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Abstract

Primary hyperparathyroidism usually involves surgery. In this situa-
tion, pre-operative localization of aberrant Parathyroid Glands (PGs) is
crucial. One of the existing approaches, Nuclear Medicine is the widely
used procedure. It provides PINHOLE and Low Energy High-Resolution
(LEHR) images through the injection of two radio-elements, technetium
(99mTC-MIBI) and iodine (123I). After that, the physicians perform a
manual normalization and subtraction of both images for PGs detection
which is time-consuming. This paper proposes an automatic detection
of the PGs by the combination of statistical normalization and artificial
intelligence for the subtraction of 99mTC-MIBI and iodine 123I images.
The proposed methodology is applied to PINHOLE images from 88 ret-
rospective, single-center studies. The obtained results achieved a mean
correlation of 0.95 compared to the physician results.

1 Introduction

Primary HyperParaThyroidism (PHPT) is a common endocrine disease that
involves high levels of parathyroid hormone and calcium [1]. The typical size
of Parathyroid Glands (PGs) is 3 – 4 mm, and most imaging techniques are
unable to detect them [2]. The location of (PGs) is not generalized across all
patients, they can be found anywhere between the upper mediastinum and the
mandibular angle [2]. Neck ultrasound and dual-tracer or dual-phase parathy-
roid scintigraphy are complementary techniques used to diagnose parathyroid
adenomas pre-operatively [3]. Nuclear medicine (NM) improves diagnosis accu-
racy for physicians [4].

NM for PGs detection is an imaging technique using dual tracer parathyroid
scintigraphy which consists of injecting 123I (iodine) which fixes the thyroid
cells, and 3 hours later injecting 99mTc-MIBI which fixes both thyroid and
parathyroid cells. Then, after 5 minutes, PINHOLE and LEHR images of both
123I and 99mTc-MIBI injections are collected using a gamma camera system.

Once the images are stored, physicians start extracting the Region Of In-
terest (ROI), which is the thyroid, from the 123I image [5]. After the ROI
definition, a subtraction between the 99mTc-MIBI and 123I images is performed
which results in a unique final image containing only the PGs [5, 6]. In general,
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Figure 1: Proposed methodology.

the subtracted image is not optimal and is adjusted until the physician considers
that the PG is detected. This process is 100% manual, and time-consuming.
ROI and contours are usually obtained by thresholding at 50% of the maximum
pixel from 123I image. The obtained contour is applied to the 99mTc-MIBI im-
age. Moreover, a normalization factor is computed to normalize the images.
Finally, the subtraction is performed and adjusted [5, 6, 7].

In this paper, a fully automatic process for PINHOLE image subtraction
using statistical normalization and Artificial Intelligence (AI) to predict a Sub-
traction Factor (SF) is proposed. The output of the methodology consists of a
subtracted image provided to the physician for diagnosis.

The remainder of the paper is organized as follows: Section 2 details our
contribution. Section 3 specifies the case study, presents and discusses the
results. Section 4 is the conclusion of this work.

2 Proposed methodology

This section presents the steps of the proposed methodology for automatic PGs
detection. First, image pre-processing for image normalization is presented in
Section 2.1 and investigates three techniques. Then Section 2.2 details the
introduction of AI for PINHOLE image subtraction.

2.1 Image pre-processing

The aim of this step is to normalize the images, it consists of adjusting the pixel
values of an image to a standardized range. In our case, the range belongs to
[0,1]. This helps ensure that the images have consistent intensity. We propose
three different normalization techniques: local, global, and hybrid normaliza-
tion. In each technique, we apply three image normalization methods: Z-Score,
Power Law, and MinMax [8].

2.1.1 Local normalization

In this technique, the objective is to normalize every image locally. For each pa-
tient’s image, the image is normalized according to its particular characteristics.
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Equations 1, 2, 3 represent Z-Score, Power Law, and MinMax, respectively:

LNIZ−Score =
RIi − µ(RIi)

σ(RIi)
(1)

LNIPowerLaw =

(
RIi

max(RIi)

)γ

(2)

LNIMinMax =
RIi −min(RIi)

max(RIi)−min(RIi)
(3)

where i either the 99mTc-MIBI or the 123I image. LNI the Local Normal-
ized Image, RIi the patient’s raw image, µ(RIi), and σ(RIi) the average and
the standard deviation of the raw image respectively. γ aims at improving con-
trast, its value 0.5, found empirically max(RIi) and min(RIi) the maximum and
minimum pixel values of the raw image.

