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Kerr-induced instabilities in zeroth-order Bessel beams with low focusing angle prevent the forma-
tion of longitudinally uniform plasma rods in the filamentation regime. These instabilities lead to
the oscillation of the beam on-axis intensity via the generation of new spatial frequencies by a first
stage of spectral broadening followed by a second stage of four-wave mixing. Here, we numerically
demonstrate an efficient approach to drastically reduce the instabilities due to the second stage. It
is based on shaping the longitudinal intensity profile with spatio-spectral components in opposition
of phase to the Kerr-generated ones via an iterative approach. Zeroth-order Bessel beams with a
longitudinal flat intensity plateau can be generated in a few iterations in the nonlinear regime. This
is performed in both monochromatic and pulsed femtosecond regimes.

1 Introduction

Bessel beams are a special class of diffraction-free beams which are solutions to Helmholtz equation in
free space 1 with a longitudinally invariant intensity profile. A zeroth-order Bessel beam is characterized
by a cylindrically-symmetric amplitude profile ∼ J0(k

0
rr) and has a Fourier spectrum centered around

the spatial frequency k0r = 2π/λ sin θ. λ is the laser wavelength and θ is the cone angle, i.e. the
angle of the corresponding geometrical rays with the optical axis 1, 2. Bessel beams can be also called
conical beams, because of the conical structure of their wavevectors. Since an ideal Bessel beam carries
infinite energy, it cannot be realized physically. Approximate, finite-energy versions of Bessel beams
were introduced, such as Bessel-Gauss beams. In the linear regime, the spatial spectrum of the beam
determines the evolution of the on-axis intensity along the propagation. A top-hat ring distribution of the
spatial frequencies, as in reference 1 produces a Bessel beam with strong on-axis oscillations because
of the sharp edges of the kr distribution. In contrast, a Gaussian spectrum produces the Bessel-Gauss
beam that can be produced with a perfect axicon 2. Because of the properties of the Fourier transform,
the spectral width is inversely proportional to the Bessel beam length 2, 3. Importantly, it is possible to
shape the spatial spectrum and fully control the on-axis intensity pattern, such as generating a flat plateau
or a linear ramp over a fixed distance 4. These beams, in the linear regime, have found a wide range of
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applications such as imaging 5, or optical trapping 6.

Of particular interest, Bessel beams can also preserve the propagation-invariant property even in
the nonlinear and filamentation regimes 7. This invariance is very advantageous in high-power laser
applications such as materials processing 8–13, terahertz radiation generation 14, 15, plasma waveguide
generation 16, electric discharge guiding 17 where long and uniform laser-generated plasma rods are
required. However, this steady filamentation regime can only be obtained for specific experimental
conditions 7 where nonlinear absorption is high enough.

In the case of low focusing conditions, Bessel beams sustain nonlinear instabilities, induced by
Kerr nonlinearity, which lead to the modulation of their central core intensity along propagation 18–20.
The instability is due to the generation by the Kerr effect of two spatial frequencies that interfere with
the original Bessel beam.

References 19, 21 have shown that instability grows in two stages. In the first stage, the beam
undergoes an initial Kerr spectral broadening, leading to the generation of an axial wave ”seed” (defined
at a spatial frequency kr ≈ 0). In the second stage, this axial wave seed intervenes as a signal wave in
Kerr-induced four-wave mixing (FWM) processes, leading to its amplification and the generation of an
outer ring in the frequency space at spatial frequencies around kr ≈

√
2k0r .

The nonlinear instabilities are highly detrimental for all applications requiring uniform plasma
rods. Here, we aim to reduce their growth to obtain a Bessel beam with uniform on-axis intensity over a
long propagation distance. Recently, we have shown that these instabilities can be reduced if the Bessel
beam is progressively formed inside the Kerr medium and explained results in terms of spectral phase
distribution of the input beam 22. The best intensity growth profile found is the parabolic increase. Yet
this technique is efficient, we show in 21 that this method only allows damping the nonlinear growth of
the first stage. The nonlinear growth still occurs for longer propagation distances. In Fig. 1(a), the blue
solid curve is the target on-axis intensity profile with a parabolic increase followed by a flat intensity
plateau. The nonlinear regime is shown in Fig 1(b) (solid blue curve), and we see that oscillations start
growing on the plateau. (We note that the amplitude of these oscillations is already several times less than
the oscillations generated in a Bessel-Gauss beam with comparable intensity and length). The parabolic
increase of intensity reduces the efficiency of the first nonlinear stage, i.e. the spectral broadening. It
leads to inefficient FWM interactions for a relatively short propagation distance. However, if the Bessel
extent is relatively long, FWM interactions will become more efficient and nonlinear instabilities will
thus be inevitably enhanced.

