

in-situ SEM Robotic-based Selection, Manipulation and Characterization of 3D Microscale Particles

R. Hannouch, <u>**G. Colas**</u>, J-Y. Rauch, V. Reynaud, J. Agnus, O. Lehmann, F. Marionnet and C. Clévy

Cédric Clévy, Professor, FEMTO-ST, Franche-Comté University

[RA-L. 2021]

Context & motivations of the works

Context & motivations of the works

=> Surfaces coated with MoS2

Nano-tribology

[S. Pajovic, Adv Eng Mat (2017), P. Serles Adv Mat Inter (2020), T. Arif Adv Mat Inter (2019) & Trib Int (2021)]

Molecular dynamics

[Colas, ESMATS (2017), P. Serles Adv Func Mat (2022)]

Macro-tribology

Galet Espèces adsorbées Substrat Galet Espèces desorbées Film de tr corps Substrat Particules de 3^{im} corps Film de tr corps Film de tr corps Film de tr corps Galet Film de tr corps Film de tr corps

[G. Colas, et al Tribo Int (2013), Wear (2013) & (2015), ACS Appl Mat Interf (2018)]

Indendation ; AFM based bending test

[G. Colas, et al Jour Phys Solids (2019]

Mechanical properties of 3rd bodies & particles : missing

Context & motivations of the works

=> <u>Surfaces coated with MoS2</u>

Macroscale Friction tests

SEM analysis / particle selection on the ball

2 different type of 3rd body particles from MoS2 & MoS2+Ta

MAIN TOOLS AND TIPS

MAIN ROBOTIC SYSTEM USED IN THE SEM

5 DOF **sample holder stage** 3P2R (Precision of 1µm, 0.1 m°) Grain platform holding (ZEISS)

6 DOF **SEM Robot** 3P3R (Precision 10nm, 1 μ°) Long ranged manipulation (SmarAct)

3 DOF Nanopositioner 3P (Precision 2 nm) Fine manipulation (Piezosystem jena)

Objective and Strategies

Achieve a first quantification and manipulation of intricate 3D structured micro scaled particles in-situ (SEM), directly from the friction track vincinity

Particles resulting from friction of MoS_2 grains based coatings.

- 10 μm < lateral size < 25 μm
- $3 \mu m < thickness < 10 \mu m$

Challenges:

- Sequence of tasks (particle selection, isolation, grasping, testing)
- Grains are 3D with complex internal structure
- Force & displacements to be measured but what range?

Approach:

- Set of tools and methods that can be combined into a single sequence inside of a SEM
- Comparison of raw materials MoS2 and MoS2/Ta

ALGORITHM TO EVALUATE FOR THE COMPONENT DEFORMATION

In the range of loading force

- ⇒ MoS2 based particles is stiff and elastic
- ⇒ MoS2+Ta particles demonstrates different stiffness but always plasticity
 - ⇒ Granular ; cracks and flows

COMPARING THE DIFFERENT MATERIALS

3rd body MoS₂ particle

Very high strength of the third body created from pure MoS₂.

3rd body MoS₂-Ta particle

Cracks ; deformation ; destruction

> Fully consistent with microgripping experiments

Conclusion

=> Surfaces coated with MoS2

Macroscale Friction tests

Micro-Nanoscale microgripper compression testing in-situ

Ejected particles

3^{ed} Body MoS₂+Ta

12

Conclusion

- Robotized system where tested and adapted to successfully work in-situ (SEM).
- Automated macro-scale movements and microanalysis were successfully conducted.
- A teleoperated manipulation for fine micro-scale movement/gripping were successful.
- The first semi-quantification and manipulation of the selected grains in the micro scale were successfully done in-situ (SEM environment).

Future perspective

Using the Digital Twin that could facilitate the safe and accurate positioning of the robotic systems in different scales, and fully automate the categorizing operation.

Thanks for your attention

in-situ SEM Robotic-based Selection, **Manipulation and Characterization of 3D Microscale Particles**

R. Hannouch, G. Colas, J-Y. Rauch, V. Reynaud, J. Agnus, O. Lehmann, F. Marionnet and <u>C. Clévy</u>

Cédric Clévy, Professor, FEMTO-ST, Franche-Comté University

[J. Vac. Sc. 2018] [Opt. Cont. 2022] [Adv. Mat., 2021] Part of the **DyNaBot** project, funded by the ANR.

[RA-L. 2021]

anr