is optimized as well. For the real-
ization of this polarization profile, the top and
bottom electrodes are divided into two sections
to simulate the polarization profile. As such, the
design has 2 electrodes on top, 2 electrodes on
bottom and one electrode in the middle.

To assess experimentally the performance of
the optimized designs, their electrical to mechan-
ical efficiency is compared with a classical full
plate. By COMSOL simulation, we demonstrated
how the designs harvested the energy coming from
different excitation in 3D space and the superiority
of the optimized designs over the full piezoelectric
plate is demonstrated. The experimental inves-
tigation demonstrated that the optimized design
with optimized polarity can have up to 2 times
better voltage output than the piezoelectric full
plate while having less amount of mass [30].

Finally, although optimized designs are multi-
directional harvesters, but they are not excited at
their resonance frequency. This is considered in
the next stage of our research.

4.4 Frequency tuning &
optimization of mass

The best efficiency of a vibrational PEH can
be obtained when it is excited at its resonance
frequency. Frequency matching is therefore very
crucial for every PEH since only 2% deviation
of resonance frequency from excitation frequency
will drop the electrical output power by 50%.
Moreover, the available excitation frequency in
real applications is generally between 10 to 30 Hz,
which is below the normal resonance frequency of
the PEHs. The classical and conventional method
to match the resonance frequency with the low
excitation frequency is to attach a lumped mass
at the tip of the cantilever PEH [38].

Fig. 5 a) New configuration for frequency tuned piezoelec-
tric energy harvester. b) Topology optimized design [37].

In our recently published work [37], we com-
bined topology optimization and frequency tuning
technique to raise further the efficiency of PEH.
The idea consists to define a constraint on the
fundamental frequency of PEH. To tackle the
challenges of eigenfrequency tuning within the
topology optimization approach, we defined the
attachment’s mass as a new optimization variable
in addition to the density and polarity. This will
be discussed in the next section.

4.4.1 Modeling & Problem formulation

The resonance frequency is the natural frequency
of the system at short circuit condition. At open
circuit condition, the natural frequencies of the
system are the anti-resonance frequency [18].
Therefore the fundamental resonance frequency at
Vp = 0 can be calculated,

[
K̃uu − M̃ω̃2

s

]
Ψs = 0 (25)

in which ω̃s is the natural frequency at short cir-
cuit condition and Ψs is the related eigenvector.
Now, based on the built FEM of the piezoelec-
tric plate and the provided resonance equation,
topology optimization algorithm can be applied
to maximize the harvested energy of the bi-morph
vPEH by optimizing the topology and modifying
the resonance frequency.

To define the mass of attachment as an opti-
mization variable, we define the mass matrix of
the system as follows,

M̃ =

NE∑
i=1

m̃i + y[M̃mass] (0 ≤ y ≤ 1) (26)
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Table 2 Summary of publications regarding topology optimization of piezoelectric structures in AS2M department

Year Publication Structure Approach Contribution
2017 [2] Uni-morph PEH Parametric\gradient-based optimization Explicit cost function to find optimal thickness
2018 [35] Amplification mechanism SIMP approach Increasing the stroke of stack piezo actuator
2020 [29] single-layer PEH SIMP approach Optimization of polarization and topology
2020 [30] Bi-morph PEH SIMP approach Multidirectional PEH/avoiding charge cancelation
2020 [13] single-layer piezo SIMP approach First MATLAB code published for TOM of piezo
2020 [16] single-layer piezo pusher SIMP approach Increasing stroke by optimizing the polarization
2020 [31] cantilever PEH Neural network & genetic algorithm In-span attachement mass
2022 [36] single-layer piezo pusher SIMP approach Considering voltage uncertainty
2023 [37] Bi-morph PEH SIMP approach Tuning resonance frequency/mass optimization

in which m̃i is the elemental mass, i is the element
number and y is the optimization variable that
stands for the ratio of maximum possible mass of
the attachment. By definition of y here, we give
more freedom to the optimization in terms of con-
vergence to a perfect solid void material in the
final layout. The reason is that the variable y can
increase or decrease the total mass of the vPEH
without changing its stiffness. This optimization
variable helps optimization solver to converge to a
fully black and white final layout and to avoid the
greyness problem which is a common problem in
topology optimization with frequency tuning [39].

For tuning the resonance frequency, the first
interpolation function defined in equation (9) for
the stiffness matrix Kuu should be modified to
avoid the localized modes at the low density
regions [40]. The reason is that, based on the SIMP
material interpolation scheme, low density regions
are highly flexible (soft) that produce very low and
artificial eigenmodes. To remedy, the interpolation
function for the stiffness matrix which is proposed
by Huang et al. [39] is utilized as follows

k̃uu(xi) =

[
xmin − xpuu

min

1− xpuu

min

(1− xpuu

i ) + xpuu

i

]
k̃uu

(27)

Now, to tune the resonance frequency we mod-
ify the problem formulation as follows,

minimize JEH = wjΠ
S − (1− wj)Π

E

Subject to V (x) =
NE∑
i=1

xivi ≤ V

ω1 < ϖ,
0 ≤ xi ≤ 1, 0 ≤ Pi ≤ 1,

0 ≤ y ≤ 1

(28)

where y is the new optimization variable and ϖ
is the desired resonance frequency. By having the
inequality constraint on the resonance frequency,
the optimization is more relaxed than having
equality constrained. On the other hand, the res-
onance frequency will finally match the excitation
frequency as the structure tends to be more rigid
during optimization iterations. To solve the opti-
mization problem with gradient based optimizers
like MMA we need to calculate the sensitivity
analysis which will be discussed next.

4.4.2 Sensitivity analysis

Since, the objective function in (28) is the same as
(16), we just calculate here the sensitivity of objec-
tive function with respect to the new optimization
variable as follows

∂ΠS

∂y
= (

1

2
ũT
i + λT

1,i)
∂(M̃Ω̃2)

∂y
ũi

∂ΠE

∂y
= λT

2,i

∂(M̃Ω̃2)

y
ui (29)

where µ and λ are the same elemental adjoint vec-
tors which are calculated in the adjoint equations
(20).