In this paper, we report a concept that allows us to directly decrease the efficiency of FWM in-
teractions, so as to maintain a uniform intensity plateau even in the nonlinear regime. Our aim is to
ensure the most uniform beam before other nonlinear effects arise, such as nonlinear ionization, i.e.,for
intensities typically below ∼ 50 TW.cm−2in fused silica. As discussed above, nonlinear oscillations of
the on-axis intensity of Bessel beams are the result of the interference of the input conical beam with the
self-generated spectral components 20, and specifically the outer ring with spatial frequency

√
2kr0. Our
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Figure 1: Comparison of initial (blue solid lines) and optimized (red dashed lines) Bessel beams. (a)
targeted on-axis intensity profiles ITargetz : the initial profile is in the form of parabolic ramps on both sides
of a flat plateau and optimized profile after six iterations (see main text). (b) Evolution of the central core
intensity along propagation (on-axis intensity) in the Kerr nonlinear regime described by Eq.1; (Middle
column) Comparison of the input spectral distribution (c) and input phase (d) of Bessel beams with the
initial and optimized profiles. (Third column) Evolution along propagation of the spectral intensities (in
dB) as a function of the spatial frequency kr/kr0 for (e) the initial beam and (f) the optimized beam.

approach is based on linearly creating, by beam shaping, a spatial frequency component in opposition of
phase to the Kerr-induced one. In direct space (by opposition to the spatial frequency space), the input
on-axis intensity profile of the new Bessel beam exhibits oscillations in the linear propagation regime.
We will use an iterative approach to adjust the phase and amplitude of these oscillations to match those
produced by Kerr nonlinearity.

2 Algorithm

To implement our approach, we start by simulating the nonlinear propagation of a Bessel beam with a
flat intensity plateau and recording the profile of the corresponding on-axis intensity in the nonlinear
regime. Then, we design a modified Bessel beam with an optimized on-axis intensity profile: it has the
same form as the original, but presents an oscillating behavior with the same oscillation period as that
obtained in the nonlinear regime in opposition of phase. For the beam shaping, we use the approach
described in Ref. 23, which establishes the link between the input profile with a target on-axis intensity
I(z). Then, we simulate the nonlinear propagation of this axially-shaped Bessel beam. Actually, a
complete suppression of these nonlinear intensity oscillations cannot happen using a single shaping step.
This is because a variation in the on-axis intensity leads to a variation in the intensity of Kerr-generated
waves, affecting the resulting nonlinear modulation. In this regard, we propose an iterative algorithm for
repeating the above-described steps until the depth of nonlinear intensity modulation is decreased under
a chosen threshold. We will first describe our approach using the monochromatic approximation and
then extend our work to ultrafast pulses.
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Our numerical simulations are based on nonlinear Schrödinger equation developed for cylindrically-
symmetric coordinate as in Ref. 22 for monochromatic approximation:

∂A

∂z
=

i

2 k
∆⊥A+ i k

n2

n0
|A|2A (1)

where A ≡ A(r, z) is the envelope of an electric field E = Re[Aexp(−iω0t+ i k z)]; ω0 = 2πc/λ and k
denote the angular frequency and wavevector defined for wavelength λ. ∆⊥ is the transverse Laplacian,
r =

√
x2 + y2, t and z are the radial, temporal and propagation coordinates.

The input spatial envelope A(r, z = 0) is computed using the approach of Ref. 23. We evaluate
the spatial spectrum Ã(kr, z = 0) corresponding to a given on-axis intensity profile ITargetz according to:

Ã(
√

k2 − k2z , z = 0) =
1

kz

∫ +∞

−∞

√
ITargetz exp [i (kz0 − kz) z] dz (2)

where kz =
√
k2 − k2r is the longitudinal spatial frequency and kz0 = k cos(θ) (θ is the cone angle i.e.,

the angle of the wavevectors with the optical axis). Then A(r, z = 0) is computed using inverse Hankel
transform of Ã(kr, z = 0).

