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Abstract—In this paper we consider the scheduling of a batch
of workflows on a service oriented grid. A job is represented
by a directed acyclic graph without forks (intree) but with
typed tasks. The processors are distributed and each processor
have a set of services that carry out equivalent task types. The
objective function is to minimize the makespan of the batch
execution. Three algorithms are studied in this context: an on-
line algorithm, a genetic algorithm and a steady-state algorithm.
The contribution of this paper is on the experimental analysis
of these algorithms and on their adaptation to the context. We
show that their performances depend on the size and complexity
of the batch and on the characteristics of the execution platform.

Keywords—Batch scheduling, grid computing, heterogeneous
platform, on-line scheduling, steady state scheduling, genetic
algorithm.

I. INTRODUCTION

Processing workflows of images is a very processor consum-
ing activity therefore, when the size of the image set grows up
it is mandatory to use a distributed execution platforms such
as Grids. In this paper, the targeted application is a workflow
that generates datas such as medical images. Each image is
computed from a set of existing data on which we applied
different operations: extracting data from an image, applying
filters to enhance the image quality, calculating correlation
between two images, merge of images to highlight some
property and so on. After acquiring a set of images or data,
we apply on them the same workflow, i.e. the same set of
operations, to get the final result. However, the execution
of such workflows on grids is not simple as the platform
is heterogeneous from the performances viewpoint as well
as from the deployed services viewpoint. Misplacement of
execution may lead to very poor execution performances while
certain medical applications need almost interactive results
(not more than a few minutes). Thus, the schedule of the set
of workflows must be carefully defined.

Different approaches can be used in this context to minimize
the response time of such executions. Traditional schedul-
ing techniques includes on-line approaches and off-line ap-
proaches. Our aim is to evaluate the efficiency of these
approaches depending on the workflow and grid platform
characteristics, then to use these results as input data to
implement efficient scheduling policies in grid middlewares as
DIET. As grid experiments are very costly to deploy and not
repeatable due to the dynamic behavior of other applications,

we started our evaluation by simulating the grid and the
algorithms. The simulations have generated a first set of results
presented here.

In this paper we compare the performances of three ap-
proaches. A simple on-line algorithm which schedules tasks
depending on the computers and tasks availability and two
off-line algorithms which are implemented to maximize the
flow and makespan criterion. On one hand, we show that both
the workflow’s and platform’s characteristics have an impact
on the performances, this impact may be up to 50%, and, on
the other hand, that the criteria to optimize must rather be
makespan oriented when the number of workflows to perform
is less than 100 and flow oriented when this number is above
250.

In the following section of this paper we define the ap-
plication model, the platform’s characteristics and the related
works. In the third section we present the algorithms, their
properties and different adaptations we did to well known
algorithms to better fit our context. Then, in the forth section,
we detail the implementation of these algorithms in a grid
simulator. The fifth section is dedicated to the results and their
analysis. A conclusion is given in the last section of the paper.

II. CONTEXT

Defining the context and the characteristics of the appli-
cation execution is a very important step in the scheduling
problem resolution. Indeed, scheduling researchers are actives
since a long time and have addressed lots of scheduling issues.
Therefore, the choice of scheduling algorithms must be done
in regard to a particular platform model and a particular
application model. In order to clearly define the platform’s
and application’s characteristics, we first give a more formal
model of the platform and of the workflows. Then we present
the works related to the workflows scheduling on grids.

A. Platform model

Executing an application on the grid usually consist in
asking a grid administrator, human or not, for nodes allocation.
Then the system respond with a set of nodes that are availiable
and the start time of the reservation. However, on Service
Oriented Architecture Grids (SOA Grids) this model can vary
as the request for nodes depends on the services deployed on
the nodes. In some grid middlewares such as Diet or Ninf, the
user asks for computing nodes that provides a set of services.
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Different types of services can be installed on the same node.
In this context, nodes are selected according to the services
the workflow needs.

In our model, nodes and processors are equivalent, the
execution platform is modeled as a set of processors, inter-
connected by network links. It is represented as an undirected
graph: PF = (P,L), where the vertices are the n nodes pi
(pi ∈ P : i ∈ [1..n], n = |P |) and the edges are the network
links li between these nodes.

Each node pi implements a limited set of services or
functions to carry out the different parts of the workflows.
We define as Fi the set of functions that the processor pi is
able to perform.

Fig. 1 gives an example of a grid with the communication
links. The communication graph is complete as the commu-
nications usually use the internet network. On this figure, the
letters A, B, C and D represents the services deployed on
the nodes of the grid; different services are deployed on the
nodes.

