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Abstract Lattice-based modular robots are composed of modules arranged on a lat-
tice and forming 3D shapes, if these robots are small enough and many enough,
they form a programmable matter. This work proposes a method for optimising data
communication times between modules by compressing the data. We have first anal-
ysed the communication delay between the end device modules, then a set of recent
lossless compression algorithms was tested to select the optimal one to implement
with Blinky Block. Based on the results obtained, we propose to add a lossless data
compression scheme to reduce the communicated data size and consequently com-
munication delay. We found that the ”Brotli” compression algorithm is the most
suitable one for modular robot communication as it achieved a good balance be-
tween computing and communication overhead. Then, based on the compression
ratio and the communication delay interpolation, a significant gain is achieved by
reducing the communication delay by a factor of 5.

1 Introduction

Programmable matter is made of small autonomous building blocks that can be
programmed to achieve a wide range of geometric objects and structures with pro-
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grammable capabilities to change their colour or shape, which leads to the creation
of programmable matter [1].

Most of the algorithm use communication capabilities of robots to share local
information in order to enlarge global knowledge of the set. These communications
are the weak point of distributed algorithms, as they represent the longest processing
time. We will show that communication time is mainly due to the size of the data
embedded in the messages. Even if the computational capabilities of the robots used
in the programmable subject are quite small, the idea developed here is to use these
computational capabilities to process the data received in order to reduce the size of
the data transmitted.

The context used in this article is central to the problem of self-reconfiguration of
programmable matter. Self-reconfiguration consists in programming modular robots
so that modules move relatively to each other to change the overall shape of the
assembly [2, 3, 4].

The preliminary step in any self-reconfiguration algorithm is to give the modules
a way of knowing the final shape to be made. In [5], Tucci et al presented a very effi-
cient 3D scene encoding model for the self-reconfiguration process that describes a
3D models in the form of a Constructive Solid Geometry tree (CSG tree) combining
the simple geometric objects placed in the leaves. Combination can be union, inter-
section and difference of sub-trees. A string code may be generated from a depth
search first traversing of the tree.

Blinky Blocks are small cubic modular robots that make up the key component
of the Claytronics project to create highly adaptable and reconfigurable objects and
environments (cf. Fig. 1). Each Blinky Block can be attached with its magnets to
form complex geometric shapes, can exchange messages with directly connected
neighbours, and react to noise by emitting sounds or/and changing colours. We use
these real robots as a test bed to validate some parts of distributed algorithms for
programmable matter. Despite the fact that they have no autonomous movement
capability, their communication and computing capacity means that algorithms for
programmable matter can be implemented on several hundred connected real robots.

The adoption of modular robots in the nature of the Internet of Things (IoT)
[6] with the implementation of AI-empowered applications and services [7], can

Fig. 1: Left: Blinky Block Hardware. Right: a set of 768 Blinky Blocks running the
same program to visualise a cutting plane of 3D Objects.



Efficient Communication Protocol for Programmable Matter 3

reshape the robotics concept [8, 9] into a new modular self-reconfigurable swarm,
capable of operating in large numbers synchronously and simultaneously.

Communication between similar modular robotic systems as IoT components is
essential to perform the intended task. However, this can be delayed due to the mes-
sage size, which the length of the message can prove to be challenging and result in
communication delays. For that, several solutions for Wireless Multimedia Sensor
Networks (WMSN) were presented such as in [10] to reduce this redundancy by
discarding a certain number of data packets while guaranteeing its integrity (qual-
ity). Other solutions include low-overhead data compression techniques [11], Com-
pressed Sensing (CS) algorithms for data compression [12], and data compression
and transmission scheme for power reduction in IoT enabled wireless sensors [13].

However, they are prone to delays which can affect their ability to react in real-
time which is often caused not only by the Blinky Blocks number but rather by
the Message Length (ML), which the higher the message, the higher the delay will
become. As a result, several experimental results were tested on different compres-
sion/decompression algorithms to verify which one is more suitable to be applied to
Blinky Blocks to mitigate the issue of delay and ensure a higher real-time reaction
to users’ orders and commands.

The following section presents preliminary work on the study of robots to eval-
uate their communication and computation capabilities. The next part proposes a
study of classical compression models compared to Huffman’s method. Finally, our
method is presented and completed by an experiment on a real problem applied to a
large number of connected robots.

2 Blinky Block benchmark and compression models

A preliminary study of Blinky Blocks has enabled to assess their communication
and pure computing capabilities. Blinky Blocks use very standard communication
systems (6 UARTs, one on each side of the Blinky Block) and a processor very
common in embedded systems (ARM Cortex M0 from STMicroelectronics, the
STM32F091CB with 32 KB RAM and 128 KB flash memory), which allows us
to generalise this study to most distributed multi-robot systems used in the context
of programmable matter, such as the 3D Catom [14].

