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Abstract

Programmable matter refers to material that can be programmed to alter its physical properties,
including its shape. Such matter can be built as a lattice of attached robotic modules, each seen
as an autonomous agent with communication and motion capabilities. Self-reconfiguration consists
in changing the initial arrangement of modules to form a desired goal shape, and is known to
be a complex problem due to its algorithmic complexity and motion constraints. In this paper,
we propose to use a max-flow algorithm as a centralized global planner to determine the con-
current paths to be traversed by modules through a porous structure composed of 3D Catoms
meta-modules with the aim of increasing the parallelism of motions, and hence decreasing the self-
reconfiguration time. We implement a traffic light system as a distributed asynchronous local planning
algorithm to control the motions to avoid collisions. We evaluated our algorithm using VisibleSim
simulator on different self-reconfiguration scenarios and compared the performance with an existing
fully distributed synchronous self-reconfiguration algorithm for similar structures. The results show
that the new method provides a significant gain in self-reconfiguration time and energy efficiency.
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1 Introduction

Programmable matter is a matter that can modify
its physical properties, such as its shape, accord-
ing to the surrounding environment. Although,
this property can be obtained by different means,
we are interested in building this matter with
a large number of autonomous computing parti-
cles or modules, communicating locally and self-
organizing into the required collective behavior.
Particles can move around each other by alter-
ing their physical form, detaching, and forming
new connections with each other to transform

from an initial shape to a goal shape. This is
called the self-reconfiguration problem [34]. The
difficulty of this problem lies in the properties
of a limited memory space and the locality of
the information. Indeed, due to limited space,
individual modules or particles have very low com-
putational and energetic resources. Furthermore,
due to the locality of information, a module does
not have the information about the global config-
uration of the modular robot system, and then it
cannot take decisions individually. Moreover, hav-
ing mobile and connected robots is insufficient to
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obtain self-reconfigurable programmable matter.
A subset of these robots must move while avoiding
collisions and maintaining network connectivity.
Therefore, self-reconfiguration is a very complex
problem, since the number of possible configura-
tions increases exponentially as the size of the
system (number of particles) increases [6].

The self-reconfiguration time, that is, the time
required to transform an initial shape into a goal
shape, is an important parameter that must be
optimized. Sequential algorithms [11, 14] where
the reconfiguration is performed one module at
a time are impractical due to their slow speed,
especially when the number of modules is large.
Two main optimizations are possible to reduce
the time complexity of this problem. They con-
sist of reducing the moving distance of modules
and permitting the simultaneous (parallel) dis-
placement of a large number of modules in the
system [15, 19, 35].

In addition, the modules have limited energy
resources. They can be powered through an exter-
nal source or by utilizing energy harvesting tech-
niques from their environment, such as ambi-
ent light or electromagnetic sources. Optimizing
energy consumption, employing energy-efficient
algorithms is essential for the functionality of
the modular robot. Therefore, our proposed algo-
rithm aims to reduce energy consumption during
self-reconfiguration by reducing the number of
motions executed by the modules.

The potential applications of this technology
span diverse fields, including interactive CAD
design [6], flexible tangible interfaces [28] and
shape-shifting multi-purpose objects that can
change their functionality on demand.

Meta-modules are formed by locking together
multiple modules, functioning cohesively as a sin-
gle unit to alleviate motion constraints and facil-
itate self-reconfiguration planning. In [2] we pro-
posed to use a porous structure composed of meta-
modules as a scaffold that can then be coated
to better represent the goal shape. The meta-
modules groups quasi-spherical robotic modules
called 3D Catoms that move by rolling on their
neighbors. The use of a porous structure where
modules are regularly arranged reduces the den-
sity of the modular robotic ensemble, allowing the
modules to flow freely through the internal empty
volume following precalulated deterministic and
parallel motion paths. We then, proposed RePoSt

a synchronous round-based self-reconfiguration
algorithm that, given the goal configuration in the
form of a constructive solid geometry tree [38], it
finds in each round a set of disjoint paths that con-
nect meta-modules that do not belong to the goal
shape to empty positions that must be filled.

In this work, assuming that the initial and goal
configurations are known, we propose ASAPs a
hybrid centralized/distributed self-reconfiguration
algorithm consisting of a centralized global plan-
ner that computes concurrent paths in an initial
phase. The modules then execute a distributed
asynchronous motion coordination algorithm to
flow towards their goal position. By ”centralized”,
we refer to a system wherein a single entity, in
this case, the global planner, takes the lead in
computing paths given the whole meta-modules
inter-connections graphs of the initial and goal
configurations. Conversely, when we mention ”dis-
tributed,” we imply a system where tasks or
decisions are handled by individual modules in
a coordinated manner. We compared ASAPs to
RePoSt and the results show that ASAPs provides
a significant improvement in performance.

The remainder of the paper is organized as
follows. Section 2 presents the related work that
influenced this paper. Section 3 presents the 3D
Catom: the modular robotic system that we are
using. Section 5 describes the global centralized
planner and the distributed motion control algo-
rithm of ASAPs. Section 6 analyzes the complex-
ity of ASAPs. Section 7 presents the conducted
simulations, and analyzes the results while com-
paring the performance of ASAPs with RePoSt .
Finally, the paper is concluded and perspectives
are presented in Section 8.

2 Related Work

Modular robots can be classified into multiple
types of structural formation. Chain-type forma-
tion consists of modules arranged in a tree-like
fashion [7, 29, 41–43]. They are able to perform
locomotion gait on rough terrains. In a lattice-type
formation, the modules reside in a regular 2D or
3D lattice structure [12, 13, 23, 25, 33, 39]. Mod-
ules in a lattice-type modular robot are assigned a
unique coordinate value that a planner can exploit
for efficient self-reconfiguration. Some modular
robots exhibit a combination of chain-type and



Springer Nature 2021 LATEX template

Article Title 3

lattice-type formations, combining the character-
istics of both types, they form the hybrid-type [18,
20, 22, 30]. Lattice-type modular robots are more
suitable for creating a programmable matter since
they allow more flexibility in approximating a
given shape.