To apply the constraint on the natural fre-
quency, its gradient with respect to the optimiza-
tion variables should be calculated. To do so, the
fundamental natural frequency of the system can
be defined through the Rayleigh quotient [39],

ω̃2
s =

ΨT
s K̃uuΨs

ΨT
s M̃Ψs

(30)

The interpretation of first natural frequency by
Rayleigh quotient will result in to more efficient
sensitivity analysis. By following the procedure
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presented in [39], the sensitivities of the natural
frequency’s constraints with respect to optimiza-
tion variables are

∂ωs

∂xi
=

1

2ωsΨT
s M̃Ψs

[
ΨT

s (
∂k̃uu
∂xi

− ω̃2
s

∂M̃

∂xi
)Ψs

]
∂ωs

∂y
= − ω̃s

2ΨT
s M̃Ψs

[
ΨT

s

∂M̃

∂y
Ψs

]
(31)

Now all the required sensitivities are calcu-
lated. However, since we modified the interpola-
tion function of the stiffness matrix in equation
(27) and the expression for the mass matrix is also
changed, their derivatives with respect to density
and new mass optimization variable (y) can be
calculated as:

∂̃kuu
∂x

=
1− xmin

1− xp
min

puux
p−1
i Kuu

∂m̃

∂xi
= m̃i,

∂m̃

∂y
= M̃mass (32)

Aiming for low weight piezoelectric energy har-
vester, a new configuration is proposed (Fig. 5-(a))
to minimize the fundamental resonance frequency
and the mass of the attachment simultaneously.
The obtained result (Fig. 5-(b)) in MATLAB and
COMSOL Multiphysics demonstrated that the
algorithm successfully restricted the fundamental
frequency close to the desired one while respecting
the mass and volume constraints of the vPEH.

Simulation results prove the superiority of the
optimized design in Fig. 5-(b) in comparison with
the previously optimized design of Fig. 4-(g) while
having less amount of attachment mass. This is an
interesting achievement that we restricted the first
resonance frequency while at the same time having
a lower amount of weight. On the other hand, the
stress analysis reveals a higher amount of stress in
the newly proposed configuration (Fig. 5-(a)) in
comparison with the previous configuration of the
PEH (Fig. 5-(g)).

5 MATLAB code for
frequency tuning of PEH
with mass optimization

In this section the goal is to provide a MAT-
LAB code for topology optimization of PEH with
tuning the resonance frequency and considering
the attached mass as an optimization variable.
The study of this section is similar to section 4.4.
However, the dimension of study here is 2D and
the provided MATLAB code is in 2D as well. It
should be noted that, despite the modeling dimen-
sion of the system, the analytical calculations of
section 4.4 remain true.

The MATLAB code in this section is devel-
oped on the basis of the previously published
code from the authors for topology optimization
of the PEH [13]. Moreover, the case study of this
section is similar to the case study of the pub-
lished codes [13] with the difference of considering
attached mass at the tip of the beam as it has
been illustrated in Fig. 6 with mass of attachment
as optimization variable. In this case study, the
polarization direction is considered to be in the z
direction of the coordinate system. However, it is
possible to simply consider the polarization direc-
tion in the y axis and optimize the structure in
the direction of thickness.

Fig. 6 a) Piezoelectric energy harvester with tip attach-
ment. The mass of attachment is considered as optimiza-
tion variable.

5.1 Description of the code

The implementation topology optimization MAT-
LAB code for case study of Fig. 6 is provided in
the appendix. For the sake of brevity, we will only
explain here the lines of the code that are different
from previously published code [13] to implement
the optimization of resonance frequency. Read-
ers are advised to read the paper of previously

12
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published codes [13] primarily before reading this
section.

5.1.1 Definition of parameters

The provided code starts with the section of GEN-
ERAL DEFINITIONS in which the user defines
the geometry of the structure, resolution of the
mesh, penalty factors, etc. The variable ft defines
the filtering type in which the user can choose
between two filtering methods including density
filter [21, 41] or Heaviside projection suggested by
Wang et al. [42]. The complete MATLAB imple-
mentation code for this combination of filtering
methods is provided by Ferrari et al. [43] and the
same lines of codes are utilized in the provided
code of this paper. Three parameters in the filter-
ing part should be defined in the first section of
the code known as filter radius (rmin), threshold
(eta) and sharpness factor (beta). The projec-
tion filter is new in this code in comparison to
previously published codes and it is more efficient
in terms of avoiding the gray elements.

For a better convergence to a clean black and
white result, the continuation schemes are applied
to the penalties and sharpness factor. To do so,
penalCnt, betaCnt are defined similarly to
what has been defined by [43]. These parame-
ters accept four values as [istart, maxPar,
isteps, deltaPar], which means the contin-
uation starts at iteration = istart and will
be increased by deltaPar in each isteps and
reaching to maximum value maxPar.

Variable DF determines the maximum desired
natural frequency and the Variable MASS deter-
mines the maximum allowable attachment mass.
These two new variables are defined to integrate
the frequency tuning and the optimization of
attachment mass.

The sections of MATERIAL PROPERTIES,
PREPARE FINITE ELEMENT ANALYSIS,
DEFINITION OF BOUNDARY CONDITION,
FORCE DEFINITION remain intact in compari-
son to previously published code [13]. Hence, no
descriptions will be given here.