2.1.2 Global normalization

In this technique, the goal is to normalize every image globally, according to all
patient’s images. The equations of Z-Score, Power Law, and MinMax become
as follows:

GNIZ−Score =
RIi − µ(RI1, ...RIn)

σ(RI1, ...RIn)
(4)

GNIPowerLaw =

(
RIi

max(RI1, ...RIn)

)γ

(5)

GNIMinMax =
RIi −min(RI1, ...RIn)

max(RI1, ...RIn)−min(RI1, ...RIn)
(6)

where GNI the Global Normalized Image and n the number of patients.

2.1.3 Hybrid normalization

After applying local and global normalization, we use the normalized images to
compute a hybrid normalized image. We attribute two weights: w1 and w2 to
LNI and GNI respectively. w1 + w2 = 1. The higher weight is attributed to the
method that performs better. Equation 7 summarizes the hybrid normalization.

HNI = w1 × LNI + w2 ×GNI (7)

where HNI the Hybrid Normalized Image, w1 the weight attributed to the local
normalized image and w2 the one attributed to the global normalized image.

2.2 Image processing

In this step, we aim to apply AI to predict a Subtraction Factor (SF). We note
that for each patient an SF is given by the senior physician who subtracted
the images manually until now. The predicted SF is used to compute the final
subtracted image as shown in Equation 8.

SI = GNIMinMaxj − SF ′ ×GNIMinMaxk
(8)
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where SI the subtracted image, SF ′ the predicted subtraction factor, GNI the
global normalized image with MinMax. The indices j and k reference respec-
tively the 99mTc-MIBI and 123I images.

From Equation 8, SF ′ is predicted using AI models, and for this purpose we
build one AI model with different architectures. We propose first an approach
based on the Convolutional Neural Network (CNN) and the Random Forest
(RF) respectively that aim to automatically and adaptively learn hierarchical
feature representations directly from pixel data and learn for statistical features
respectively. We extract the needed features from the raw images, meaning that
from each 99mTc-MIBI and 123I image we compute kurtosis, entropy, peakto-
peack, and sum of pixels. The aim of adding statistical features to the AI model
is to differentiate between patient images. After image and statistical features
processing, we combine the features extracted by CNN and RF to train a Sup-
port Vector Machine (SVM) for the regression task. The AI model architecture
is represented in Table 1.

Model Architecture
- Conv2D Layer with 32 filters of size 3
- MaxPooling2D Layer of size 2

CNN - Conv2D Layer with 32 filters of size 3
- MaxPooling2D Layer of size 2
- Fully Connected Layer of 128 neurons
Nbr of estimators = 100, criterion = MSE

RF Max depth = None, Min samples split = 2
Bootstrap = True, Max features = 1

SVM Kernel = rbf, degree = 3, C = 1

Table 1: AI model architecture for SF prediction.

The parameters in Table 1 are obtained after applying hyper-parameters
tuning using random searchcv with total epochs of 200, a batch size of 5, and
a learning rate of 0.01.

2.2.1 Train and test split

We split our data into 5 different splits: starting with 50% for both train and
test; to 90% for train and 10% for test. We augment the size of the train by
10% in each split. This gives an idea of how the model is learning, what amount
of data it needs to learn, and if there is a problem with the dataset.

3 Application and results

In this section, we describe the case study and present the obtained results with
discussions in subsections 3.1, 3.2.
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3.1 Case study

88 successive patients addressed for parathyroid adenoma were retrospectively
included in this study (examinations between April 2022 and October 2023).
88 PINHOLE 99mTc-MIBI and 88 PINHOLE 123I images. The image size is
128 × 128 with gray-scale coloring. Figure 2 shows an example of the images.
The left part is a PINHOLE 123I image. The right part is a PINHOLE 99mTc-
MIBI image.