The primary challenge to be addressed
for a modular robot-based programmable mat-
ter to successfully execute its tasks is self-
reconfiguration. Self-reconfiguration consists of
performing module-level movements to change an
initial configuration into a goal one. The authors
in [1, 9, 34] provide surveys on self-reconfiguration
planning methods. A self-reconfiguring solution
that uses sequential movements such as in [11, 14]
motion to achieve a target shape simplifies plan-
ning by eliminating potential problems such as
dealing with deadlocks and collision uncertainties.
However, sequential motions are highly restric-
tive in medium-to-large self-reconfiguring modular
robots, as they tend to significantly lengthen the
duration of the reconfiguration process. Therefore,
parallelism of movements is required. Movements
through the internal volume of the robot allow for
a higher degree of parallelism and require a smaller
number of movements to reach the goal configura-
tion according to [29]. Internal movements can be
achieved using tunneling or/and scaffolding.

Tunneling allows in-place self-reconfiguration
of modular robots where modules flow in parallel
within its internal volume. Many tunneling-based
algorithms exist [8, 15, 16, 19, 40]. They require
a specific modular robotic hardware design that
consists of modules with simple cubic geometries
and uses actuators to perform translation and
rotation motions. They use meta-modules as the
building unit of the structure to facilitate planning
and ease motion constraints.

Scaffolding first proposed in [17] is another
technique used to to optimize the self-
reconfiguration process. It consists of building the
structure using hollow sub-structures or meta-
modules leaving enough empty volume inside
the structure that allows modules to navigate
through it in parallel while avoiding blocking
and collisions due to overcrowding at the cost of
decreasing the granularity of the configuration.
Scaffolding is then used to reduce the complex-
ity of the reconfiguration of cubic modules that

moves by translation and rotation guided by cel-
lular automata in [31] or gradient descent in [32]
by approximating the target configuration with a
porous representation.

Thalamy et al. proposed a self-reconfiguration
scheme for modular robotic programmable mat-
ter using the same hardware that we are using in
this paper: the 3D Catoms. It envisions assem-
bling the scaffold of a shape using multi-module
tiles. The tiles are built with modules that flow
upward from a reserve of modules placed beneath
the shape. The shape can then be coated with a
thin layer of modules to better represent the target
shape [36]. Flowing modules use a local message
passing local coordination algorithm inspired by
the traffic light system that forces modules to
keep enough empty space between them to avoid
collisions. We use the same coordination and colli-
sion avoidance method when modules are flowing
while executing the operations as explained in
section 4. The difference from our work is that
they describe only the assembling of a shape start-
ing from a reserve of modules placed beneath it,
not the self-reconfiguration of an initial shape into
a goal one.

Lengiewicz and Holobut [19] presented a
method to self-reconfigure large ensembles of cubic
modules that form a porous scaffolding struc-
ture made of cubic meta-modules of 7 modules.
They tackled the self-reconfiguration problem by
decomposing it into two subproblems: determin-
ing how the boundary of the current configuration
must evolve to reach the goal configuration and
finding an optimal flow of modules between the
boundaries of the current shape and through its
volume using an asynchronous distributed max-
flow search based on local memory and communi-
cation. Their proposed algorithm is efficient, with
the number of movements of the modules propor-
tional to the resolution of the robot. This method
might be used with any other hardware system
that has the ability to internally move modules
through a scaffolding setup.

In a previous work, we proposed RePoSt [3] a
fully distributed round-based self-reconfiguration
algorithm based on local communication and local
memory. In each round, a set of streamlines is
determined that connects meta-modules that do
not belong to the goal shape to empty positions in
the target shape. Modules flow along the stream-
lines to be assembled in an empty position in



Springer Nature 2021 LATEX template

4 Article Title

1

2

a b

c

d

e

Fig. 1: Motion capabilities of the 3D Catom. a) Arrows #1 and #2 shows the two kind of rotations
respectively along green surface and blue surface. b) Shows the final position of the top 3D Catom after
a rotation along arrow #1. c) Shows the final position of the top 3D Catom after a rotation along arrow
#2. In figure d) the final position of the top 3D Catom is reachable but the same position is not reachable
in figure e) due to yellow module.

the target shape determined by a distributed goal
shape description using a constructive solid geom-
etry tree [38]. Streamlines are disjoint and are
found using the distributed max-flow search algo-
rithm proposed in [19]. The time complexity of
RePoSt is O(M.d) where M is the number of
rounds bounded by the number of meta-modules
and d is the length of the longest streamline.

The evaluation results of RePoSt showed
that the predominant factor influencing self-
reconfiguration time is the duration required for
modules to reach their target positions in com-
parison to the time spent on computations and
communications for path determination. Conse-
quently, we aim to increase the parallelism of
motions at the cost of additional centralized com-
putation which is fast relative to modules move-
ments. In this work, we propose a hybrid central-
ized/distributed algorithm that precalculates the
global max-flow between the initial and goal con-
figuration a priori in a centralized planner. Then,
modules flow in parallel to fill the goal configura-
tion in a single round decreasing the complexity
to O(d) as explained in Section 6.

Our approach differs from the distributed max-
flow method proposed in [19] by implementing a
centralized max-flow search on a graph that repre-
sents the combined initial and goal configurations.
This approach allows to find a set of overlapping
paths that modules can follow simultaneously to
reach the goal configuration, thereby increasing

flow and reducing self-reconfiguration time at the
cost of using a centralized global planner instead
of a fully distributed one.