The section of DEFINITION OF ATTACH-
MENT MASS is new and it is defined to model an
attachment mass at the tip of the beam. It should
be noted that the code is dynamic and the place-
ment of the mass can be changed easily. The lines
of code to model the attached mass are as follows:

86 %% DEFINITION OF ATTACHMENT MASS
87 sMass=zeros(nele,1);
88 sMass (nele−nely/2) = 1;
89 le = Lp/nelx; we = Wp/nely;
90 ro M = MASS∗1e−3/(le∗we∗h)/length(

find(sMass));
91 sMMass = (ro M/ro)∗m(:).∗sMass’;
92 sMMass = reshape(sMMass,length(m(:))

∗nele,1);
93 M Att = sparse(iK(:),jK(:),sMMass(:)

); % Creating mass matrix for
the attachement mass

The method to define the mass is to consider
elements at the desired location in the design
domain to be more heavy than other elements. To
do so, we use the sMass which is a Boolean vector
with a size of total number of elements. We choose
the desired element(s) to place the mass and the
rows indexing that element will have the value of
1. In the case study of this paper, since we placed
the mass of attachment at the end of the beam as
illustrated in Fig. 6, the last element at the tip of
the beam in the middle of the width is chosen to
be heavier than the rest of the element. To make
the element heavier, we modify the density of the
elemental mass matrix by ro M. Finally, this mass
will be augmented to the global size mass matrix
with the help of the sMMass . The M Att is a
matrix with the size of global mass matrix which
only contains the attached mass. As such, it should
be augmented to global piezoelectric mass matrix
which will be explained later.

The section of PREPARE FILTER is trans-
ferred from the code written by Ferrari. et. al [43]
to implement the density filter and projection. A
detailed explanation can be found in the cited
reference. In the section of INITIALIZE ITER-
ATION we defined the ratios for the continuation
scheme. These ratios guarantee that the neces-
sary conditions between the penalization factors
of piezoelectric matrices will follow the intrinsic
conditions suggested by [44] during the contin-
uation scheme of penalization factors. NATD is
the normalized desired natural frequency. Ym is
the optimization variable for the attachment mass
that it has set to zero as the initial value before
the optimization.

In the section of MMA Preparation, we set
the initial values for the the MMA optimizer. How-
ever, the MMA code will not be presented in the
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paper and these are external codes that are called
in our code. To have the MMA code, a request by
reader should be sent to the author of the MMA
paper [25, 26].

5.1.2 Iteration loop

In the section of START ITERATION, we start
the optimization iterations. Iteration loop start
by the filter/projection part which is again trans-
ferred from the code written by Ferrari et al. [43].
This initial part of iteration loop produce the
projected physical densities (xPhys).

The interpolation function mentioned in
equation (27), is implemented in following line:

146 xPhysH = ((xpmin−xpmin.ˆpenalKuu
)./(ones(nely,nelx)−xpmin.ˆ
penalKuu)).∗(ones(nely,nelx)−
xPhys.ˆpenalKuu)+xPhys.ˆpenalKuu
; % kuu interpolation function

The line after, produces the derivation of
(xPhysH) with respect to (xPhys) which is nec-
essary for the sensitivity analysis:

147 xPhysHD = penalKuu∗((ones(nely,
nelx)−xpmin)./(ones(nely,nelx)−
xpmin.ˆpenalKuu)).∗xPhys.ˆ(
penalKuu−1); % Derivation of
xPhysH with respect to xPhys

In the part of (FE-ANALYSIS), the column
vectors sM, sKuu, sKup, sKpp will be used
to create the mass matrix, stiffness matrix, cou-
pling matrix and permittivity matrix respectively
all at the global (system) level.

In the following line, the attachment mass
multiplied to optimization variable (Ym), will be
augmeneted to the global mass matrix:

155 Mtot = M + M Att∗Ym; %
Augmenting attached mass

The natural frequency and the related eigen-
vector of the system are calculated in the following
line:

157 [EIGVs,NATs]=eigs(Kuu(freedofs,
freedofs),Mtot(freedofs,freedofs
),1,’smallestabs’);Freq=sqrt(
NATs∗k0/M0)/(2∗pi); %
Calculation of natural frequency

The variable Freq produces the real natural
frequency in Hertz by rolling back the normaliza-
tion. In next line, eigenvector is normalized with
respect to mass matrix:

158 Normal=EIGVs’∗M(freedofs,
freedofs)∗EIGVs; EIGV(freedofs)=
sqrt(1/(Normal(1,1)))∗EIGVs; %
Normalization of eigenvector

The constitution of global matrices and solv-
ing the finite element equilibrium equation and
adjoint equations remain the same as previous
code [13]. In the part of OBJECTIVE FUNCTION
AND SENSITIVITY ANALYSIS, the mechanical
energy is divided to two parts related to kuu and
−mΩ2.

The sensitivity of objective function related
the attachment mass which has been mentioned in
equation (29), is calculated in the following line:

192 dY = dY + (ro M/ro)∗(1/(
length(find(sMass))))∗reshape(
full(sum(dcME.∗sMass,2)),[nelx,
nely]);dY = sum(dY(:)); %
Attachement sensitivity

The sensitivities of natural frequency with
respect to density and mass ratio (y) which are
mentioned in equation (31) are calculated in fol-
lowing lines:

194 DCKE=(1/(2∗sqrt(NATs)))∗(((1/2)∗
EIGV(edofMat)∗kuu).∗EIGV(edofMat
));DCK = reshape(sum(DCKE,2),[
nely,nelx]);

195 DCME=(1/(2∗sqrt(NATs)))∗(((1/2)∗
EIGV(edofMat)∗(−m∗NATs)).∗EIGV(
edofMat));DCM = reshape(sum(DCME
,2),[nely,nelx]);

196 dcF=(E0−Emin)∗xPhysHD.∗DCK+DCM;
% Frequency sensitivity (density
)

197 DcF Y = (ro M/ro)∗(1/(length(
find(sMass))))∗reshape(sum(full(
DCME.∗sMass),2),[nely,nelx]);
DcF Y = sum(DcF Y(:)); %
Frequency sensitivity (
attachement mass)

All the calculated sensitivities are filtered
using the MATLAB built-in function imfilter
as suggested by Ferrari et el. [43].

The section of MMA OPTIMIZATION OF
DESIGN VARIABLES calls MMA optimizer to
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Fig. 7 Topology optimization result for PEH energy harvester for different excitation frequency. Desired natural frequency
= 2000 (Hz). a-c) Layout results, d-f) Polarization profile, g-j) Numerical plots.

update the optimization variables. The exter-
nal codes which are called in this section are
mmasub.m and subsolve.m which should be
requested from the author of the papers [25, 26].

