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Abstract. Deep neural networks (DNNs) are increasingly employed across diverse fields 7 
of applied science, particularly in areas like computer vision and image processing, where 8 
they enhance the performance of instruments. Various advanced coherent imaging 9 
techniques, including digital holography, leverage different deep architectures like 10 
convolutional neural networks (CNN) or Vision Transformers (ViT). These architectures 11 
enable the extraction of diverse metrics such as autofocusing reconstruction distance or 3D 12 
position determination, facilitating applications in automated microscopy and phase image 13 
restitution. In this work, we propose a hybrid approach utilizing an adapted version of the 14 
GedankenNet model, coupled with a UNet-like model, for the purpose of accessing micro-15 
objects 3D pose measurements. These networks are trained on simulated holographic 16 
datasets. Our approach achieves an accuracy of 98% in inferring the 3D poses. We show 17 
that a GedankenNet can be used as a regression tool and is faster than a Tiny-ViT (TViT) 18 
model. Overall, integrating deep neural networks into digital holographic microscopy and 19 
3D computer micro-vision holds the promise of significantly enhancing the robustness and 20 
processing speed of holograms for precise 3D position inference and control, particularly 21 
in micro-robotics applications. 22 

1 Introduction 23 

In computer vision and robotics, accurate 3D positioning and trajectory determination are crucial for a variety 24 
of applications, including industrial and clinical [1]. Neural networks, including convolutional neural networks 25 
(CNNs) or Vision Transformers (ViT) play a significant role in visual data processing [2]. Digital holography 26 
(DH) in microscopy enhances the analysis of object amplitude and phase in a single image with off-axis 27 
configuration, improving the accuracy of in-focus position detection without mechanical adjustments. 28 
Combining Deep Neural Networks (DNN), mixing version of the GedankenNet model [3] and a UNet-like 29 
model [4] with DH provides a promising solution for accurately controlling complex trajectories of micro-30 
objects in automated microscopy in real-time constrains [5]. 31 

2. Theoretical Background and context 32 
2.1 Deep Neural Networks 33 

DNNs inspired by biological neural networks, process, classify, and predict complex data through multi-layer 34 
structures. These networks employ non-linear transformations from input to output layers, enabling tasks like 35 
linearization in higher-dimensional spaces [4]. Optimization of DNN results involves a learning step, training 36 
the network with input-output data pairs. Adequate training data volume is crucial for optimal performance. 37 
DNNs, notably convolutional CNNs and ViT models, have demonstrated high effectiveness in tasks like image 38 
classification, computer vision, and solving complex problems such as autofocusing in DH [2, 3].  39 



 

 
 

2.2 Digital holographic microscopy and computer micro-vision for micro-robotics 40 

DH is an advanced imaging technique capturing both amplitude and phase of an object's entire wavefield using 41 
a CMOS imaging sensor. In Fig. 1, we show typical experimental digital hologram a 2D pseudo-periodic 42 
pattern as phase object to perform 3D pose control in 3D through a microscope [2]. This study explores DH 43 
coupled with a computer micro-vision approach, employing phase correlation image processing techniques for 44 
sub-voxel sample pose measurements in micro-robotics [6, 7]. 45 

 46 

Fig. 1. (a) Lyncee-tec DHM observing a micro-structured pattern moved by a hexapod stage . (b) A typical 47 
experimental hologram of a pseudo-periodic pattern that allow 3D pose measurement [2]. Image reconstruction (c) in 48 
amplitude and (d) in phase at a numerical in-focus distance of 185µm. 49 

Digital hologram reconstruction relies on the Angular Spectrum Method [8], and a Lyncee‐Tec Digital 50 
Holographic Microscope (DHM) equipped with 10x MO lens, adapts these principles to micro-objects, see 51 
reference [2] for experimental details. DHM works with digital autofocusing, enables automated microscopy 52 
and 3D pose control of micro-objects. Recent research highlights the use of DNN for faster auto-autofocusing 53 
in DHM through statistical image reconstruction, treating autofocusing as a classification or regression task 54 
[5].  The challenges include improving multiscale sensitivity for automated microscopy in 6 degrees of 55 
freedom (DoF) pose estimation while maintaining a broad field of view and depth of field [1]. A 2D pseudo-56 
periodic pattern serves as a referencing sample (Fig. 1(c) and (d)). High-tech micro-assembly platforms in 57 
robotics demand translation and rotation stages (Fig. 1(a)), addressing increasingly complex tasks with 58 
nanoscale positioning resolution and large-scale movements beyond the centimetre range. This work addresses 59 
the challenge to target 3D inference and video-rate control of samples for complex micro-nano manipulation 60 
such as 3D MEMS micro-nano-assembly and alignment, 3D nanoprinting, visual servoing for 3D 61 
nanopositioning [1]. 62 