TABLE I: Exec. platform performances

p1 p2 p3 p4

Ty
pe

A 20 - - 15
B 10 10 - -
C - 10 10 -
D - - 10 10

Table 1 gives an example of the performances that charac-
terize the platform. The given values correspond to the number
of time units necessary to carry out a given service on a given
processor, such values can be obtained by extrapolation of
unary execution tests. When no value is given, the processor
is not able to process the given service. For instance, processor
p4 can process functions A and D but cannot process functions
B and C.

B. Application model

The defined platform model executes a batch of workflows.
Usually a workflow is defined as a global task composed of
sub-tasks. Each of these sub-tasks has to be executed in a
constrained order. The workflow is done once all of it’s subtask
are computed.

Our target application is a set of images and data onto which
we apply the same operations, the workflow, composed of
filters or analysis operations. The whole set of images to be
executed is available at some starting time t and the workflows
are identical.

A batch B of length m is defined as a set of m identical
instances Jj of the job (workflow) J such as B = {Jj :
j ∈ [1..m]}. The job J is composed of several tasks with
dependency constraints and is represented by a directed acyclic
graph (DAG): J = (T,D) where the vertices T are the tasks
tk and the edges D are the dependency constraints between
the tasks. Note that there will be several instances of task tk
belonging to different instances Jj of job J .

Let F be the set of all the functions used by the job J thus
∪iFi = F where i ∈ [1..N ]. The time T needed to execute
a task Tk on different nodes pi is not uniform: T (Tk, pi) 6=
T (Tk, p

′
i).

Fig. 2 gives an example of a job we have to schedule M
times. The job is composed of five tasks. The arrows indicate
the dependency constraints. Note that this job needs several
time the same service A.

C. Related works

Scheduling problems have been studied extensively in the
literature. In general, DAG scheduling is an NP-Complete
problem [1].

[1] is a survey for scheduling DAG in a static context
considering homogeneous platforms. Therefore, this problem
is also NP-Complete in a Heterogeneous Computing (HC)
environment. So, requiring of good heuristics is mandatory
in this domain. Classical solutions to optimize the makespan
of a set of tasks use heuristics such as Earliest Finish Time [2]
or Critical Path [3]. A more complete study evaluates eleven
heuristics in [4] for example: Min-min, Max-min or Sufferage.
These 3 heuristics are based on the Minimum Completion
Time (MCT). Genetic based scheduling algorithms [4], [5]
gives good results in HC but these approaches are very time
consumming compared to classical solutions. In the context
of the Grid, [6] presents a modification of the 3 previous
heuristics to take into account input and output data transfert
times in the computation of MCT. [7] studies dynamic map-
ping heuristics considering a class of independent tasks in HC
environment. When the tasks are multiple DAGs, problem of
fairness between DAGs are studied in [8]. These approaches
compute a off-line scheduling considering the whole set of
tasks. If the number of tasks scales up, the computation time
becomes too long due to the complexity of the algorithm.
The strategies applied to schedule workflows onto the grid are
presented in [9] with the description of real life medical appli-
cation. Another example of a scientific application workflow
is given in [10] about Ocean-Atmosphere modeling.

This study deals with static workflows scheduling in HC
environment considering a few hundred of identical DAGs and
limited resources. Finding an optimal schedule in this case is
not possible with direct method. Two solutions are suitable
in this context: (1) either use a scalable heuristic to compute
a suboptimal schedule or (2) use the results of an optimal
solution to a problem close to ours. So, three approaches match
this context: makespan optimization heuristic using genetic
algorithm, steady state techniques, and on-line techniques.



The suboptimal schedule strategy we evaluate is a static
genetic based scheduling algorithm adapted to our context:
GATS [11]. The algorithm explained the the next section is
able to schedule a large number of DAGs.

The second approach optimize the throughput of the work-
flow in the HC environment. This Steady-state techniques
achieve an optimal makespa n for an infinite number of
identical jobs [12]. The resulting schedule is composed of an
sub-optimal initialization stage that allow to enter the optimal
steady-state stage and a sub-optimal termination stage that
performs the remaining tasks. This schedule will tend towards
optimality when the size of the batch increases, as the weight
of the initialization and termination stages decreases in the
global schedule. When the number of batches is too small,
the sub-optimal stages overhead leads however to an inefficient
schedule. So, the question is to evaluate for which number of
batches the steady-State scheduling becomes interesting.

The third approach is an on-line oriented techniques that
schedule tasks on the fly during the jobs execution. They take
the state of the system into account to assign new tasks to
processors. These techniques are very easy to implement and
give rather good results. They give however no guarantee on
the quality of the schedule.

In our context, we can note that only the Steady-State
techniques benefit from the knowledge that the executed jobs
are identical.