First, in order to analyse the communication delay on Blinky Blocks in terms of
the Message Length (Ml) and number of Blinky Blocks (NBB), we place NBB Blinky
Blocks forming a simple line and we compute the communication time of several
messages with different size of embedded data using the configuration presented
Fig. 2.

Measurement of the total time taken to transfer a message on all Blinky Blocks
is carried out by a distributed program running on the robots. This program starts
with the first extremity A sending a message to its only neighbour, at the local time
t0 stored in A. When the message reaches an internal module with two neighbours,
the message received is sent back to the connected opposite port. When the message
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A B
NBB

2x(NBB-1) messages
∆t

Fig. 2: Experimental network diagram used to measure message propagation times.

reaches the extremity B (which has only one neighbour connected), the message is
sent back to the receiving port. When the back message reaches A at local time t1,
the time ∆t = t1 − t0 gives the average duration of 2× (NBB −1) message transfers
where NBB varies from 4 to 52 respectively.
We repeat this operation 1000 times to deduce the average duration of the trans-
mission of messages (TML). The benchmark tests were performed on a series of 52
Blinky Block with each set being tested for a message of N bytes, with N taking 7
values in [2..227]. Based on the obtained results (see Fig. 3a and 3b), we found that
only the message length has an effect on the communication time. Finally, we pro-
pose a linear approximation of the duration of the message depending on its length:

t = 0.08935×Ml +1.516 (1)

In a second study, we carried out a number of calculations on each Blinky Block
set, such as mathematical operations and decompression using Huffman’s method.
This study led us to the conclusion that all the computations required in distributed
algorithms for programmable matter were negligible compared with communica-
tion time. Here, for example, decompressing a Huffman code of 1061 bytes takes

(a) Function of the number of Blinky Blocks. (b) Function of message length

Fig. 3: Variation of communication delay
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15 ms, which is comparable to sending 150 bytes from a Blinky Block to a neighbour.

Thirdly, we studied the various compression algorithms available and compared
them with the Huffman method implemented on our Blinky Blocks. Data compres-
sion algorithms can be divided into two classes: Lossless Compression which allows
the original data to be fully reconstructed from the compressed data and with no in-
formation loss, and Lossy Compression which is especially used for multimedia
data such as images and audio. It allows the original data to be reconstructed with
a certain loss of information, but it can achieve better data reduction compared to
lossless compression as it allows more space to be freed up.
In our case, the type of compression is message (textual data) compression and con-
sequently, the required compression time should also be lossless, due to its ability to
prevent the loss of any data during the compression/decompression process to avoid
any modification to the original sent message. On the other hand, Fig. 4 represents
a taxonomy of existing lossless data compression schemes. In this paper, a lossless
set of these compression schemes was tested to confirm whether they are suitable to
be implemented with lattice-based modular robots or not.

A description of the most known and widely used lossless compression algo-
rithms is presented in Fig. 4. We tried different kinds of compression methods to
give a brief description of each of the widely selected lossless data compression
algorithms [15]:

• DEFLATE: is a lossless compression algorithm widely used in many popular
compression utilities like gzip, zip, and PNG. It uses a combination of Huffman
coding and LZ77 sliding window compression to compress text data [16].

• LZ77: is a lossless compression algorithm that uses a sliding window technique
to compress textual data. It works by identifying repeated patterns in the input
text and replaces them with references to previous occurrences of the same pat-
tern [17].

Fig. 4: Taxonomy of Existing Lossless Compression Algorithm Types.
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(a) Bunker (b) Watch tower (c) DNA Chain (d) Battle tank

Fig. 5: VisibleSim view of 3D models used for experiments.

• LZW: stands for Lemepl-Ziv-Welch, is a dictionary-based lossless compression
algorithm that is used in several popular file formats like GIF and TIFF. It works
by building a dictionary of frequently occurring patterns in the input text and
replaces them with shorter codes [18].

• Brotli: is a relatively new compression algorithm that was developed by Google.
It uses a combination of a modern variant of the LZ77 algorithm, Huffman cod-
ing, and second-order context modelling to achieve higher compression ratios
compared to other algorithms like DEFLATE [19].

• Zstd: stands short for Zstandard, and is a compression algorithm developed by
Facebook. It uses a combination of Huffman coding, Finite State Entropy (FSE)
compression, and a fast dictionary search algorithm to achieve high compression
ratios and fast decompression speeds [20].

