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Abstract— Lattice-based modular robots are composed of
modules arranged on a lattice and forming 3D shapes. This
paper presents a fully distributed algorithm executed by each
module of a large lattice-based modular robot to determine
their current shape using a small memory footprint and fast
convergence. The algorithm consists of finding overlapping
boxes that cover the entire robot configuration using message-
passing. Thus, allowing robots to determine a representation
of their current shape. The discovery of a distributed rep-
resentation of the current shape of modular robots provides
valuable information that can be either used to facilitate the
distributed self-reconfiguration planning or to efficiently send
the current shape to a connected computer. The algorithm
is executed in a simulated environment and compared with
a classic coordinates collection method in order for modules
to send their current global shape to a computer to be used
by an interactive CAD software. The obtained results show
the efficiency of our algorithm in detecting the current shape
of the robot, while also outperforming the existing coordinate
collection algorithm.

I. INTRODUCTION

The concept of programmable matter refers to materials
that can change their physical properties in response to
external stimuli or user input. The Programmable Matter
will be a new tool to design objects since it offers reusable,
dynamic, interactive and intelligent interfaces. The idea is
to connect the matter in real time with a computer running
a Computer-Aided Design (CAD) software. Using the CAD
software, a shape is described and then transmitted to the
matter. On reception, the matter will reconfigure itself into
the given shape, that is self-reconfiguration, or by responding
to physical user interaction with the matter. These evaluations
in the physical matter are reflected by the digital object in
the CAD software, creating an interactive design tool [1] as
shown in Fig. 1.

Self-reconfigurable modular robots, which are made up
of individual modules that can be reconfigured to form
different shapes and structures, are a prime example of pro-
grammable matter. They are made up of individual modules
with computational and communication capabilities. They
can be attached, detached, and moved to change the overall
shape. They offer the required properties to achieve such
a matter which includes: programmability, reconfigurability,
and interactivity. Future hardware like 3D Catoms [2], which
are millimeter-scale quasi-spherical modules will produce
very precise matter, but currently it is already possible to
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tute, CNRS, 1 cours Leprince-Ringuet, 25200, Montbéliard, France.
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Fig. 1: Illustration of the objective made of a system where
spherical robots forming the material of the small object on
the left communicate the global shape they are defining to a
computer-aided design system.

assemble cubic robots using Blinky Blocks [3], in order to
create a shape connected to a computer.

One of the challenges in achieving such a matter is shape
representation. In [4], Tucci et al. show how to encode
the representation of a shape of an object in a compact
memory efficient way using a Constructive-Solid Geometry
(CSG) model, usable to transfer a shape from the CAD to
the set of robots which gives them enough information to
self-reconfigure. Nevertheless, it is also essential to allow
the modules to discover a representation of their current
configuration, which is useful for sending it back to the
connected computer to update the digital object.

Moreover, in a large modular robot, modules have limited
local knowledge of the entire configuration. They can only
access their directly connected neighbors. Thus, allowing
modules to recognize the whole shape of their configuration
can facilitate distributed self-reconfiguration planning, which
consists of finding the sequence of movements to reconfigure
into a goal shape. Knowing the current configuration modules
can calculate the difference between the current and the goal
shape to optimize the movements and the rearrangements to
be made to reach the goal shape while ensuring safe and
mechanically stable movements.

In this paper, we propose a distributed algorithm that
allows a set of robots to describe the current shape that
it is forming. Our algorithm defines a set of overlapping
boxes to cover the entire robot configuration, allowing for
the determination of a representation of its current shape.
The unique constraint of a box is that it covers a complete
set of modules without any holes. By using a distributed



approach, each module of the robot can communicate with
its directly attached neighbors to collectively determine the
global robot’s shape.

In Section II we present the related works. In Section III
we present the distributed algorithm to detect the overlap-
ping boxes. Then, we analyze and express its time and
communication complexity in Section IV. In Section V we
present the experiments carried out, which compare the shape
recognition method with a coordinates collection method to
inform the current configuration to a computer. The paper is
concluded and future works are mentioned in section VI.