The results shown in Fig. 1 are obtained for an on-axis intensity plateau of Imax = 14.5 TW/cm2.
The other numerical parameters are presented in table 1 and correspond to propagation in fused silica.

Our optimization procedure is briefly described in Algorithm 1 where ITargetz and INL
z are respec-

tively the target intensity profile (linear regime) and its corresponding nonlinear on-axis intensity profile.
Both are defined for a given iteration ”j”. The goal of this algorithm is to minimize the nonlinear on-axis
modulation depth, denoted Ierrz , which characterizes the growth of new spectral components. We define
this parameter as Ierrz = max(INL

z )−min(INL
z )

2mean(INL
z )

. We set a minimal value η of this parameter under which the
iterations end. Note that, we minimize Ierrz over a limited propagation range, i.e over the distance where
we target obtaining a flat intensity plateau.

The target on-axis intensity profile ITargetz is optimized after each iteration: it preserves the same
profile as the initial one while its oscillation depth is changed to be the opposite of that obtained in the
nonlinear regime of the previous iteration. In fact, for the algorithm to converge, we do not correct the
full amplitude of the oscillations, but instead, we correct only a fraction α of the difference between
target and nonlinear regime intensity profiles (0 < α < 1). Here, we worked with typically α < 0.3.

Table 1: Numerical parameters used in simulations.
λ (µm) θ (◦) n0 n2 (m2/W)
0.8 4 1.46 2.48 10−20
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Algorithm 1 Optimization of on-axis intensity profile

1: procedure OPTIMIZ(ITargetz , INL
z , η) ▷ correcting ITargetz using INL

z

2: for j = 1 : Nj do ▷ Nj maximal number of iterations
3: INL

z (j)← nonlinear propagation of ITargetz (j)

4: Ierrz = max(INL
z )+min(INL

z )
2mean(INL

z )
▷ in high-intensity z-range

5: if Ierrz > η then ▷ η target minimal error rate
6: ITargetz (j + 1)← ITargetz (1)[1 + α(ITargetz (1)− INL

z (j))]
7: ▷ ITargetz (j) & INL

z (j) normalized; 0 < α < 1
8: else save ITargetz (j)
9: return

10: end if
11: end for
12: end procedure

3 Results in the monochromatic approximation

Figure 1 shows a first set of simulation results comparing the initial and optimized beams after six
iterations. We choose a minimal error rate η of 5%, which we aim to obtain in the flat-top propagation
zone of the initial target profile. Optimized target profiles are computed after each iteration for a fixed
value of α = 0.25. In Fig.1(a), the solid blue line is the initial, non-optimized intensity profile, which
consists of parabolic rise, flat-top, and parabolic decay. The other profile (red dash line) is the optimized
profile, i.e. exhibiting small on-axis oscillations that were engineered in the optimization process. The
nonlinear propagation of these two Bessel beams is shown in Fig.1(b). It is apparent that the nonlinear
modulation is significantly reduced for the optimized Bessel beam. The maximal oscillation depth has
been spectacularly decreased from 17.2 % to only 0.2 % of the intensity plateau. This corresponds to a
reduction of 99 % of the oscillation amplitude on an already optimized profile.

Figures 1(c) and (d) show respectively the spatial spectral amplitude and phase of the two input
profiles. While the general amplitude spectrum is mostly unchanged, the inset shows the addition of
a spectral component at kr ≈ 1.5kr0 in the amplitude distribution of the optimized beam. This is the
component that cancels the effect of the Kerr-generated ones in the FWM process. Figures 1(e) and (f)
show respectively the evolution of initial and optimized beam spatial spectra with propagation distance.
While the axial wave and outer ring are clearly visible in the initial case from 4000 µm propagation
distance, they have disappeared below -40 dB for the optimized case.