After updating the optimization variables, the
continuation scheme will be applied to the penal-
ization factor and sharpness factor for the next
iteration. The engagement of this continuation
scheme will be done in a particular iteration
number defined by the user as explained before.

5.1.3 Presentation of results

The final section of the paper is PLOT DEN-
SITIES & POLARIZATION which show the den-
sity and polarization profile in each iteration plus
showing the numerical results.

5.2 Case studies

To analyze the efficiency of the code, three case
studies are investigated. For all of the case stud-
ies the optimization problem is formulated as it
is mentioned in equation (28) which means the
structure in Fig. 6 is under harmonic excitation
and while there is a constraint on the fundamental
(first) natural frequency, the goal is to maxi-
mize the output electrical energy VS mechanical

energy. The optimization variables are the density,
polarization and attachment’s mass.

5.2.1 Various excitation frequency,
Constant constraint on the
natural frequency

In the first case study, the structure will be excited
by three different frequencies while the constraint
on the natural frequency is equivalent to 2000 Hz.
The results of optimization are illustrated in Fig.
7. As it can be seen in this figure, different opti-
mal layouts are obtained for different excitation
frequencies. This was also studied in the previ-
ously published code [13]. However, the important
points here can be seen in the numerical results.
In panel (i) of Fig. 7 it is obvious that in all cases
the optimization respected the constraint on the
natural frequency precisely. The results are quite
satisfactory considering the fact that the optimal
layouts are completely steered to fully black and
white and gray elements are successfully avoided.
Although the filtering and projection were efficient
in this case, the major factor is the optimization of
the attachment’s mass. As can be seen in panel (j),
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Fig. 8 Topology optimization result for PEH energy harvester for different desired natural frequency. Excitation frequency
= 800 (Hz). a-c) Layout results, d-f) Polarization profile, g-j) Numerical plots.

the optimization variable (y) gradually increased
during the optimization to reduce the overall nat-
ural frequency of the system. This gives more
freedom to the optimization solver to increase
the mass of the structure without modifying its
stiffness.

5.2.2 Constant excitation frequency,
different constraint on the
natural frequency

In the next case study, the results of optimization
for different constraints on the natural frequency
are reported in Fig. 8. In panels (i) and (j) of this
figure, it can be seen that the constraint on the
natural frequency is respected with different final
attachment mass. When the constraint on the nat-
ural frequency is very low, higher mass is required
to decrease the natural frequency and vice versa.

5.2.3 Different maximum allowable
attachment’s mass

In the final case study, the results of optimiza-
tion for different maximum allowable attachment’s
mass are illustrated in Fig. 9. In this case study,

a constant constraint on the natural frequency
and a constant excitation frequency are considered
for three different attachment’s mass. Moreover,
the final optimal attachment’s mass (mass ratio
times the maximum allowable mass) is the same.
However, still, the optimal layouts (panels (a-c)),
are different. This can be due to the fact that
the maximum allowable jump between the val-
ues of optimization variables in two sequences of
iteration is limited. Hence, the design with more
allowable mass respects the constraint sooner.

The provided MATLAB code in this section
can be extended to 3D problem. In this regard,
the strategy and structure of the code remains the
same. The provided MATLAB code is flexible in
terms of considering different case studies i.e. dif-
ferent boundary conditions and force applications,
design domain, etc.

6 Toward multi-material
topology optimization

In pursuit of advancing the application of topology
optimization to piezoelectric structures, AS2M
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Fig. 9 Topology optimization result for PEH energy harvester for different attached mass. Excitation frequency = 800
(Hz) and desired natural frequency = 2000 (Hz). a-c) Layout results, d-f) Polarization profile, g-j) Numerical plots.

department embarked on a new initiative. Build-
ing upon the proven success of topology opti-
mization using single material, particularly in the
design of piezoelectric energy harvesters (PEHs)
and piezoelectric actuators as summarized in
Table 2, this new venture seeks to simultaneously
distribute both active and passive materials.

The research on multi-material has reached
a mature stage, as evidenced by several notable
works [45–48]. Multi-material topology optimiza-
tion (MMTO) involves the integration of soft
materials and passive materials, drawing inspira-
tion from natural systems. This innovative design
methodology strives to achieve an optimal equi-
librium between the flexibility inherent in soft
piezoelectric materials and the sturdiness of rigid
passive materials.

Leveraging multi-material topology optimiza-
tion provides an avenue to fully exploit the inher-
ent advantages of using different materials to
enhance structural performance. This approach
leads to an increase in the degrees of freedom in
force, displacement and energy transduction par-
ticularly in the context of piezoelectric materials
[49]. The process of incorporating multi-material

technique into the design of robotic structures
as given in the design of Robobee, MiGribot
and MilliDelta involves the optimal combination
of two distinct materials to leverage their indi-
vidual inherent characteristics through a unified
approach. This integration is crucial for opti-
mizing the overall performance of the robotic
systems.

A key technique employed in this endeavor
is topology optimization (TO) particularly utiliz-
ing the well established Solid Isotropic Materials
with Penalization (SIMP) method. The literature
primarily addresses cases of combination of multi-
material such as passive-passive, active-active and
active-passive materials.

The multi-material scheme is responsible for
creation of a design domain comprising of three
phases: void and two solid phases corresponding
to either void or passive materials as depicted in
Fig. 10.
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Fig. 10 Piezoelectric multi-material actuator design
domain with loading and boundary conditions

7 Conclusion

This paper primarily summarized and discussed
the approaches developed at AS2M/FEMTO-ST
institute for the topological design of piezoelectric
structures. The summary of the publications and
the introduced contribution is reported in Table
2. We demonstrated that topology optimization
methodology can be employed as a design tool to
obtain miniaturized piezoelectric structures with
enhanced performances. Moreover, the eigenvalue
and mass optimization of the PEH are presented
in the paper theoretically and a 2D topology opti-
mization MATLAB code is provided to tune the
frequency of a piezoelectric energy harvester by
optimizing the mass of the attachment. This is a
first and new code in the literature in this context.