To test the effectiveness of our proposed solution, we decided to create more or
less complex shapes to get different message length. Therefore, we designed four 3D
models on OpenSCAD [21] modeller: (a) a ”Bunker”, (b) a fortified ”Watchtower”,
(c) an ”ADN” and (d) a ”Battle Tank” and integrated them on the VisibleSim simu-
lator [22] to create a set of Blinky Blocks that fills the models as shown in Fig. 5.
Our vectorial description language alphabet being made of 32 different characters,
the description models are encoded into a list of 5-bit codes building the CSG tree.
In fact, Table 1 shows the code size for each one of them. this code can be com-
pressed before sending it in the graph of modules and is locally decoded inside each
module (without storing the model), before being integrated into our simulator and
applied using Huffman decompression.

Table 1: Size of the Designed Data Models.

3D model Brut Size 5-Bit Coded Huffman Header Huffman Body
Bunker 116 Bytes 580 bits 139 bits 429 bits
Watchtower 397 Bytes 249 bits 167 bits 1422 bits
DNA chain 3722 Bytes 18610 bits 139 bits 12147 bits
Tank 3986 Bytes 19930 bits 188 bits 14432 bits
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(a) Comparison of compression ratio versus
message length.

(b) Variation of the compression time versus
message length.

Fig. 6: Two efficiency comparisons for different lossless compression algorithms.

Fig. 7: Variation of Communication Delay (a) and Time Ratio (b) in Terms of Mes-
sage Length with/without Brotli Compression.

3 Method and experiments

To verify which compression algorithm is most suitable for both compression and
decompression, a comparison was made in terms of the compression ratio of the
data and the compression/decompression time.

The comparison was made between these lossless compression algorithms in
terms of data compression ratio (see Fig. 6a), data compression, and data decom-
pression times (see Fig. 6b). In fact, the testing was done on real messages that
Blinky Blocks can use. Therefore, one can conclude that even though Brotli does
not have the fastest compression and decompression times, except that it achieves
the best result when it comes to message size compression by reducing the original
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Table 2: Numerical Example between different lossless compression algorithms us-
ing different message data sizes.

3D Model Original Size (Bytes) Huffman Zstd DEFLATE Brotli LZW LZ4
Bunker 116 241 88 84 82 99 126
Tower 397 432 180 162 165 190 263

ADN Chain 3772 2252 288 266 229 253 443
Tank 3986 2577 569 491 444 507 1046

message size as seen in Table 2, and data by 55%. Thus, it appears to be the best
lossless compression algorithm for both data compression and decompression time,
as seen in Fig. 6b, and it is a suitable candidate for implementation with Blinky
Blocks.
To be more precise, the compression process was performed only once on the master
side to prepare data to be flooded into the network, while the decompression process
was done on each Blinky Block at each computation of its colour.

The data transmitted in our application is used to describe a 3D configuration
(i.e. the shape to be occupied by the set of robots). These vector data are used to
determine whether or not a grid position (occupied by a Blinky Block) is inside this
shape. Compression is performed once by the external server, and then the com-
pressed message (size Ncomp) is sent to all robots via a module connected to the
server. The decompression process, made in each Blinky Block in parallel, can be
carried out by a single traversal of all received data. Then, data is ’decoded’ on
the fly, without storing a decompressed version of the message. This results in a
complexity decompression algorithm O(Ncomp).

Despite Brotli having a high compression time, it also has the lowest decom-
pression time. However, since we only need to compress the message once and
decompress it every single time per Blinky Block, we found that Brotli seems to be
the most ideal solution for this. Based on the obtained experimental results, we have
shown how Brotli outperforms the other lossless compression algorithms in terms
of compression ratio (as shown in Fig. 6a).
As a result, one can clearly deduce the effectiveness of the Brotli lossless compres-
sion algorithm in terms of both data compression and decompression and the reduc-
tion of message length. Thus, it proves to be a very effective method to mitigate the
delay problem and effectively reduce its computation and execution time. Its appli-
ance on Blinky Blocks comes as a novel solution for, to our knowledge, we are the
first to propose applying lossless compression algorithms to a set of modular robots
Blinky Block in terms of ”Programmable Matter” and select the best one. Regard-
ing Fig. 6a, the experimental validation of the given remarks was applied. On the
left side, the communication delay of messages with different lengths is compared
in both compressed (using Brotli) and original (non-compressed) versions. These
graphs clearly show the gains made from the use of Brotli compression to trans-
mit messages. The second graph (right), shows the link between the compressed
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and non-compressed message lengths for different message sizes. This experience
confirms that the gain is very important whenever we have a higher message length.