II. RELATED WORKS

The configuration recognition problem, which consists
of matching and mapping a configuration to a library of
configurations, is studied in [5], [6], [7]. First, a discovery
phase is executed to find a representation of the current
configuration as an inter-connectivity graph, where nodes
represent modules and edges represent the connections be-
tween the modules. Then, they match the graph with an
existing one and map the physical modules to their logical
one.

In [8], the authors solve the matching problem with
a distributed goal recognition algorithm that verifies if a
configuration matches a given goal shape without the need
to discover the whole configuration. In [5] a distributed real-
time algorithm is presented for configuration discovery. It al-
lows modules to discover other modules using wireless infra-
red communication and construct the connectivity graph.

Connectivity graphs suffer from scalability issues since
they depend on the number of modules which might increase
drastically, especially when building a high fidelity pro-
grammable matter with millimeter scale robots. Furthermore,
in lattice-based modular robots, we can exploit geometric
information to create a compact shape representation.

In [9], [10] the authors propose to transform a CAD model
into overlapping bricks to make it easier for the modules to
identify their position relative to goal configuration which
is required for the self-reconfiguration process. In [4] the
authors proposed to use a CSG tree. In this model coming
from the image synthesis domain, the leaves of the tree
contain basic geometrical objects and the intern nodes con-
tain geometrical transformations and combination operators
(union, intersection, or difference) to form the final shape on
the root. The objective of these methods is to encode a shape
using a centralized computer to transmit it to the module to
self-reconfigure into it.

In this paper, our aim is to propose a distributed algorithm
that allows modules forming a large lattice-based modular
robot to discover the overall shape of their configuration
using overlapping boxes whose union forms the configuration
using neighbor-to-neighbor message passing.

III. ALGORITHM DESCRIPTION

The main idea of the algorithm is to find a set of full
boxes that cover the whole configuration. In this section, we
describe the distributed algorithm, shown in Algorithms 1

and 2 for finding the boxes on modular robotic systems
where modules communicate using message-passing with
their directly attached neighbors.

We assume that all modules share the same 3D coordinate
system and each module stores its coordinates in its memory.
This can be done efficiently in lattice-based modular robots,
as explained in [11], [12]. The algorithm is not affected
by the orientation of the coordinate axis. However, for
simplicity, we use the orientation of the axis and the direction
notation as shown in Fig. 2. A Box B is defined by two vec-
tors Cmin(xmin, ymin, zmin) and Cmax(xmax, ymax, zmax).

X(x, y, z) ∈ B ⇔


xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

zmin ≤ z ≤ zmax

(1)

Let M denote the set of modules. A straight sequence
of connected modules in one direction is referred to as a
line of modules. The initial step of the algorithm involves
determining the values dm for every module m ∈ M . The
value dm represents the rank of the module in the line (from
1 to n), moving ’backward’ along the

−→
Y axis starting from

module m, until an empty position is reached.
To compute dm, the algorithm proceeds as follows (see

example Fig. 2a) :

1) Initially, modules without an attached neighbor in the
backward direction must set d to 1.

2) Then, they send a message, denoted as
SET D MSG(d), to their front neighbor. Upon
receiving the message, the module sets its d value

Algorithm 1: Distributed shape recognition - Part 1
input: (x, y, z), neighbors

1 Initialization:
2 if empty((x, y + 1, z)) then
3 send SET D MSG(1) to neighbor((x, y − 1, z))

4 Msg Handler SET D MSG(dsent):
5 d← dsent + 1
6 if ¬empty((x, y − 1, z)) then
7 send SET D MSG(d) to neighbor((x, y − 1, z))
8 else
9 if isRmin then

10 if ¬empty((x+ 1, y, z)) then
11 send FIND W MSG(id, d) to

neighbor((x+ 1, y, z))
12 else
13 w = 1
14 Notify front line of w
15 if ¬empty((x, y, z + 1) then
16 send FIND H MSG(id, d, w) to

neighbor((x, y, z + 1))
17 else
18 myBox =

({x, y, z}, {x+ w − 1, y + d− 1, z + h− 1})