In Fig. 2 we show another example with a higher value of the intensity plateau Imax for which
Kerr-induced processes are more efficient than for lower intensities. With the same error rate, fifteen
iterations are needed to decrease the error below the target value. We show a sample of the different on-
axis intensity profiles in the nonlinear regime to show the progressive reduction of the oscillations. Here,
we used a varying value of α such that it is decreasing after each iteration in the range [0.145 − 0.28].
Note that the target error rate could not be obtained in case a fixed value of α was used even for a higher
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Figure 2: Optimization of the on-axis intensity profile of a Bessel beam with higher intensity plateau
Imax = 16.5 TW/cm2) in fifteen iterations to obtain nonlinear modulation depth lower than the target
value η = 5 %. The plot shows the intensities of the nonlinear regime for five cases. For better readabil-
ity, the plots were vertically spaced by 6 TW.cm−2, and only three of 14 intermediate steps are shown.
The progressive reduction of the oscillations is apparent.

number of iterations. These results show that as the Kerr nonlinearity increases, it becomes difficult to
compensate for the growth of nonlinear instabilities.

We have also considered a different initial on-axis profile, as in the case of an initial linear ramp
before the flat plateau. Using the same parameters as Fig. 1, the corresponding Bessel beam undergoes
strong nonlinear instabilities leading to a modulation depth Ierrz reaches about 400 % 22. Our optimization
decreases it by a factor more than 10, to about 35 % (Figure not shown), but we cannot decrease it
further down. Hence, for overall optimal results, it is preferable to start the optimization from an on-axis
intensity profile, for which Kerr instabilities only grow from the second stage.

4 Extension to the femtosecond pulsed regime

Our approach can also be extended for ultrashort pulses. To establish a proof-of-principle, we use the
same algorithm described above and define the on-axis intensity Iz as the maximal intensity in the time
domain. (Note that in the case of pulse splitting, the maximal intensity will temporally shift from the
central time of the pulse). We define the input spatio-temporal spectrum as follows:
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Ã(
√

k2 − k2z , ω, z = 0) =
exp

[
−i (ω − ω0)

2 t2p/4
]

kz(ω)
(3)

×
∫ +∞

−∞

√
ITargetz exp [i (kz0 − kz) z] dz

where we consider an input Gaussian temporal envelope with a radius tp defined at 1/e of its maximal
amplitude.
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Figure 3: Proof of principle extension to a pulsed regime. a) Optimization of the peak temporal on-
axis intensity profile of a modified Bessel beam (Imax = 16.5 TW/cm2) in two iterations to obtain
nonlinear modulation depth lower than η = 5.2 %. (solid line) initial beam and (dashed line) final
iteration. Comparison of their respective (b and c) spatio-temporal spectra at a propagation distance of
z = 6000µm.

In our simulations, we consider a femtosecond Bessel beam (tp = 105 fs) with the same parame-
ters as in Fig. 2. We compare in Fig. 3(a) the temporal peak intensity along propagation for the initial
and optimized ITargetz . We obtain a minimal error rate η = 5.2% after only two iterations. Figures 3(b)
and (c) show respectively the spatio-temporal spectra of the initial and optimized pulse at the end of the
propagation (z = 6000 µm). We observe that the spectral broadening of both the axial wave and outer
ring is substantially reduced in the optimized case.

5 Conclusion

To summarize, we reported a proof-of-principle method to reduce nonlinear instabilities in both monochro-
matic and pulsed Bessel beams along their propagation. Our method is based iteratively on compensating
for the growth of the Kerr-induced spatio-spectral component around ∼

√
2kr0 by adding to the input

beam an identical component such that is in opposition of phase. This is performed via on-axis intensity
shaping that is experimentally possible using the approach demonstrated in Ref 4. Although not shown
here, we have also confirmed the validity of the approach for ultrashort Bessel beams even when nonlin-
ear absorption is considered. Obviously, increasing the number of control parameters, such as allowing
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the independent shaping of all temporal frequencies is expected to provide even better results. Further
investigations are worth performing to improve the optimization process and control of Kerr-induced
effects encountered in the time domain (such as self-phase modulation), also in the presence of time-
delayed Raman contributions to the nonlinear Kerr effect. The essence of this control approach could
be further enhanced using machine-learning strategies 24. We believe our approach will increase the
applicability of Bessel beams in many fields of applications and can be extended to other beams.
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