III. SELECTED SOLUTIONS

Three algorithms are selected and adapted to our context
characteristics to allow us to schedule a workflow of identical
jobs. They represent different approaches and all of them give
good results in our context. The first chosen algorithm is list-
based on-line scheduling algorithm. This algorithm is used to
give us a reference makespan to ease the comparison between
the three algorithms. The second one is a static scheduling
algorithm for graphs of aperiodic tasks on a heterogeneous
platform. It is a genetic based approach that improves a
list-based scheduling heuristic. It allows us to evaluate the
performances of an algorithm designed for a set of tasks
to schedule a workflow. The last algorithm we evaluate in
this paper is a steady-state oriented scheduling algorithm
well adapted to workflow and periodic jobs scheduling. A
linear program allows us to optimize the throughput of the
workflow regarding the constraints given by the platform and
the periodic DAG to schedule. This solution is optimal in the
steady-state period of time when the both initialization and
termination stages are negligible [12]. It allows us to evaluate
an algorithm initially designed for an unlimited workflow
when the number of jobs are limited to a few hundred.

A. On-line Scheduling with knowledge

The workflow that we have to schedule is a set of DAGs
but not a unique connected graph of tasks. Therefore, it is
not possible to implement the well known EFT scheduling
algorithm because it is not possible to identify the tasks with
the earliest deadline: several tasks are ready at the same time

but do not have any precedence constraint between them. So
we implement a list-like scheduling algorithm which principle
is to schedule a ready task as soon as possible on the processor
that will perform it the first. No heuristic is used to select
the task to schedule unlike a classical list based scheduling
algorithms [2], [13]. This mechanism shortens the traversal
time of a job. The best processor is selected using the Earliest
Finish Time (EFT) heuristic [2].

B. GATS

Genetic Algorithm for Task Scheduling (GATS) [11] is
a genetic based algorithm that improves about 7% to 10%
a classical scheduling algorithm for aperiodic tasks on a
heterogeneous platform. The GATS approach enhances the
schedule computed first with a list based scheduling heuristic.
The initial population is created at the first step: the first
individual represents the result of a list-based schedule which
favors the tasks on the critical path of J . Then one individual
per processor represents a random schedule where all the tasks
are affected to the given processor and the remain of the
population represents random schedules.

GATS individuals represent tasks-processors allocations.
Thus, the scheduling is computed by a decoding step of
each individual. This reconstruction phase has to take into
account the dependencies between tasks while respecting
the allocation. The fitness f of each individual is deduced
from the decoded schedule thanks to the formula: f =
1/Makespan(schedule). The classical genetic operations on
individuals such as mutations or cross-overs are easy to
compute because of the simple chromosome representation
without time informations and precedence constraints. Indeed,
one task can be moved from one slot to another. Once the
initial population is created, GATS performs a limited number
of loops that compute the fitness of the individuals, a rank-
based selection, mutations and cross-overs. The termination
criterion used is this fixed number of loops. In the worst case,
the computed schedule is at least equal to the initial list-based
solution.

C. Steady-state scheduling

In our context, the optimization of the scheduling is to
maximize the throughput of of the workflow we have to
compute. But, we also have to respect the constraints due
to the platform characteristics. These constraints ensure that
jobs are fully computed. So, this optimization problem can
be written as a linear program. When the system enters the
steady-state stage, the solution is easy to compute because
the linear program variables are rational thanks to the peri-
odic scheduling approach. Indeed, the solution of this linear
program gives the ratio of time spent by each processor for
each task of the jobs and the proportion of time spent by
each network link to send task results for each inter-tasks
dependencies. This solution is translated into a weighted sum
of allocation, where an allocation represents the traversal of a
job in the platform (task/processor associations). The steady-
state scheduling computes a period in which the allocations are



interleaved according to their weight. The steady-state stage
is the concatenation of the adequate number of these periods
to compute the whole size of the workflow.

Before entering the steady state stage, the platform has
to be initialized by computing every tasks needed to enter
the steady-state. After the last period, a termination stage is
also necessary to finish all the DAGs initiated by previous
periods. In the original algorithm, the initialization is not
optimized. The master computes itself every tasks without
parallelism facility. As the initialization, the termination stage
is performed by the master in a sequential way. Its role is
to terminate every task staying in the platform after the last
steady-state period.

IV. SIMULATION

The targeted applications are very time consuming. For
this reason, we make the assumption that the bandwidth of
PF allows us to neglect the communication time for all the
computation steps of each instance Ji of the job J .

Building a mathematical model of the algorithms is not
realistic due to the complexity of the problem. Their imple-
mentation on a grid cannot give reproducible results. So we
use a grid simulator to evaluate the three algorithms.

The simulator is implemented above SimGrid and its MSG
API [14], [15]. The algorithms are implemented with the
master/slave paradigm. A master node runs the scheduling
algorithms and dispatch the tasks to process to slaves node
according to the scheduler decisions.

Slaves node runs two threads, the first one is in charge of
receiving requests from others nodes. When the requests is a
tasks computation, the task to perform is put on a FIFO queue.
Other requests (for example query about queue length, time
when the processor will be idle) are answered in place.