Extending the SIMP to piezoelectric material
paves the way for promising perspectives. The first
perspective would concern multi-material topol-
ogy optimization including active and passive
material. The other perspectives would concern
multi-degrees of freedom structures and consider-
ation of large deformations.

Supplementary information. This paper is
accompanied by MATLAB codes with format
of .m file. The code is uploaded a supple-
mentary material of this paper which can
be downloaded from the journal publication
page or from the GitHub of the author:
https://github.com/AbbasHomayouni .
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MATLAB TOPOLOGY OPTIMIZATION CODE FOR PIEZOELECTRIC ENERGY HAR-
VESTERS WITH FREQUENCY TUNING

1 % A 2D TOPOLOGY OPTIMIZATION CODE FOR PIEZOELECTRIC ENERGY HARVESTER WITH
FREQUENCY TUNING

2 clc;clear;close all;
3 %% GENERAL DEFINITIONS
4 Lp = 3e−2; % Pieozoelectric plate length (m) in x direction
5 Wp = 1e−2; % Pieozoelectric plate width (m) in y direction
6 h = 2e−4; % Pieozoelectric plate Thickness (m) in z direction
7 nelx = 240; % Number of element in x direction
8 nely = 80; % Number of element in y direction
9 penalKuu = 3; penalKup = 6;penalKpp = 4;penalPol = 1; % Penalization factors

10 omega = 800; % Excitation frequency (Hz)
11 wj = 0.2; % Objective function weigthing factor
12 volfrac = 0.5; % Volume fraction
13 ft = 2; % 1= Density filter, 2&3= projection with eta and beta as parameters
14 rmin = 2; % Filter radius
15 eta = 0.5; % Threshold
16 beta = 1; % Sharpness factor
17 ftBC = ’N’;
18 penalCnt = {50,6,10,0.1}; % Continuation scheme on penalKuu {istart, maxPar,

isteps, deltaPar}
19 betaCnt = {50,60,10,1}; % Continuation scheme on beta {istart, maxPar, isteps,

deltaPar}
20 DF = 2000; % Desired fundamental natural frequency (Hz)
21 MASS = 1; % Maximum allowable attachement mass (gr)
22 Max loop = 100; % Maximum number of Iterations
23 %% MATERIAL PROPERTIES (PZT 4)
24 ro = 7500; % Density of piezoelectric material
25 e31 = −14.9091; % e31 Coupling coefficient
26 ep33 = 7.8374e−09; % Piezoelectric permitivity epsilon33
27 C = zeros(3,3); % Creation of null mechanical stiffness tensor
28 C(1,1) = 9.1187e+10; C(2,2) = C(1,1);
29 C(1,2) = 3.0025e+10; C(2,1) = C(1,2);
30 C(3,3) = 3.0581e+10;
31 %% PREPARE FINITE ELEMENT ANALYSIS
32 le = Lp/nelx; % Element length
33 we = Wp/nely; % Element width
34 e = [e31,e31,0]; % Piezoelectric matrix
35 x1 = 0;y1 = 0;x2 = le;y2 = 0;x3 = le;y3 = we;x4 = 0;y4 = we; % Element node

coordinate
36 GP = [−1/sqrt(3) −1/sqrt(3);1/sqrt(3) −1/sqrt(3);1/sqrt(3) 1/sqrt(3);−1/sqrt(3)

1/sqrt(3)]; % Gauss quadrature points
37 kuu = 0;kpp = 0;kup = 0;m = 0; % Initial values for piezoelectric matrices
38 for i = 1:4
39 s = GP(i,1);t = GP(i,2); % Natural coordinates
40 n1 = (1/4)∗(1−s)∗(1−t);
41 n2 = (1/4)∗(1+s)∗(1−t);
42 n3 = (1/4)∗(1+s)∗(1+t);
43 n4 = (1/4)∗(1−s)∗(1+t);
44 a = (y1∗(s−1)+y2∗(−1−s)+y3∗(1+s)+y4∗(1−s))/4;
45 b = (y1∗(t−1)+y2∗(1−t)+y3∗(1+t)+y4∗(−1−t))/4;
46 c = (x1∗(t−1)+x2∗(1−t)+x3∗(1+t)+x4∗(−1−t))/4;
47 d = (x1∗(s−1)+x2∗(−1−s)+x3∗(1+s)+x4∗(1−s))/4;
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48 B1 = [a∗(t−1)/4−b∗(s−1)/4 0 ; 0 c∗(s−1)/4−d∗(t−1)/4 ;c∗(s−1)/4−d∗(t−1)/4 a∗(
t−1)/4−b∗(s−1)/4];

49 B2 = [a∗(1−t)/4−b∗(−1−s)/4 0 ; 0 c∗(−1−s)/4−d∗(1−t)/4;c∗(−1−s)/4−d∗(1−t)/4 a
∗(1−t)/4−b∗(−1−s)/4];

50 B3 = [a∗(t+1)/4−b∗(s+1)/4 0 ; 0 c∗(s+1)/4−d∗(t+1)/4 ;c∗(s+1)/4−d∗(t+1)/4 a∗(
t+1)/4−b∗(s+1)/4];

51 B4 = [a∗(−1−t)/4−b∗(1−s)/4 0 ; 0 c∗(1−s)/4−d∗(−1−t)/4 ;c∗(1−s)/4−d∗(−1−t)/4
a∗(−1−t)/4−b∗(1−s)/4];

52 Bfirst = [B1 B2 B3 B4];
53 Jfirst = [0 1−t t−s s−1 ; t−1 0 s+1 −s−t ;s−t −s−1 0 t+1 ; 1−s s+t −t−1 0];
54 J = [x1 x2 x3 x4]∗Jfirst∗[y1 ; y2 ; y3 ; y4]/8; % Determinant of jacobian

matrix
55 Bu = Bfirst/J;
56 Bphi = 1/h;
57 kuu = kuu + h∗J∗transpose(Bu)∗C∗Bu; % Mechanical stiffness matrix
58 kup = kup + h∗J∗transpose(Bu)∗e’∗Bphi; % Piezoelectric coupling matrix
59 kpp = kpp + h∗J∗transpose(Bphi)∗ep33∗Bphi; % Dielectric stiffness matrix
60 N = [n1,0,n2,0,n3,0,n4,0;0,n1,0,n2,0,n3,0,n4]; % Matrix of interpolation

functions
61 m = m+J∗ro∗h∗(N’)∗N; % Mass matrix
62 end
63 k0 = max(abs(kuu(:)));beta0 = max(kpp(:));alpha = max(kup(:));M0 = max(m(:)); %