Figure 2: Example of images used in the study.

The mean patient age is 61 years [21-91 years]. 62 female patients [70.45%
female, 29.55% male]. Table 2 shows information on the dataset that we used.

Patients Images Body Patients Patients
number number part age weight

88 176 neck 28-91 49-125kg

Patients Patients Images Acquisition Injections
size gender type dates time
1.48 - 62 F static 04/2022 0h: 123I
1.86m 26 M planar 10/2023 3h: 99mTc

Table 2: Metadata related to the dataset of the study.

3.2 Results and discussion

To evaluate the proposed normalizations, we use the Mean Squared Error (MSE)
metric as shown in Equation 9. The objective is to minimize the MSE.

MSE = µ((LNI99mTC−MIBI −GNI123I)
2) (9)

For hybrid normalization, an empirical test is applied by combining weights.
The shown results (see Table 3) are the combination with w1 = 0.2 and w2 = 0.8
for hybrid normalization which gives the best (lowest) MSE.

Technique Z-score Power law MinMax
Local 417 19 9
Global 72 15 4
Hybrid 74 17 5

Table 3: MSE of the three different normalization techniques.
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We use the combination of global MinMax normalization since it gives the
lowest MSE (see Table 3). To evaluate AI model performance we use the MSE
metric, since the problem is a regression task. We apply it during training and
test. SF is the actual subtraction factor made by the physician.

MSEtest =
1

n

n∑
z=1

(
SFz − SF ′

z

)2
(10)

We also use the Correlation (Corr) metric. After computing the subtracted
image with Equation 8, we measure the linear relationship of the corresponding
pixels in SI with the corresponding pixel in the Manual Subtracted Image (MSI)
by the physician.

Corrn =

∑p
m=0(SIm − SI)(MSIm −MSI)√∑p

m=0(SIm − SI)2
∑p

m=0(MSIm −MSI)2
(11)

where p the number of pixels, m the position of the corresponding pixel
in our subtracted image (SI) and the one generated by the physician (MSI).
During AI model training, the MSE achieves 0%, our interest is in the MSE
during the test phase. Figure 3 shows the MSE values with different train sets.
As explained in subsection 2.2.1 we train our model with different train test
split. We observe that the model is learning more by increasing the amount of
data in the training phase, but also the test MSE achieves 8% with 90% (78
patients) for the training and 10% (10 patients) for the test.
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Figure 3: Test MSE values with different train populations.

To test the robustness of the model, we make sure to have different sets
of data by making 5 shuffles with a split of 90% and 10% for train and test
respectively. It ensures that in each split we get different sets that are fed to
the model. The obtained MSE values in Table 4 confirm the model’s robustness
and its ability to predict the SF with different sets accurately.

Shuffle 1 2 3 4 5
Testset MSE (%) 8.06 8.11 8.16 8.46 8.24

Table 4: MSE of test set.
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Table 5 highlights the Corr values of patients judged doubtful cases (the
physicians couldn’t make the diagnosis). The values are a comparison between
our SI and the one made manually by the physicians (MSI). The values show that
the model can predict accurate SF for difficult cases which generates identical
SI and MSI. We note that the mean Corr of 20% and 10% test sets achieved
0.95 [min:0.836, max:0.994].

Patient 1 2 3 4 5
Correlation 0.992 0.911 0.981 0.923 0.885

Table 5: Correlation with respect to the physician subtraction.

Figure 4 shows an example of a manually subtracted image (left) and our
subtracted image (right) with Corr = 0.973.

Figure 4: Example of image subtraction comparison.

4 Conclusion

This paper presents a fully automatic PINHOLE image subtraction process.
First, PINHOLE images of 99mTc and 123I are normalized using the global
technique which gives the lowest MSE. For the processing step, the normalized
images are injected into a CNN model whereas statistical features are fed to a
RF model, and then an SVM to predict the subtraction factor. This latter is
used to generate a Subtracted Image (SI). AI shows promising results, achieving
an MSE of 8%. Finally, the obtained SI is compared to the one performed by
senior physicians. The average correlation is 0.95. This automatic methodology
gives good results PGs detection and can be provided to physicians for decision-
making.
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