Therefore, Brotli is a versatile compression algorithm that offers excellent com-
pression ratios, especially for Blinky Blocks messages, while still maintaining rea-
sonable compression and decompression speeds. In fact, to further confirm the ac-
curacy of our presented work, we tested it on VisibleSim, which is a software tool
for simulating and programming modular robots (Blinky Blocks) and compared it
with the already obtained results (see Fig. 6a and Fig. 6b) to show how close these
results are and that the executed code remains the same wherever it is tested. Thus,
it shows that the proposed algorithm has no compatibility or coding issues since it
operates on the size of the message and not on the Blinky Block configuration.

After several tests on real data models and having it compared with other lossless
compression algorithms in terms of compression/decompression time and compres-
sion ratio, Huffman will be replaced with the Brotli compression algorithm. Thus,
offering the highest known compression ratio with far fewer compression and de-
compression times compared to Huffman.

Finally, we propose a more practical experiment to validate the complete process,
consisting of compressing the 3D model, distributing the data code to a large set of
connected Blinky Blocks, and decompressing many time the stored code in each
Blinky Block to use the 3D data to set their colour. Figure 8 shows a picture of
the setup of this experiment, also used to produce the video1. The setup shown on
the left side of Fig. 8, includes a laptop connected to a grid of 768 Blinky Blocks
(32× 24). The laptop first sends the coordinates to each Blinky Block then sends
the compressed model to the Blinky Blocks. At launch, the Blinky Blocks create a
common coordinate system to obtain a position (cx,cy,cz) relative to the module in
the lower left corner, by applying the algorithm proposed in [23]. The spanning tree
created for this purpose will be used to distribute the code to all the blocks.
In this application we use a Huffman encoding algorithm which we ran on the laptop
to create the code from the 3D model (the DNA model presented on the right side
of Fig. 8), and sending it to one of the Blinky Blocks. To check that the data is
well-received and uncompressed by each Blinky Block, after reception we repeat 60
rounds that compute the colour of an horizontal plane at level cz crossing the 3D
scene.
At each stage, each Blinky Block analyses the encoding chain eight times to calculate
the colour at eight different positions of the space inside the block. This method
allows to create anti-aliasing effects. Positions are (cx±0.25× l,cy±0.25× l,cz±
0.25× l) where l is the width the cubic Blinky Block. After half a second, each
Blinky Block switches to the next stage by increasing its cz position by 0.25× l and
recomputing a new colour.

1 Video of Real time decompression on Blinky Blocks: https://youtu.be/xjAKxByAElI

https://youtu.be/xjAKxByAElI
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Fig. 8: An example of Blinky Blocks application with transmission and decompres-
sion of a 3D description model (the short DNA chain presented in the right picture).

4 Conclusion and Future Works

In this paper, we propose a study of the efficiency of a set of Blinky Blocks robots in
terms of communication delay and computation time.

Based on the obtained results, we show that the communication delay linearly de-
pends on the size of the message, and presented Huffman as a lossless compression
algorithm as a novel method, which was substituted by Brotli as an ideal solution.

To reduce the communication delay, we propose to add a lossless compression
algorithm. We compare a set of recent efficient algorithms with the Huffman coding
method. We express the compression ratio and compression/decompression execu-
tion time for each of them. Moreover, the obtained results show that the Brotli al-
gorithm requires the minimum overhead in terms of execution time and can achieve
the maximum compression ratio. Therefore, this work indicates that the Brotli al-
gorithm should be introduced at Blinky Block to reach a minimum communication
delay.

In the future, this work will further extend to cover three main points:

• First, the adoption of Huffman as the first compression mechanism that can per-
form compression on Blinky Blocks proved to be a success. However, it cannot
compress large messages within the accepted range of Blinky Blocks’ message
length, which varies from 1 to 227 bytes. Therefore, based on the presented re-
sults above, Brotli will be introduced as a successor to replace Huffman’s com-
pression.

• The constant integration of Blinky Blocks into the IoT domain [24, 25] and its in-
teraction with different IoT devices will surely require not only textual data to be
exchanged, but also audio, video, and even images. Therefore, other compression
algorithms will be tested, depending on the changing nature of Blinky Blocks and
the structure of the integrated data to reduce the communication delays between
Blinky Blocks.

• Compression is surely an important mechanism to reduce communication delays.
However, it is important to ensure that this communication is not intercepted
by a malicious/non-malicious party. Therefore, a very lightweight cryptographic
solution that takes into consideration the resource-constrained nature of Blinky
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Blocks is required and will be integrated with the compression mechanism to
ensure the first crypto-compression solution for Blinky Blocks that reduces delays
and secures the communication by preventing the interception of the compressed
messages.
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