Normalization Factors
64 kuu = kuu/k0;kup = kup/alpha;kpp = kpp/beta0;gamma = (k0∗beta0)/(alphaˆ2);m = m/

M0; omega = M0∗(omega∗2∗pi)ˆ2/k0; % Normalization
65 ndof = 2∗(nely+1)∗(nelx+1); % mechanical degrees of freedom
66 nele = nelx∗nely; % number of elements
67 nodenrs = reshape(1:(1+nelx)∗(1+nely),1+nely,1+nelx);
68 edofVec = reshape(2∗nodenrs(1:end−1,1:end−1)+1,nele,1);
69 edofMat = repmat(edofVec,1,8)+repmat([0 1 2∗nely+[2 3 0 1] −2 −1],nele,1);
70 edofMatPZT = 1:nele;
71 iK = kron(edofMat,ones(8,1))’;
72 jK = kron(edofMat,ones(1,8))’;
73 iKup = edofMat’;
74 jKup = kron(edofMatPZT,ones(1,8))’;
75 B = ones(nele,1); % Boolean Matrix defined as a vector of ones
76 %% DEFINITION OF BOUNDARY CONDITION
77 fixeddofs = 1:2∗(nely+1); % Clamped−Free
78 freedofs = setdiff(1:ndof,fixeddofs);
79 lf = length(freedofs);
80 %% FORCE DEFINITION
81 nf = 1; % Number of forces
82 F = sparse(ndof,nf);
83 Fe = ndof−(nely); % Definition of desired Dof for application of force
84 F(Fe,1) = +1; % Amplitude of the force
85 Ftot = [F(freedofs,:);zeros(1,nf)];
86 %% DEFINITION OF ATTACHMENT MASS
87 sMass=zeros(nele,1);
88 sMass (nele−nely/2) = 1;
89 le = Lp/nelx; we = Wp/nely;
90 ro M = MASS∗1e−3/(le∗we∗h)/length(find(sMass));
91 sMMass = (ro M/ro)∗m(:).∗sMass’;
92 sMMass = reshape(sMMass,length(m(:))∗nele,1);
93 M Att = sparse(iK(:),jK(:),sMMass(:)); % Creating mass matrix for the

attachement mass
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94 %% PREPARE FILTER (F. Ferrari et al. 2021)
95 if ftBC == ’N’, bcF = ’symmetric’; else, bcF = 0; end
96 prj = @(v,eta,beta) (tanh(beta∗eta)+tanh(beta∗(v(:)−eta)))./(tanh(beta∗eta)+tanh

(beta∗(1−eta))); % projection
97 deta = @(v,eta,beta) − beta ∗ csch( beta ) .∗ sech( beta ∗ ( v( : ) − eta ) ).ˆ2

.∗sinh( v( : ) ∗ beta ) .∗ sinh( ( 1 − v( : ) ) ∗ beta ); % projection eta
−derivative

98 dprj = @(v,eta,beta) beta∗(1−tanh(beta∗(v−eta)).ˆ2)./(tanh(beta∗eta)+tanh(beta
∗(1−eta)));% proj. x−derivative

99 cnt = @(v,vCnt,l) v+(l>=vCnt{1}).∗(v<vCnt{2}).∗(mod(l,vCnt{3})==0).∗vCnt{4};
100 [dy,dz,dx] = meshgrid(−ceil(rmin)+1:ceil(rmin)−1,−ceil(rmin)+1:ceil(rmin)−1,−

ceil(rmin)+1:ceil(rmin)−1 );
101 h = max( 0, rmin − sqrt( dx.ˆ2 + dy.ˆ2 + dz.ˆ2 )); % Conv. kernel
102 Hp = imfilter( ones( nely, nelx), h, bcF ); dHs = Hp; % Matrix of weights (

filter)
103 %% INITIALIZE ITERATION
104 x = repmat(volfrac,nely,nelx); xpmin=x∗1e−2; % Initial values for density ratios
105 pol = repmat(0.5,[nely,nelx]); % Initial values for polarization
106 xPhys = x;
107 loop = 0;
108 Density change = 1;
109 E0 = 1; Emin = 1e−9;
110 e0 = 1; eMin = 1e−9;
111 eps0 = 1; epsMin = 1e−9;
112 dv0 = ones(nely,nelx); % Volume sensitivity
113 penalratio up = penalKup/penalKuu; penalratio pp = penalKpp/penalKuu; % Penalty

ratios for continuation scheme
114 NATD=(DF∗2∗pi)ˆ2∗(M0/k0); % Normalization of desired natural frequency
115 Ym = 0; % Initial mass ratio
116 EIGV1 = zeros (ndof,1); EIGV2 = zeros (ndof,1); % Creating null eigenvectors
117 %% MMA Preparation
118 mc = 2; % Number of constraints
119 nVar = 2∗nele+1; % Number of variables
120 xmin = zeros(nVar,1); % Minimum possible density
121 xmax = ones(nVar,1); % Vector of maximum optimization variables
122 xold1 = [x(:);pol(:);Ym]; % Vector of variables for previous iteration
123 xold2 = [x(:);pol(:);Ym]; % Vector of variables for 2nd previous iteration
124 low = xmin; % Initial vector of lower asymptotes
125 upp = xmax; % Initial vector of upper asymptotes
126 a0 = 1;
127 ai = zeros(mc,1);
128 ci = (1e5)∗ones(mc,1);
129 di = zeros(mc,1);
130 %% START ITERATION
131 while Density change > 0.005 && loop < Max loop
132 tic
133 loop = loop + 1;
134 % COMPUTE PHYSICAL DENSITY FIELD (AND ETA IF PROJECT.) (F. Ferrari et al.