3 Modular Robotic System

In this paper, we consider the problem of self-
reconfiguration of a modular robot composed of
3D Catoms. 3D Catoms where first proposed by
[24]. They are 3,6 mm-diameter quasi-spherical
modules residing in a face-centered cubic lattice
as shown in Fig.1. A 3D Catom can be attached
to up to 12 neighbors using electrostatic actuators
on their surface colored in red in Fig.1. They can
communicate using message-passing through their
latching interfaces.

A 3D Catom moves by rotating on the surface
of a fixed neighbor acting as a pivot (cf. Fig.1).
The rotation of a 3D Catom is subject to the
following constraints:

• Collision constraint: no more than one 3D
Catom should be moving to an empty position
to avoid collisions.

• Bridging constraint: a 3D Catom cannot enter
a free position that has two occupied positions
in opposite directions as shown in Fig. 1e.

• Blocking constraint: a 3D Catom entering a
free position must not be blocked by other 3D
Catoms.
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Fig. 2: Different meta-module sizes. (a) 4 modules, (b) 6 modules, (c) 8 modules, (d) 8 modules with a
red module in a blocked position due to the bridging constraint caused by the green modules on the blue
axis and (e) 10 modules.

The 3D Catoms modular robot forms a dis-
tributed system where:

• Communications are done in a local fashion.
A 3D Catom can only communicate with its
directly connected neighbors by sending mes-
sages through their latching interfaces using
electrostatic signals.

• All 3D Catoms share the same coordination sys-
tem, in [27] Piranda et al. propose a distributed
algorithm to set coordinates to a set of con-
nected modules. They store their coordinates in
their local memory and update them after each
position change.

• The interconnections graph must be connected
all the time.

• All 3D Catoms execute the same distributed
program and perform their computations
locally.

• 3D Catoms can be programmed to react to
an internal event once detected, such as the
reception of a message, a rotation end, a discon-
nection of a neighbor, etc.

4 Porous Structure Anatomy

In this section we describe the anatomy of the
porous structure first proposed in [2] on which we
apply our self-reconfiguration algorithm.

The porous structure is made up of hexagonal
shaped meta-modules formed with 10 3D Catoms
placed in a face-centered cubic lattice. The size
10 is the smallest size that allow modules to flow
through the empty volume of the meta-module
and to keep enough space between adjacent meta-
modules for modules to flow between them with-
out blocking and collisions. The selection of size
10 for the meta-modules was determined through

an iterative process involving the evaluation of
various sizes. This assessment included manual
and visual checks in VisibleSim simulator [37] to
ensure modules could flow through the internal
volume of the meta-module and allow inter-meta-
modules movements while satisfying the block-
ing and the bridging constraints mentioned in
Section 3. Fig. 2 shows smaller meta-modules with
sizes four, six and eight. It could be seen in Fig.2
(d) that considering a meta-module with eight
modules, if we place a module (shown in red)
in the center, it is in a blocked position due to
the bridging constraint and cannot pass through.
At least two modules must be added at positions
along the two axis shown in the figure to avoid the
bridging condition which sum up to ten modules.
We also checked that a symmetrical meta-module
with nine modules is not possible. Therefore, the
size ten is the smallest possible size that allows
modules flow through the interior volume.

A meta-module can be in two states, sparse or
full. The full meta-module is filled into its empty
internal volume with additional 10 3D Catoms.
The meta-modules are arranged in a 3D regu-
lar cubic lattice as shown in Figure 3. Each
meta-module is connected to its neighbors with
at least one module. The left, right, back and
front meta-modules have their modules positions
flipped horizontally. The bottom and top meta-
modules are attached to the front or back of the
two upper or lower modules according to the

−→
Z

axis to preserve the symmetry of the structure and
facilitate the movements of the modules between
meta-modules.

Each meta-module can execute the following

three operations in the six directions (±
−→
X , ±

−→
Y ,
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Fig. 3: The porous structure in a 3D cubic
lattice. a) meta-modules in the XZ plane. b) meta-
modules in YZ plane. c) Full meta-modules in the
XZ plane. d) Full meta-modules in YZ plane.

±
−→
Z ) in the cubic meta-module scale lattice as

shown in Fig.4:

1. Dismantle operation to break the meta-module
and transport its composing module to a next
meta-module in any given direction.

2. Transfer operation transports the modules
through the empty internal volume of the struc-
ture to a neighbor meta-module.

3. Build operation to build a meta-module at an
empty position.

An operation is defined as a sequence of
hand-coded movements to transport the modules
from a starting position to a target one. Each
movement is coded as a triplet in the form of
< current position, next position, state >. state
can take three possible values:

Fig. 4: An example of operations execution (best
viewed in color).

1. Moving indicates that the module must keep
moving after next position is reached.

2. Waiting indicates that after the current move-
ment the module must wait and serve as a
bridge for next modules.

3. In position indicates that the module will
reach its target position for the current opera-
tion.

Sequences of movements for each operation
are predefined and stored in each robot mem-
ory. The number of movements and memory for
each operation is shown in [3]. In total, 2,24
kB of memory is needed [3]. A special module
is designated in a meta-module, as described in
Section 5.2, to serve as an operation coordina-
tor (OPC) to indicate the sequence of movements
that a module must perform for the current oper-
ation. Fig. 4 shows an example of the execution of
operations on three meta-modules where the red
meta-module performs the dismantle operations in
the left direction, the grey meta-module performs
the transfer operation in the left direction and the
green meta-module performs the build operation
in the upward direction. The video1 shows in its
first segment the operations in execution.