Algorithm 2: Distributed shape recognition - Part 2

1 Msg Handler FIND W MSG(id, dsent):
2 if d < dsent then
3 send SET W MSG(id, dsent, 0) to

neighbor((x, y − 1, z))
4 else
5 if empty((x+ 1, y, z)) then
6 w ← 1
7 Notify back line of w
8 send SET W MSG(id, dsent, w) to

neighbor((x, y − 1, z))
9 else

10 send FIND W MSG(id, dsent) to
neighbor((x+ 1, y, z))

11 Msg Handler SET W MSG(id, dsent, wsent):
12 if dsent ≥ d then
13 w ← wsent + 1
14 Notify back line of w
15 if myid = id then
16 if ¬empty((x, y, z + 1)) and isCmin) then
17 send FIND H MSG(id, d, w) to

neighbor((x, y, z + 1))
18 else
19 myBox = ({x, y, z}, {x+ w − 1, y + d− 1, z})
20 else
21 send SET W MSG(id, dsent, wsent + 1) to

neighbor((x, y − 1, z))

22 Msg Handler FIND H MSG(id, dsent, wsent):
23 if w < wsent ∨ d < dsent then
24 send SET H MSG(id, 0) to neighbor((x, y, z− 1))
25 else
26 if empty((x, y, z + 1)) then
27 h← 1
28 send SET H MSG(id, h) to

neighbor((x, y, z − 1))
29 else
30 send FIND H MSG(id, d, w) to

neighbor((x, y, z + 1))

31 Msg Handler SET H MSG(id, hsent):
32 h← hsent + 1
33 if myid = id then
34 myBox =

({x, y, z}, {x+ w − 1, y + d− 1, z + h− 1})
35 else
36 send SET H MSG(id, h) to

neighbor((x, y, z − 1))

as the received value plus one and, subsequently,
forwards the message to its front neighbor.

3) This process continues until an empty position is
encountered in the front direction (cf. Algorithm 1
lines 1-7).

Once dm is set, module m can determine locally if it is
Rmin. We denote as dleft the d value of the module on the
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Fig. 2: Distributed computation of the boxes on 2D. a)
Computation of vertical distance d. b) Election of Cmin cells
and computation of w. c) Boxes covering the plane using
Cmin cells colors.

left of the module m. Then, a module is Rmin if it verifies
the following condition:

empty(front) ∧ (d ̸= dleft ∨ ¬empty(left+ front)) (2)

Next, we define wm for each module m in the set M as
the maximum number of connected vertical lines with the
same or higher height toward the right (cf. Fig.2b).

We can express wm by the following rule:

wm = max
n connected

(ym = yn ∧ (di ≥ dm∀i ∈ [m,n])) (3)

Once the value of wm is determined, we can refer to
the values of d and w of the module at the bottom of
module m as dbottom and wbottom, respectively. We also use
Rmin(bottom) to indicate whether the bottom module is at
an Rmin position. Then a module m is at a Cmin position
if it verifies:

Rmin∧¬(Rmin(bottom)∧d = dbottom∧w = wbottom) (4)

To determine wm for all modules m in the set M ,
the following distributed process is employed: each mod-
ule located in a position Rmin sends a message called
FIND W MSG(id, dsent) to its right neighbor (cf. Algorithm 1
lines 9-10). As the message is forwarded, if the mes-
sage reaches a module n with dn < dsent, the mod-
ule n responds to the sender on its left with a mes-
sage SET W MSG(id, dsent, wsent = 0). Otherwise, when it
reaches a module n that lacks a right neighbor, it assigns wn

the value of 1 and responds to the sender on the left using



a message denoted as SET W MSG((id, dsent, wsent = 1).
Upon receiving this message, module r sets its wr value
as the received value plus one if and only if dsent ≥ dr to
ensure that the line at the back of module r can accommodate
dsent modules (cf. Algorithm 2 lines 1-19).

From each Rmin module, we use local dm and wm values
to define a rectangle (Rmin, Rmax) = ({xm, ym}, {xm +
wm−1, ym+dm−1}). This approach enables the creation of
a vertical decomposition consisting of overlapping rectangles
on each 2D layer along the

−→
Z axis.