2021)
135 xTilde = imfilter( reshape( x, nely, nelx), h, bcF ) ./ Hp; xPhys = xTilde;

% Filtered field
136 if ft > 1 % Compute optimal eta∗ with Newton
137 f = ( mean( prj( xPhys, eta, beta ) ) − volfrac ) ∗ (ft == 3); %

Function (volume)
138 while abs( f ) > 1e−6 % Newton process for finding opt. eta
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139 eta = eta − f / mean( deta( xPhys, eta, beta ) );
140 f = mean( prj( xPhys, eta, beta ) ) − volfrac;
141 end
142 dHs = Hp ./ reshape( dprj( xPhys, eta, beta ), nely, nelx); %

Sensitivity modification
143 xPhys = prj( xPhys, eta, beta ); % Projected (physical) field
144 end
145 xPhys = reshape(xPhys,nely,nelx); % Physical density
146 xPhysH = ((xpmin−xpmin.ˆpenalKuu)./(ones(nely,nelx)−xpmin.ˆpenalKuu)).∗(ones

(nely,nelx)−xPhys.ˆpenalKuu)+xPhys.ˆpenalKuu; % kuu interpolation function
147 xPhysHD = penalKuu∗((ones(nely,nelx)−xpmin)./(ones(nely,nelx)−xpmin.ˆ

penalKuu)).∗xPhys.ˆ(penalKuu−1); % Derivation of xPhysH with respect to
xPhys

148 % FE−ANALYSIS
149 sM = m(:)∗xPhys(:)’;
150 sKuu = kuu(:).∗(Emin+xPhysH(:)’∗(E0−Emin));
151 sKup = kup(:)∗(eMin+xPhys(:)’.ˆpenalKup∗(e0−eMin).∗((2∗pol(:)−1)’.ˆpenalPol)

);
152 sKpp = kpp(:)∗(epsMin+xPhys(:)’.ˆpenalKpp∗(eps0−epsMin));
153 % Creation of global matrices
154 M = sparse(iK(:),jK(:),sM(:)); M = (M+M’)/2; % Global mass matrix
155 Mtot = M + M Att∗Ym; % Augmenting attached mass
156 Kuu = sparse(iK,jK,sKuu);
157 [EIGVs,NATs]=eigs(Kuu(freedofs,freedofs),Mtot(freedofs,freedofs),1,’

smallestabs’);Freq=sqrt(NATs∗k0/M0)/(2∗pi); % Calculation of natural
frequency

158 Normal=EIGVs’∗M(freedofs,freedofs)∗EIGVs; EIGV(freedofs)=sqrt(1/(Normal(1,1)
))∗EIGVs; % Normalization of eigenvector

159 Kuu = sparse(iK,jK,sKuu)−omega∗Mtot;
160 Kup = sparse(iKup(:),jKup(:),sKup(:)); % Global piezoelectric coupling

matrix
161 Kpp = sparse(edofMatPZT(:),edofMatPZT(:),sKpp(:)); % Global dielectric

stifness matrix
162 KupEqui = Kup(freedofs,:)∗B; KppEqui = gamma∗B’∗Kpp∗B; % Equipotential

Condition
163 Ktot = [Kuu(freedofs,freedofs),KupEqui;KupEqui’,−KppEqui]; % Creation of

total matrix with equipotential hypothesis
164 Ktot = 1/2∗(Ktot + Ktot’); % Numerical symmetry enforcement
165 U = Ktot\Ftot; % Response vector
166 Uu(freedofs,:) = U(1:lf,:); Up = U(lf+1:end,:); % Separation of mechanical

displacement and electrical Potential
167 ADJ1 = Ktot\[−Kuu(freedofs,freedofs)∗Uu(freedofs,:);zeros(1,nf)]; % First

adjoint vector
168 lambda1(freedofs,:) = ADJ1(1:lf,:); mu1 = B∗ADJ1(lf+1:end,:);
169 ADJ2 = Ktot\[zeros(lf,nf);−KppEqui∗Up]; % Second adjoint vector
170 lambda2(freedofs,:) = ADJ2(1:lf,:); mu2 = B∗ADJ2(lf+1:end,:);
171 % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
172 c = 0; Wm1 = 0; Wm2 = 0; We = 0;
173 dc = zeros(nely,nelx);
174 dp = zeros(nely,nelx);dY = 0;
175 for i = 1:nf % nf is the total number of forces (Load Cases)
176 Uu i = Uu(:,i);Up i = B∗Up(:,i);
177 lambda1 i = lambda1(:,i); lambda2 i = lambda2(:,i);
178 mu1 i = mu1(:,i); mu2 i = mu2(:,i);
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179 Wm1 = Wm1 + reshape(sum((Uu i(edofMat)∗kuu).∗Uu i(edofMat),2),nely,nelx);
% Elemental mechanical energy (kuu)

180 Wm2 = Wm2 + reshape(sum((Uu i(edofMat)∗m∗omega).∗Uu i(edofMat),2),nely,
nelx); % Elemental mechanical energy (m)

181 We = We + reshape(sum((Up i∗kpp).∗Up i,2),nely,nelx); % Elemental
electrical energy

182 dcKuuE = wj∗((((1/2)∗Uu i(edofMat) + lambda1 i(edofMat))∗kuu).∗Uu i(
edofMat))−(1−wj)∗((lambda2 i(edofMat)∗kuu).∗Uu i(edofMat));

183 dcKupE = wj∗((lambda1 i(edofMat)∗kup).∗Up i + ((Uu i(edofMat))∗kup).∗
mu1 i)−(1−wj)∗((lambda2 i(edofMat)∗kup).∗Up i + ((Uu i(edofMat))∗kup).∗mu2 i);

184 dcKppE = wj∗((−mu1 i∗kpp).∗Up i)−(1−wj)∗((1/2)∗(Up i∗kpp).∗Up i − (mu2 i∗
kpp).∗Up i);