These operations can be used to transform any
initial connected configuration of meta-modules
into a goal configuration. The purpose of a self-
reconfiguration planner is to specify which opera-
tion to execute and in which direction to transform
an initial configuration to a goal one.

5 Algorithm Description

In order to transform an initial configuration I
into a goal configuration G, we consider 3 differ-
ent groups of meta-modules: Meta-modules that
are in the initial configuration but not in the
final one (I \ G), meta-modules present in both
configurations (I∩G), and others that are in G\I.

Meta-modules in I \ G must be dismantled,
and their composing modules must flow inside the
structure to fill empty positions in G\I by building
new meta-modules.

Fig. 5 shows the general flow of the algorithm.
Given the initial and goal configurations, a global
planner will perform a centralized computation
that finds the flow paths of the modules from I \G

1https://youtu.be/MUfuY0ao-0w

https://youtu.be/MUfuY0ao-0w
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Fig. 5: The general flow of the algorithm. The top
section describes the global centralized planning.
The bottom section describes the distributed flow
algorithm of the modules.

to G\I in an initialization phase using a Max-Flow
algorithm. The resultant flowing paths will allow
to specify which operation to execute on each
meta-modules. Then, the operations are trans-
ferred to their respective meta-modules on flowing
paths. Once the operations are assigned, the mod-
ules execute a distributed algorithm based on the
traffic light system that controls the flow of the
modules on concurrent paths without collisions.

In this section, we first describe a global plan-
ning algorithm based on the Max-Flow search to
determine the operations to execute on each meta-
module and in which direction. Then we describe
an asynchronous distributed algorithm to control
modules’ flow on the paths without collisions.

5.1 Global Planning

Given an initial configuration I and a goal con-
figuration G, a global planner must specify the
operations to execute on each meta-module. Once

the operations are determined, they are communi-
cated through neighbor-to-neighbor connections,
following a spanning tree rooted at the central
station.

The global planner is a centralized process
that is executed in an initialization phase. The

(a) G = G ∪ I construction example. Nodes in Rs

are colored in red. Nodes in Rd are colored in green.
Nodes in Rs∩Rd are colored in light gray. The label
on each edge is the capacity of that edge.

(b) The resultant flow after applying the max-flow
algorithm.

Fig. 6: Graph construction (a) and flow result (b).
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global planner is implemented using a central com-
puting station connected to at least one of the
meta-modules. Since modules have limited knowl-
edge about their configuration graph, they must
collaborate to send a representation of their cur-
rent configuration to the global planner. This can
be done by each of the meta-modules sending
their position to the global planner via a con-
vergecast on a spanning-tree rooted at the global
planner, which can be costly, or by a more effi-
cient distributed shape recognition algorithm. In
[5], we proposed an algorithm that allow mod-
ules to determine a representation of their current
shape by finding distributedly a set of overlapping
boxes which they can report to the global planner
to build the inter-connections graph of the initial
configuration.

The meta-modules configuration can be rep-
resented as a lattice graph in which the nodes
represent meta-modules and the edges represent
the connections between adjacent meta-modules.
The global planner starts by constructing a graph
G representing I ∪ G (whole space reached by
the reconfiguration process). A demand region Rd

is defined as a connected subgraph that contains
nodes in G \ I. A supply region Rs is a connected
subgraph that contains nodes in I \G. The nodes
in Rd and Rs are connected with edges with infi-
nite capacity to the closest neighbor in terms of
hop distance to any node in I∩G. Multiple supply
and demand regions can exist in a single graph G
depending on the symmetrical difference between
the initial shape I and the goal shape G (I△G).
A super-supply Ss node is added to the graph and
is connected to all nodes in all supply regions with
an edge of capacity 1. All nodes in the demand
regions are connected to a super-demand Sd node
with an edge of capacity 1. The nodes in G ∩ I
are connected with edges of infinite capacity. An
example of this construction is shown in Fig. 6a.

Once the graph G is built, inspired by [19],
we apply the Edmonds-Karp algorithm [10]. This
algorithm is specifically designed for flow net-
works, a type of directed graph where edges have
specified capacities and can accommodate flows
that do not exceed those capacities. The appli-
cation of the algorithm aims to determine the
maximum flow between the super-supply node
Ss and the super-demand node Sd. Its execution
involves finding the shortest augmenting paths
between Ss and Sd using breadth-first searches on

the residual graph. It terminates when no more
augmentations can be found.

A max-flow algorithm generates paths con-
necting all nodes in Rd to Rs, facilitating parallel
motion. It also solves the assembly problem by
finding the best order to dismantle sources in Rs

regions and assemble them in demand regions.
This preserves connectivity during dismantling
and avoids collisions in demand regions by ensur-
ing nodes don’t assemble at the same empty
position simultaneously.

The flow resulting after applying the
Edmonds-karp algorithm on the graph of Fig. 6a
at each edge is shown in Fig. 6b. The nodes Ss

and Sd are removed because they are virtual
nodes and do not represent any meta-module.
The flow value fuv on an edge u, v indicates the
number of modules to be routed by meta-module
u to meta-module v.

Each meta-module must know the flow value
towards its neighbor meta-modules. These values
must be sent from the central station to all meta-
modules. This can be done at an initialization
phase through tree-based broadcasts starting from
a root module wired to the central station.

5.1.1 Flow Properties

Applying the Edmonds-Karp algorithm to the
graph construction mentioned above produces a
flow with the following properties:

Property 1 The flow covers all demand regions i.e.
in the resultant flow, a path exists that connects a
supply node to a demand node.

Edmonds-karp algorithm satisfies the flow con-
servation constraint at the terminal nodes, which
states that the sum of the flow flowing out of the
source Ss is equal to the sum of the flow flow-
ing into the sink Sd. Since the number of supply
nodes is equal to the number of demand nodes and
the number of edges going out of Ss is equal to
the number of edges going in Sd, each augmenting
path, excluding Ss and Sd, starts with a supply
node and ends at a demand node.