The next step consists in determining the height h, which
represents the maximum number of rectangles on top of
the one associated to Cmin. Consequently, this results in
the formation of overlapping boxes. To accomplish this,
the module located at Cmin initiates a message called
FIND H MSG(id, dsent = d,wsent = w). This message
serves to count the number of top neighbors along the

−→
Z

axis that meet conditions d ≥ dsent and w ≥ wsent (cf.
Algorithm 2 lines 16-19).

Upon receiving the FIND H MSG message by a module
r, if the values dr > dsent or wr > wsent, it replies
with a message SET H MSG(id, h=0) to the sender at
the bottom. Otherwise, if a module r lacks a top neighbor, it
responds by sending a message labeled SET H MSG(id,
h=1) to the sender at the bottom. Upon receiving the
SET H MSG message, the receiver increments the received
h value by one and forwards the message to its bottom
neighbor until reaching the initiator (cf. Algorithm 2 lines
22-36).

The algorithm operates asynchronously. Therefore, a mod-
ule can receive a FIND W MSG before its d value is defined
or a FIND H MSG before the d and w values are defined.
To solve this, if a module receives a message and the values
required for its handling are not yet defined, the module
stores the received message in its memory and handles it
once the values are set.

When module m at a Cmin receives its hm value it can set
its Box as ({xm, ym, zm}, {xm+wm−1, ym+dm−1, zm+
hm − 1}). The algorithm terminates when all modules at a
Cmin position have determined their boxes.

Fig. 3 shows an example of overlapping boxes. It can be
seen that the resultant boxes may differ according to the
orientation of the coordinate axis. However, in both cases
a) and b) the resultant boxes cover all the configuration.
Moreover, having an overlapping box results in boxes that are
completely inside a bigger one, such as the blue and purple
in Fig. 3 (a) and the yellow in Fig. 3 (b). When multiple
boxes must be stored, they can be aggregated by neglecting
the boxes that are inside another one.

IV. COMPLEXITY ANALYSIS

The complexity in terms of the number of boxes has a
lower bound of Ω(1) in the case of a cubic configuration.
As the shape becomes increasingly irregular and incorporates
holes, the complexity approaches an upper bound of O(n)
where n is the number of modules.

x

y

x

y

a) b) c)

Fig. 3: Three basic example: a) A basic shape defined by 5
overlapping boxes. b) The same shape but rotated producing
4 boxes only. c) The same shape computed on VisibleSim.

Next, we assess the time and communication complexities
of the shape recognition algorithms presented in Section III.
The number of messages used to find the boxes is propor-
tional to the number of modules. To find the the values of d
and w of each module on a line along the

−→
X and

−→
Y axes,

O(n) messages are exchanged, where n is the number of
modules. Then, to find the height of each box, the box’s
corner Cmin initiates a message that passes to the line of
modules along the

−→
Z . The number of these messages is also

bounded by O(n). Therefore, the communication complexity
can be expressed as O(n).

As for the time complexity, the search for boxes is done
in parallel. Setting the values of d and w requires O(D +
W ) time, where D and W are the depth and width of the
entire configuration. The time complexity to search for the
height h of the boxes is O(H), where H is the height of
the configuration. Consequently, the overall time complexity
can be expressed as O(D + W + H). Thus, it depends on
the geometry of the configuration.

V. EXPERIMENTS AND ANALYSIS

We implemented the algorithm using VisibleSim, a dis-
crete event-based simulator for distributed modular robotic
systems that support Blinky Blocks [13]. Fig. 3c shows a
VisibleSim capture of the simulated example of the box
cover shown in Fig. 3. Blinky Blocks system is a modular
robotic system made up of centimetre-size blocks that are
attached to each other via magnets in a square cubic lattice.
Each block is a cube of roughly 40mm, with processing,
storage, and communication capabilities. Each Blinky Block
communicates through serial links with its directly connected
neighbors by sending packets with a payload size of 227
bytes.