3 Positioning Models (X, Y and Z) 63 

In this work, we combine previous autofocusing with DHM accelerated with DNN [2] giving Z position and 64 
a new approach to determine in the same time X and Y coordinates. In Fig. 2(a-c), the structure of the XY 65 
Model (consisting of a series of 2D Convolution Layers and Max Pooling Layers) based on the UNet 66 
architecture [4] is presented, specifically designed for 3D pose estimation. The model takes a Region of Interest 67 
(ROI) extracted from the input hologram, initially sized at 768x768 pixels within a hologram of 1024x1024 68 
pixels. The resulting output from the model is a reconstructed thumbnail of 64x64-pixels, encapsulating the X 69 



 

 
 

and Y positional information [6]. Subsequently, Fig. 2(d-f) outlines the arrangement of the Z Model, which is 70 
based on an adapted version of a GedankenNet model proposed in [3]. The primary distinctions from the 71 
original version are that it accepts a single image as input and the input size has been minimized to 128x128 72 
pixels for faster computation of the Spectral Conv2D Layers (Fig. 2(f)). The XY Model's uniqueness lies in 73 
not reconstructing an image of the same size as the input (Fig. 2(b) depicts the initial Conv2D layers 74 
downsizing the input to 64x64). 75 

4 Methodology 76 

We address this issue by applying DNNs to micro-vision measurement of 3D trajectories with DH. Recently, 77 
we demonstrated the ability of new generation of deep neural networks such as ViT to predict the in-focus 78 
distance with a high accuracy [2]. In a previous work, we also showed the ability of 2D pseudo-periodic 79 
pattern combined to conventional imaging system, used as in-plane position encoder, has allowed a 108 80 
range-to resolution ratio through robust phase-based decoding [7]. Here, we present DNNs dedicated to 81 

hybrid approach combining computer micro-vision and DHM, able to perform simultaneously in-plane and 82 
out-plane measurements, at video-rate and without in focus full image reconstruction. The experimental 83 

setup is presented in Fig. 1. It consists in a DHM, a hexapod capable of precise motions along the 6DoF and 84 
a micro encoded pattern. We also show a typical hologram obtained and its reconstruction (Fig. 1 (b)). The 85 
interferometric character of DH converts out-of-plane position of the sample in phase data that, combined 86 
with in-plane information retrieved from the micro-structured pattern, allows accurate measurement of 3D 87 

trajectories. DNNs speed up data processing and infer video-rate position detection.88 

 89 
 90 

Fig. 2. (a-c) Thumbnail reconstruction. (d-f) Assess the distance Z. (a) A ROI of 768x768 is cropped from the hologram 91 
at a fixed position. (b) XY Model (based on a UNet like model). (c) The reconstructed thumbnail of 64x64 pixels. (d) A 92 
ROI of 128x128 is randomly cropped from the hologram space. (e) Z model based on an adapted version of a 93 
GedankenNet model [3]. (f) The distance Z.  94 

DNNs require training to realize expected tasks and to reach the best performances. In our work, the training 95 
step is conducted from a dataset constituted by simulated holograms. Various experimental parameters have 96 
been considered in simulations such as spherical aberration introduced by objective microscope lens, and has 97 
been implemented in simulated hologram datasets, with the aim of being able to mimic real experimental 98 
conditions. To rigorously evaluate the effectiveness of the proposed methodology, which integrates DH with 99 
DNNs and video-rate micro-vision, we conducted a comprehensive validation through simulation. Our primary 100 
objective was to assess the DNNs capability to predict a simulated 3D trajectory under precisely controlled 101 
conditions. For this purpose, we selected a Lissajous' figure (result of superposing two harmonic motions on 102 
the X-Y plane). This complex trajectory served as a challenging yet well-defined path for rigorously testing 103 