Property 2 The total length in terms of hop dis-
tance of the paths connecting the supply nodes to the
demand nodes is minimized.
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Fig. 7: Simplified view of the behavior of the MML, OPC and FM executing the distributed flow control
algorithm.

The Edmonds-Karp algorithm finds the short-
est possible augmenting path using a breadth-first
search. The length of the paths found at each
iteration increases monotonically. Therefore, the
total length of the path set is minimized. This
is an important property, as minimizing the dis-
tance traveled reduces the number of commands
required for the modules. Therefore, the total
energy consumed during self-reconfiguration is
also reduced.

Property 3 No two paths connecting supply nodes
to demand nodes share a common edge with opposite
directions which may cause a head-on collision.

Having two paths in the resultant flow with
two edges with opposite directions connecting the
same two nodes contradicts property 2. This is
because switching the destinations on those paths
will reduce the total length.

5.2 Distributed Flow Control
Algorithm

Once the flow values on connections between
neighbor meta-modules are received, the modules
can start to flow from the supply regions to the
demand regions. To do so, a distributed algorithm
is executed on each of the meta-modules using a

a message-passing method inspired by traffic light
to handle the flow on concurrent paths. To do so,
we identify three module’s roles:

1. Meta-Module Leader (MML) is a module cho-
sen in each meta-module whose purpose is
to handle computation and communications
between meta-modules. For instance, messages
between meta-modules are sent from a MML
to another. The MML can be any of the ten
modules forming a meta-module.

2. Operation Coordinator(OPC) is a module that
coordinates the operations executed by the
meta-models by choosing the sequence of move-
ments to execute by a flowing module. The
OPC is the first module a moving module from
a previous operation get connected to. Or, in
the case of dismantle operations, it is the last
module connected to the meta-module in the
operation direction.

3. Flowing Module (FM) is a module in motion
executing an operation’s motion sequence.

Algorithms 1, 2, and 3 describe the behavior of
each of the module’s roles: MML, OPC and FM,
respectively. Additionally, Fig. 7 presents a sim-
plified depiction of the behavior associated with
each role.

The flow starts by executing dismantle opera-
tions on meta-modules that are in Rs and do not
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Algorithm 1 Distributed control algorithm on an
MML (Part 1).

Data: F : A queue of pairs < direction, flow >
representing flow values in each directions.

Data: lightState
1: Initialization
2: if is MML of a meta-module u then
3: MUST DISMANTLE(u)
4: end if
5: end Initialization

6: Function MUST DISMANTLE(u)
7: if u ∈ Rs and no flow is entering u then
8:

OPC.Operation← dismantle(F0.direction)
9:

10: send REQ START OP() to MML in
direction F0.direction

11: end if
12: end Function

13: Function SET OPERATION( )
14: if hasNeighborInDirection(F0.direction)

then
15: send SET OP(transfer, F0.direction) to

OPC
16: else
17: send SET OP(build, F0.direction) to

OPC
18: end if
19: F0.f low ← F0.f low − 1
20: if F0.f low = 0 then
21: F.pop()
22: end if
23: end Function

have an entry flow (cf. the two top red nodes in
Fig. 6b). However, before starting the execution of
any operation, a meta-module must verify that the
next meta-module is not executing any operation
to prevent collisions on intersections. The sys-
tem employs a traffic light mechanism, managing
meta-modules’ availability for operations through
color-coded lightState variable (green for avail-
able, red for engaged). To initiate an operation,
the MML sends a REQ OP START message to
the MML of the next meta-module in its path
(Algorithm 1 line 1-12). If the receiver’s lightState
is green, which means that it is not executing

Algorithm 1 Distributed control algorithm on an
MML (Part 2)

24: Msg Handler REQ START OP( )
25: if lightState = GREEN then
26: lightState← RED
27: SET OPERATION()( )
28: send AUTH OP() to senderMML
29: else
30: waiting.push(directionsender)
31: end if
32: end Msg Handler

33: Msg Handler AUTH OP( )
34: Notify the OPC to start executing the

operation
35: end Msg Handler

36: Event OP ENDED on meta-module u
37: if waiting ̸= ∅ then
38: send AUTH OP to waiting0
39: waiting.pop()
40: else
41: lightState← GREEN
42: MUST DISMANTLE(u)
43: end if
44: end Event

any operation, it sets the next operation to exe-
cute on it, then it responds with an AUTH OP
message, and its lightState becomes red. Once
the AUTH OP message is received, the OPC
can start the operation. Otherwise, the receiver
stores the direction of the sender in a queue and
responds once it becomes free. This will cause
flowing modules to wait for the next meta-modules
they must enter to finish executing the operation
in progress (Algorithm 1 line 25-44). This queu-
ing along with not having two paths with opposite
directions at an intersection as explained in Prop-
erty 3 of Section 5.1.1 prevents meta-modules from
being stuck in a state where they are indefinitely
waiting for each other at intersections, effectively
eliminating the risk of deadlock.

Each FM performing an operation keeps an
iterator on the sequence of movements that it
must execute. When an FM reaches an OPC,
if the meta-module is authorized to perform the
next operation, the OPC informs the module of
which operation to execute and in which direction
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Algorithm 2 Distributed control algorithm for
an OPC

Data: Operation: The operation in execution.
Data: mvt it = 0: Iterator on Operation’s

movements.