185 dcME = wj∗((((1/2)∗Uu i(edofMat) + lambda1 i(edofMat))∗(−m∗omega)).∗Uu i(
edofMat))−(1−wj)∗((lambda2 i(edofMat)∗(−m∗omega)).∗Uu i(edofMat));

186 dcKuu = reshape(sum(dcKuuE,2),[nely,nelx]);
187 dcKup = reshape(sum(dcKupE,2),[nely,nelx]);
188 dcKpp = gamma∗reshape(sum(dcKppE,2),[nely,nelx]);
189 dcM = reshape(sum(dcME,2),[nely,nelx]);
190 dc = dc + (E0−Emin)∗xPhysHD.∗dcKuu+penalKup∗(e0−eMin)∗xPhys.ˆ(penalKup

−1).∗dcKup.∗((2∗pol−1).ˆ(penalPol))+penalKpp∗(eps0−epsMin)∗xPhys.ˆ(penalKpp
−1).∗dcKpp+dcM; % Density sensitivity

191 dp = dp + (e0−eMin)∗2∗penalPol∗((2∗pol−1).ˆ(penalPol−1)).∗xPhys.ˆ
penalKup.∗dcKup; % Polarization sensitivity

192 dY = dY + (ro M/ro)∗(1/(length(find(sMass))))∗reshape(full(sum(dcME.∗
sMass,2)),[nelx,nely]);dY = sum(dY(:)); % Attachement sensitivity

193 end
194 DCKE=(1/(2∗sqrt(NATs)))∗(((1/2)∗EIGV(edofMat)∗kuu).∗EIGV(edofMat));DCK =

reshape(sum(DCKE,2),[nely,nelx]);
195 DCME=(1/(2∗sqrt(NATs)))∗(((1/2)∗EIGV(edofMat)∗(−m∗NATs)).∗EIGV(edofMat));DCM

= reshape(sum(DCME,2),[nely,nelx]);
196 dcF=(E0−Emin)∗xPhysHD.∗DCK+DCM; % Frequency sensitivity (density)
197 DcF Y = (ro M/ro)∗(1/(length(find(sMass))))∗reshape(sum(full(DCME.∗sMass),2)

,[nely,nelx]);DcF Y = sum(DcF Y(:)); % Frequency sensitivity (attachement
mass)

198 Wm = sum(sum(xPhysH.∗Wm1))−sum(sum(xPhys.∗Wm2)); % Mechanical energy (
Normalized)

199 We = sum(sum((epsMin+xPhys.ˆpenalKpp∗(eps0−epsMin)).∗We)); % Electrical
energy (Normalized)

200 c = wj∗Wm−(1−wj)∗We; % Objective function
201 dv = ones(nely,nelx);
202 % FILTERING/MODIFICATION OF SENSITIVITIES
203 dc = imfilter( reshape( dc, nely, nelx) ./ dHs, h, bcF ); % Filter objective

sensitivity
204 dcF = imfilter( reshape( dcF, nely, nelx) ./ dHs, h, bcF ); % Filter

frequency sensitivity
205 dv = imfilter( reshape( dv0, nely, nelx ) ./ dHs, h, bcF ); % Filter volume

sensitivity
206 %% MMA OPTIMIZATION OF DESIGN VARIABLES
207 xval = [x(:);pol(:);Ym]; % Vector of current optimization variables
208 f0val = c; % Current objective function value
209 df0dx = [dc(:);dp(:);dY]; % Vector of Sensitivities
210 fval = [sum(xPhys(:))/(volfrac∗nele) − 1;(sqrt(NATs)/sqrt(NATD))−1]; %

Constraint value
211 dfdx = [dv(:)’ / (volfrac∗nele),0∗pol(:)’,0;dcF(:)’/sqrt(NATD),0∗pol(:)’,

DcF Y(:)’/sqrt(NATD)]; % Constraint’s Sensitivities
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212 [xmma, ˜, ˜, ˜, ˜, ˜, ˜, ˜, ˜, low,upp] = mmasub(mc, nVar, loop, xval, xmin,
xmax, xold1, xold2, f0val,df0dx,fval,dfdx,low,upp,a0,ai,ci,di); % MMA

optimization
213 xnew = reshape(xmma(1:nele,1),nely,nelx); % Vector of updated density

variable
214 Density change = max(abs(xnew(:)−x(:)));
215 xold2 = xold1(:);xold1 = [x(:);pol(:);Ym];
216 pol = reshape(xmma(nele+1:2∗nele,1),nely,nelx); % Vector of updated

polarization variables
217 Ym = xmma(2∗nele+1,1); % Updated mass ratio variable
218 x = xnew;
219 %% CONTINIUATION SCHEME ON PENALIZATION FACTORS & BETA
220 [penalKuu,˜] = deal(cnt(penalKuu ,penalCnt,loop),cnt(beta,betaCnt,loop));
221 penalKup=penalKuu∗penalratio up; penalKpp=penalKuu∗penalratio pp;
222 %% PLOT DENSITIES & POLARIZATION
223 figure(1);colormap(gray); imagesc(1−x); caxis([0 1]); axis equal; axis off;

drawnow;
224 figure(2);colormap(jet); imagesc(((x.∗(pol∗2−1))+1)/2); caxis([0 1]); axis

equal; axis off; drawnow;
225 fprintf(’ It:%2.0i Time:%3.2fs Obj:%3.4f Wm.:%3.4f We.:%3.4f Freq:%3.3f Ym

.:%3.3f Vol:%3.3f ch:%3.3f\n ’,loop,toc,c,Wm,We,Freq,Ym,mean(xPhys(:)),
Density change);

226 end
227 % ||=====================================================================||
228 % || THIS CODE IS WRITTEN BY ABBAS HOMAYOUNI−AMLASHI, THOMAS SCHLINQUER, ||
229 % || Peter Kipkemoi, Jean Bosco Byiringiro, MICKY RAKOTONDRABE, ||
230 % || Michael Gauthier and ABDENBI MOHAND−OUSAID. January 2024. ||
231 % ||=====================================================================||
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