 

 
 

the capabilities of the DH-DNN system. We simulated a complete 3D trajectory of 2D pseudo-periodic pattern 104 
with period of 9 µm, displaced by the hexapod stage (Fig. 1.(a)), along the two-dimensional Lissajous 105 
trajectory in the X-Y plane  and generated corresponding sequence of digital holograms. This trajectory was 106 
then extended into the third dimension by introducing incremental steps along the Z-axis, simulating motion 107 
in depth. Each step in the Z-direction corresponds to a subsequent holographic reconstruction distance for the 108 
simulated hologram. Subsequently, the generated holographic datasets were used in DNNs for training step 109 
and infer the trajectory. The networks were tasked with accurately predicting the Lissajous’ trajectory based 110 
on the holographic dataset inputs, essentially capturing and replicating the complex curve in their predictions. 111 
To analyse each hologram (inference mode), both models are used (Fig. 2), XY Model and Z Model to get the 112 
associated thumbnail and Z distance. A post-processing algorithm is applied on the reconstructed thumbnail 113 
to extract the binary vectors representing the positions (X and Y) (Fig. 2c). To convert the binary vectors into 114 
meaningful micron-scale coordinates, each vector within the complete sequence of bits is identified. Those 115 
indexes are used to compute the final X and Y coordinates as described in [6].  116 

5 Results 117 

We present the results obtained from the DH-DNN system methodology for predicting 3D trajectories. The 118 
models (XY Model and Z Model) have been trained using a total of 65000 simulated holograms. The XY 119 
Model is using binary cross entropy loss. The Z Model has been trained using a cross-validation method using 120 
the TanhExp loss function [9]. Both models are trained using the Adam optimizer. The models have been tested 121 
on a simulated trajectory of 1,121 holograms. In Fig. 3(a), the list of outliers (red points), the simulated (dashed 122 
blue line) and estimated (green line) trajectories are shown in 3D space. The accuracy exceeds 98% which 123 
demonstrates the system's ability to correctly estimate the 3D poses. Fig. 3(b) provides a visual representation 124 
of the error along the Z axis and the deviation on the X-Y plane (L2-norm). This graphical depicts the precision 125 
of DNN predictions, revealing a max error of 25 µm on X-Y and less than 1 µm on Z. This X, Y level of 126 
performance must be compared with a maximum encoded area of 11x11cm2. This allows video-rate monitoring 127 
of large displacements with a coarse but sufficient accuracy whereas eventual fine 3D pose is controlled by 128 
high accurate but much slower conventional processing. 129 

 130 

Fig. 3. (a) Outliers (in red), simulated (in blue) and estimated (in green) trajectory in the 3D space. (b) Z and X-Y errors 131 
in µm (absolute difference and L2-norm). The Z error is mostly below an error of 1 µm (red dashed line). 132 



 

 
 

 133 

Fig. 4. Matching rate associated to each 3D pose (red: outliers, green: right 3D poses). 134 

Fig. 4 shows the matching rate associated to each estimated 3D pose. This underscores that a rate level between 135 
90 and 100 is adequate for accurately decoding the correct position. The precision along the Z axis is of the 136 
same magnitude as in [2]. These results emphasize the DH-DNN methodology's capability to provide highly 137 
accurate and detailed predictions of three-dimensional trajectories. This highlights its practical utility in real-138 
time micro-robotics and micro-vision applications. Moreover, the average inference speed is below 20 ms on 139 
a NVidia RTX 3090 32 GB mainly consumed by the data transfer of the images to the GPU (XY Model: 7.5 140 
ms inference; Z Model: 2.5 ms inference; 10 ms for the data transfer). 141 

6 Conclusions 142 

We propose a method that enables the direct determination of 3D positions from hologram space with a mean 143 
error of 1 µm on Z and 12 µm on X-Y, effectively bypassing the need for full holographic image reconstruction. 144 
These errors must be compared to the complete encoded area of 11x11cm2. Moreover, our study offers a 145 
thorough analysis of the matching rate levels attributed to each 3D pose. We believe it is the first time a 146 
GedankenNet model is used as a regression tool. The modified GedankenNet (Z Model) achieved an inference 147 
speed of 2.5 ms, contrasting with the over 20 ms required by a TViT [2].  148 
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