1: Event ADD NEIGHBOR(m)
2: if operation execution is authorized by

MML then
3: send COORDINATE(Operation, mvt it)

to m
4: mvt it← mvt it + nb of moves to be

performed by m
5: else
6: MML sends REQ START OP to next

MML
7: end if
8: end Event

9: Msg Handler SET OP(Op) State
Operation← Op

10: end Msg Handler

11: Msg Handler POSITION REACHED( )
12: if mvt it < Operation.size() then
13: m = module at

Operation[mvt it].current position
14: send COORDINATE(Operation, mvt it)

to m
15: mvt it← mvt it + nb of moves to be

performed by m
16: end if
17: end Msg Handler

by sending a COORDINATE message contain-
ing the type of operation and the value of the
iterator. Otherwise, the MML requests the autho-
rization to start the operation from the next MML
(Algorithm 2 line 1-6). On reception, a FM knows
from which movement it must begin and starts
to rotate until it reaches the In Position state,
which means that the module has finished its
sequence of movements for the current operation,
or the Waiting state, which means that it reached
a bridging position, so it must wait for the next
modules to pass it (Algorithm 3).

When a MML detects that the operation’s
execution ended and there exists a meta-module
waiting for its authorization to start the pending
operation, it sends an AUTH OP message to the

Algorithm 3 Distributed control algorithm for a
FM

Data: Operation: The operation in execution.
Data: mvt it = 0: Iterator on Operation’s

movements.
1: Msg Handler COORDINATE(Op, it)
2: Operation← Op
3: mvt it← it
4:

rotateTo(Operation[mvt it].nextPosition)
5: end Msg Handler

6: Event ROTATION END
7: if mvt it =

Operation.size∧Operation.isAssemble then
8: meta-module reached goal position
9: else if Operation.state = MOV ING then

10: mvt it← mvt it + 1
11:

rotateTo(Operation[mvt it].nextPosition)
12: else if

Operation.isDismantle ∧Operation.state =
IN POSITION then

13: send POSITION REACHED to OPC
14: end if
15: end Event

16: Event REMOVE NEIGHBOR
17: if Operation.state = WAITING then ▷

Bridge
18: if all modules have passed then
19: mvt it← mvt it + 1
20:

rotateTo(Operation[mvt it].nextPosition)
21: end if
22: end if
23: end Event

waiting meta-module to start executing the opera-
tion. Otherwise, if it is in Rs and does not have an
entry flow, it sets lightState as green and disman-
tles itself. Therefore, meta-modules in Rs execute
the dismantle operation one after the other start-
ing from the end of a path so that they do not
disconnect the configuration.

The FMs must keep enough empty space
between them to avoid blocking and collisions.
To do so, a traffic-light like motion coordination
algorithm [35] is used. It requires exchanging mes-
sages between the FM, its next rotation pivot, and
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its next latching point. The function rotateTo in
Algorithm 3 includes this algorithm. The reader
can refer to [35] for a complete description of the
motion coordination algorithm.

5.3 Self-reconfiguration from an
initial to a goal configuration
with different sizes

The meta-module design presented in [2] allows
it to be filled in its internal volume with 10
additional modules, that is, the size of another
meta-module, giving the structure the ability to
expand or compress by a factor of 2. Therefore, the
size of the goal configuration can differ from the
size of the initial configuration. If N is the num-
ber of modules in the initial configuration and SG

the number of meta-modules filled or empty in the
goal configuration, then: ⌈N20⌉ ≤ SG ≤ N

10 .
If the number of meta-modules in the goal con-

figuration is larger than the initial configuration
(G > I), there must be at least NF = G − I full
meta-modules in I. The filled meta-modules can
be considered as supplies and added to the sup-
ply region. They can execute an operation that
allows their filling modules to be transferred to
the demand. So, the algorithm can proceed as
previously explained.

If the number of meta-modules in the goal con-
figuration is smaller than the initial configuration
(G < I), there will be some excess of meta-modules
that does not belong to G after the algorithm is
complete. The number of modules that make up
meta-modules in excess can be filled in the empty
meta-modules in G. Therefore, the algorithm can
be executed in two phases. The first executes the
algorithm as previously explained. Once the com-
pletion of the algorithm is detected, which requires
a termination detection mechanism, the second
phase executes the same algorithm, but the global
planner considers the supply region as all the
meta-modules in excess and the demand region as
all the empty meta-modules that can be filled.

6 Complexity Analysis

In this section, we analyze the complexity of
ASAPs algorithm. The total time needed for self-
reconfiguration includes the time T0 taken by
the global planner to find paths, the time for

module transport T1, and the time for message
transmission T2.

The computational complexity of the global
planner is given by the complexity of construct-
ing G = G∪I plus the complexity of the max-flow
algorithm. The construction of G linearly depends
on the number of nodes V , so O(V ). The com-
plexity of Edmonds-karp algorithm on any graph
is given as O(V.E2) [10] where V is the number of
nodes and E is the number of edges in G. In our
case, G is a graph representing nodes in a cubic
lattice so, the maximum number of edges E is
equal to 6.V . Therefore, the computational com-
plexity of the global planner is O(V.(6.V )2 +V ) =
O(V 3) = T0.

The time for transforming an initial shape to
the target shape is mostly due to the time of
modules flow. The longest distance that a mod-
ule can travel is the diameter dG of G = G ∪ I
where G is the goal configuration and I is the
initial configuration. Modules can flow in parallel
following concurrent paths of maximum length dG
and meta-modules can flow simultaneously follow-
ing each other along a path. Therefore, the time
complexity for modules flow on any path without
waiting time on intersections can be expressed as
O(dG). Regarding waiting times at intersections
between multiple paths, for any meta-module sit-
uated at an intersection within a path, there can
be a maximum of five incoming flowing paths in
the 3D regular cubic lattice. In a scenario where
five meta-modules are waiting for their operation
execution at an intersection, and they belong to
a path with a maximum length of dG , the com-
plexity for waiting time is O(5.dG). Therefore, the
overall complexity flow time is O(dG) = T1.