The objective of the experiment is to compare the shape
recognition algorithm with a coordinates collection method
in order for modules to send their current shape to a computer
to be used by an interactive CAD software. The coordinates
collection method consists of sending the list of coordinates
to the root of a breadth-first spanning tree connected to
the CAD computer. Each module sends three bytes for its
coordinates x, y and z. The leaf modules start by sending
their coordinates. The coordinates are merged at intermediate
modules before being sent to their parent in the tree when
the data are received from all their children modules or the
payload is totally used. Using the shape recognition method,



(a) (b) (c) (d)

Fig. 4: Four configurations examples captured from VisibleSim. (a) Cube configuration with 1000 Blinky Blocks. (b) Ball
configuration with radius 8 (833 Blinky Blocks). (c) Mug configuration with 4019 Blinky Blocks. (d) Thinker configuration
with 5814 Blinky Blocks.
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Fig. 5: Mean number of messages and mean number of bytes sent per module on the four configurations examples.
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Fig. 6: Time for receiving the whole current shape by the root.

once a box is found, the module at Cmin sends the box
information to the root also via a breadth-first tree.

We have done the comparison on four different con-
figurations shown in Fig. 4 with different geometries and
characteristics:

1) Cube: A simple and regular connected cubic shape.
One box is required to cover the whole configuration.

2) Ball: It contains modules whose distance from the
center is less than or equal to a given radius [14].

3) Mug: A mug shape that exhibits a few irregularities.

4) Thinker: The thinker statue defined by a low resolution
mesh.

We evaluated the mean number of messages sent per
module, the mean number of bytes sent by a module, the
time taken to complete the shape recognition, and the ratio
between the number of modules and the number of boxes
while increasing the sizes of the configurations.

Fig. 5 shows the mean number of messages and the mean
number of bytes sent by a module on the four configurations.
The mean number of messages sent by a module executing
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Fig. 7: Ratio between the number of modules and the number of boxes.

the shape recognition method is larger than the coordinates
collection on the four configurations. This is due to the
communication required to find the dimensions of the boxes.
As for the coordinates collection method, each module must
send one message to its parent that contains the coordinates
of its subtree, but due to the limitation of the packet size,
when a packet is filled, it is directly sent to the root, which
increases the number of messages sent by a module. More
packets will be full as the size of the configuration increases.
Regarding the mean number of bytes sent by a module, the
sizes of the messages exchanged by the shape recognition
algorithm to find the boxes are limited. The maximum size
of a used message is 6 bytes which contain the coordinates of
the Cmin and Cmax of the box. For the coordinates collection
method, the mean message size increases with the size of
the configuration. The maximum packet size can go up to
its payload capacity.

We conducted an experimental study on Blinky Block
hardware that showed that the time t required per message is
affected by the message length l (number of bytes contained
in a message) and can be modeled with the linear function:
t = 0.08935× l+1.516. Therefore, the global executed time
is affected by the number of exchanged messages and the
length of the messages. Fig. 6 shows the time taken by both
methods. Although the shape recognition method requires
more messages, it can be seen that the shape recognition
method is more efficient in time in the four configurations
due to the increase in the length of the messages used in
the coordinated collection method as the configuration size
increases. The time taken by the shape recognition method
is independent of the number modules. It depends on the
geometry of the configuration as explained in Section IV.

Fig. 7 illustrates the ratio between the number of modules
and the number of boxes in different configurations. The
cube shape represents the most favorable scenario, as all
modules can be accommodated within a single box. As the
configuration becomes more irregular, such as in the case of
the thinker configuration, the ratio decreases. This decrease is
a consequence of the need for additional boxes with smaller
dimensions to accommodate the irregularities present in the

structure.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a new shape recognition
algorithm that allows modules in a lattice-based modular
robot to discover their current shape. The modules search
for overlapping boxes to cover the whole configuration. The
union of these boxes gives the current shape. We evaluated
the algorithm in simulation on Blinky Blocks on different
configurations with different geometrical properties and com-
pared it with a coordinates collection method to retrieve
the current shape of the ensemble and send it to a central
entity. The results show that the shape recognition method
outperforms the coordinates collection in time efficiency
while using a smaller memory footprint.

In the future, our work will focus on developing a dynamic
version of the algorithm that allows the modules to keep
track of their shape in real time. We also aim to work
on a distributed aggregation method for boxes to minimize
their number by ignoring boxes that are fully included in
larger ones. Plus, we will investigate the possibility to use
other geometrical shapes, in addition to the simple cubic box
shape which reduces the number of elements that cover the
configuration.
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