It is interesting to compare this complexity
with the complexity of the RePoSt algorithm,
which was O(d.Nrounds), where Nrounds was the
number of rounds necessary to achieve recon-
figuration. In the worst case NM − 1 rounds
are required, where NM is the number of meta-
modules. ASAPs performs the self-reconfiguration
in a single round with an increase in motion par-
allelization, which takes less time to achieve the
goal configuration.

The message complexity of ASAPs is due to
sending the flow values to their corresponding
meta-modules and to the messages used during
the flow control algorithm described in Section5.2.
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Sending the flow values can be done via a breadth-
first spanning tree rooted at the central station
which take O(dCI

.NM ) messages where CI is the
initial configuration and dCI

denotes the diameter
of CI . Each flowing module movement along the
flowing path requires sending a fixed amount of
messages. Therefore, the flow of modules requires
O(dG .Nm) where Nm is the number of modules.
The message complexity of both steps can be
expressed as O(dCI

.NM + dG .Nm) = T2.

7 Simulation and Results

Simulations were carried out using the VisibleSim
simulator [37]. The same code is executed by each
robot, here we simulate with 3D Catoms that are
able to communicate with up to 12 neighbors and
move by rotating on their connected neighbors.
The code embed all the agents that can be acti-
vated depending on the neighborhood of the robot
and the received messages.

Fig. 8: Three different self-reconfiguration sce-
narios, from the top to the bottom: L2C, Hollow
Human and Solid Human. Initial configurations
are on the left and goal configuration on the right.

The basic dismantle, transfer and assembly
actions applied in meta-modules during the imple-
mented algorithm were presented in [2].

7.1 Presentation of the experiments

In order to evaluate the algorithm, we consider
different same size initial and final configurations
with several properties:

• L2C: From a two layers L shape made of 48
meta-modules to a two layers C shape. This
model shown in Fig. 8.a, is similar to a narrow
line of 2 × 2 meta-modules of the section. The
narrowness of the line reduces the number of
possible simultaneous motions.

• Hollow Human: From a single layered 2D
square of 90 meta-modules to a single layered
2D hollow humanoid shape. This model shown
in Fig. 8.c proposes fewer internal meta-modules
in its goal configuration than the previous one.
The meta-modules in the central area must be
dismantled without causing a disconnection.

• Solid Human: From a single layered 2D square
of 89 meta-modules to a single layered 2D 2D
humanoid shape. This model shown in Fig. 8.b
is rich of numerous different paths in the cen-
tral area (the body of the humanoid shape),
but there are only some paths to reach the
head, arms, and legs area which will cause bot-
tlenecks. The goal configuration is formed by
transporting the meta-modules on the initial
configuration borders to the head, arms and
legs.

These three self-reconfigurations are presented
in a video2. This video shows the dismantle, dis-
placement and building of meta-modules in par-
allel to transform the initial shape to obtain the
final configuration of meta-modules. In the final
part of the video, we demonstrate the expand-
able nature of the structure by transitioning from
a three-layer to a four-layer cuboid configuration.
This is achieved by emptying the meta-modules of
the bottom layer to build the new top layer.
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Fig. 9: Comparisons of the total number of
motions (a) and and total number of time steps
(b) of ASAPs and RePoSt algorithms for the 3
experimental shapes.

7.2 Experiments analysis

Fig. 9 compares the speed and the total number of
motions of the self-reconfiguration process for the
ASAPs algorithm and RePoSt presented in [2].

First, we notice that for the three self-
reconfigurations, the ASAPs algorithm is faster
than RePoSt , and this is mainly because the par-
allelization of movements is much more important
due to the coordinated flow of modules on the pre-
allocated concurrent paths. ASAPs algorithm is
1.95 times faster for L2C, 2.7 times faster for the
Hollow Human configuration and 2.08 times faster
for the Solid Human configuration.

2https://youtu.be/MUfuY0ao-0w

Second, regarding the total number of motions
executed by the modules during the self-
reconfiguration, ASAPs requires less number of
motions than RePoSt to converge to the goal
shape. This is due to the global max-flow plan-
ning method that minimizes the total length of
the found paths connecting meta-modules in the
supply region to the meta-modules in the demand
region (cf. property 2). Therefore, ASAPs is more
energy efficient than RePoSt .

The variations in performance between ASAPs
and RePoSt across configurations are notably
influenced by RePoSt ’s round-based approach and
the resultant limitations on the number of non-
intersecting paths generated in each round which
depends on the geometry of the configurations.

Fig. 10 shows the number of module motions
and the number of modules that are waiting per
time step when executing RePoSt and ASAPs. A
time step corresponds to the average time required
for a 3D Catom rotation.

The regular oscillations of the curve shown in
Fig. 10 (a), (b) and (c) for the RePoSt algo-
rithm are evidence of the successive rounds of this
algorithm, they regularly cause periods with a low
number of movements due to the time required for
the determination of streamlines at each round.
This effect disappears almost completely on the
curve given by self-reconfiguration with ASAPs
algorithm. This is because once the meta-modules
receive the path information, they all start to flow
asynchronously guided by the distributed con-
trol algorithm explained in Section 5.2. Therefore,
the ASAPs number of motions curve starts by
increasing until it reaches its maximum value, then
stabilizes before it starts to decrease when the
modules start to reach their goal positions. This
shows the increase in motion parallelisms achieved
using ASAPs.

In Fig. 10 (d), (b) and (f), the number of wait-
ing modules at a time step varies with the amount
of flow. When more modules leave their initial
position and start flowing, the number of waiting
modules will increase because modules will wait
for each other to keep enough space when flowing
in a train-like fashion towards their destination.
In ASAPs an increased number of modules can
be found in a waiting state at the beginning time
steps for two reasons: first, the number of flow-
ing modules is more important, so more modules

https://youtu.be/MUfuY0ao-0w
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Fig. 10: Comparisons of ASAPs and RePoSt number of modules in motions per time step (a, b and
c) and number of waiting modules (d, e, and f) for the three experimental shapes: (a) and (d) for the
L shape to C shape (L2C), (b) and (e) for the Square to Hollow Human shape and (c) and (f) for the
Square to Solid Human.

are waiting to keep enough space with other flow-
ing modules on the same path, and second, when
modules must wait at intersections of paths in
case an operation is being executed at the inter-
section. For the RePoSt algorithm, modules follow
disjoint paths, so they are not required to wait on
intersection.

The waiting time of the modules that execute
ASAPs also depends on the bottlenecks at inter-
sections of paths that reach a narrow area. For
example, Fig. 11, shows the paths generated by
the max-flow in three configurations where the
modules in Rs must cross none, two, or three bot-
tleneck nodes to fill empty positions in Rd. Fig. 12
shows the total self-reconfiguration time of the
three examples. It can be seen that when multiple
paths intersect on one node causing a bottleneck,
the self-reconfiguration time increases. The reason
is that only one operation is executed at a time
on the bottleneck nodes. Modules that need to go
through bottlenecks are waiting for their turn, as
explained in Sections 5.2.

8 Conclusion and Future
Work

In this paper we presented ASAPs a hybrid
self-reconfiguration algorithm for programmable
matter based on modular robots. We used a
porous structure made of hexagonal shape meta-
modules made of 3D Catoms. The algorithm
consists of a centralized global path planner based
on a max-flow search and a distributed message-
passing asynchronous flow control algorithm. We
evaluated ASAPs in simulation and compared
the parallelism, total distance traveled and self-
reconfiguration time with RePoSt a distributed
synchronous self-reconfiguration algorithm for
similar structures. The results show an important
improvement of efficiency in both the total dis-
tance traveled which affect the energy used by the
modules and in the self-reconfiguration time.

Future works will focus on the usage of inter-
mediate configurations in the aim of reducing the
effect of bottlenecks that might exist in a con-
figuration on the self-reconfiguration time. For
example, in the case where a bottleneck is detected
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Fig. 11: The result of paths generated by the
max-flow on 3 configurations with different bottle-
neck sizes. Rs nodes are in red and Rd nodes are
in green. (a) No bottlenecks. (b) Two bottlenecks.
(c) One Bottleneck.

in a given configuration, we can build a tempo-
rary meta-module at an empty position next to
the bottleneck to double the flow towards demand
regions and decrease the waiting time at inter-
sections. Additionally, in order for our algorithms
to be applicable on real-hardware we intend to
incorporate physical constraints, such as ensuring
structural stability [26] and fault-tolerance [4, 21]
into the self-reconfiguration planning process.
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[39] Ünsal C, Kiliççöte H, Khosla PK (2001) A
modular self-reconfigurable bipartite robotic
system: Implementation and motion plan-
ning. Autonomous Robots 10(1):23–40

[40] Vassilvitskii S, Yim M, Suh J (2002) A
complete, local and parallel reconfiguration
algorithm for cube style modular robots. In:
Robotics and Automation, 2002. Proceed-
ings. ICRA ’02. IEEE International Confer-
ence on, pp 117–122 vol.1, https://doi.org/
10.1109/ROBOT.2002.1013348

[41] White PJ, Yim M (2010) Reliable external
actuation for full reachability in robotic mod-
ular self-reconfiguration. The International
Journal of Robotics Research 29(5):598–612

[42] Yim M, Duff DG, Roufas KD (2000) Poly-
bot: a modular reconfigurable robot. In:
Proceedings 2000 ICRA. Millennium Con-
ference. IEEE International Conference on
Robotics and Automation. Symposia Pro-
ceedings (Cat. No. 00CH37065), IEEE, pp
514–520

[43] Zhang T, Zhang D, Gupta MM, Zhang W
(2015) Design of a general resilient robotic
system based on axiomatic design theory.
In: 2015 IEEE International Conference on
Advanced Intelligent Mechatronics (AIM),
IEEE, pp 71–78

https://doi.org/10.1016/j.robot.2019.07.012
https://doi.org/10.1016/j.robot.2019.07.012
https://doi.org/10.1016/j.robot.2019.07.012
https://doi.org/10.1016/j.swevo.2020.100722
https://doi.org/https://doi.org/10.1016/j.robot.2021.103875
https://doi.org/https://doi.org/10.1016/j.robot.2021.103875
https://www.sciencedirect.com/science/article/pii/S0921889021001603
https://www.sciencedirect.com/science/article/pii/S0921889021001603
https://doi.org/https://doi.org/10.1016/j.robot.2021.103913
https://doi.org/https://doi.org/10.1016/j.robot.2021.103913
https://www.sciencedirect.com/science/article/pii/S0921889021001986
https://www.sciencedirect.com/science/article/pii/S0921889021001986
https://doi.org/10.1145/3019612.3019706
https://doi.org/10.1145/3019612.3019706
https://doi.org/10.1109/ROBOT.2002.1013348
https://doi.org/10.1109/ROBOT.2002.1013348

	Introduction
	Related Work
	Modular Robotic System
	Porous Structure Anatomy
	Algorithm Description
	Global Planning
	Flow Properties

	Distributed Flow Control Algorithm
	Self-reconfiguration from an initial to a goal configuration with different sizes

	Complexity Analysis
	Simulation and Results
	Presentation of the experiments
	Experiments analysis

	Conclusion and Future Work
	Funding
	Conflict of interest
	Authors' contributions