The second threads iteratively removes a task from the
queue and execute it. The computing power of an host is not
shared, tasks are executed with full computational resources
one after another without preemption.

Two of the three algorithms are off-line scheduler, for
them the simulator is just a tool to validate the computed
schedule. Indeed an off-line scheduler has a full knowledge
of the platform before the actual execution and it’s computed
schedule is just played back on the execution platform.

The third algorithm is an on-line scheduler, thus it is closely
tied to the simulator. For each of it’s scheduling decisions this
scheduler has two query each of the processors for tasks queue
length and the time when there will be able to finish a given
task.

Two evaluate the simulated algorithms performances we
introduce the notion of efficiency as the ratio between the opti-
mal makespan over the simulated makespan. As the scheduling
problem is NP-Hard and the size of the problem is important,
we are not able to evaluate the optimal makespan. However
the number of jobs to process (N ) divided by the steady-state
throughput (ρ) is a good optimal lower bound.

efficiency = makespano/makespanr

A B
p1 p2
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B 10 -

Fig. 3: Simple problem
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Fig. 4a: Gant diagram with infinite buffers

efficiency = N/(ρ×makespanr)

• makespano: lower bound
– makespano: N/ρ,
– reference time

• makespanr: makespan resulting from experience,

V. ALGORITHMS ADAPTION

1) On-line: The on-line algorithm is a simple list scheduler.
The task selection is performed by selecting the first task that
is ready to be scheduled. The processor selection is based on
the earliest finish time heuristic.

When scheduling multiple instances of the same job this
approach is problematic. In the example of Fig. ?? the on-line
algorithm produces the gant in Fig. 4a for 10 instances. All
of the tasks A are scheduled first because at time 0 there are
ready. Then at time 10 the first task B is ready but all the slot
are reserved for A.

This schedule has a makespan of 150 (5×A+10×B on p1)
and during the last 100 time units, p2 is idle. Our solution is to
limits the size of the processors input buffer, for example with
a limit of 1 the gant diagram is shown in Fig. 4b. Because of
this buffer limit some tasks B are available concurrently with
tasks A, the makespan is lower (110 time units) and processors
p2 is idle only for 20 time units.

2) GATS: The original GATS algorithm is not designed
to schedule multiple instances of the same job. One simple
method to make GATS able to solve this problem is to
schedule all the job instances as a single job. This method
increases however the time and the physical memory necessary
for GATS to compute the schedule. So we use a hybrid method
that schedules the tasks in successive intervals of x jobs and
appends the set schedules.

This method introduces a new problem: the concatenation
of two successive intervals leaves some processors idle so, we
overlap intervals as shown on Fig. 5. The interval Intervali

B B B B B B B B B BA
Ap2 A A A A A A A A

p1

Fig. 4b: Gant diagram with buffers of size 1
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ends when the processor P1 finishes its task (fig.(a) Ii+1).
The processor P0 is idle between I

′

i+1 and Ii+1 (fig. (b)). The
interval overlapping re-uses this idle time in the next interval.
The interval Intervali+1 starts at I

′

i+1 instead of Ii+1 with
the information that P1 is not available until Ii+1. Figure (c)
shows the overlapping of Intervali and Intervali+1.

3) Steady state: As explained in III-C, the objective of the
steady-state algorithm is to maximize the throughput. A side
effect is that the makespan-minimization for finite number of
instances is not an objective. The original algorithm execute
initialization and termination sequentially, in this study, we
parallelize these non-optimal stages with the on-line algo-
rithm.

VI. ALGORITHMS COMPARISON

In this part we compare the performances and the behavior
of the chosen algorithms according to different parameters:
platform characteristics, number of workflows to compute, etc.
We study this behavior for different complexity and size of
workflows.

The workflows are given by Fig. 6, Fig. 8 and Fig. 10. The
letter inside the vertices of the workflow graph are the task type
(i.e. the service) to be executed at this step of the workflow.
The platforms are presented in Table 2. For instance, in this
table, for the PF3 platform, the processor p4 needs 10 time
units to perform a task A (p4(A) = 10).

A. Small jobs

The first example is a very simple workflow composed of
two tasks A and B where B use the result of A, see Fig. 6.
We execute several instances of this job. The idea here is to
show, using this very simple job, one of the drawbacks we
have identified.

A B

Fig. 6: Small job J1

We execute this workflow on different homogeneous plat-
forms, with equivalent execution time for the same function,
or on heterogeneous platforms. The platforms described in
Table 2 are the platforms used for Fig. 6 but we did more
simulations to identify the possible issues. As a first result, we
can note that even on homogeneous platforms the efficiencies
of the algorithms may depend on the characteristics and very
different results may be obtained as shown on Fig. 7a, Fig. 7b
and Fig. 7c.

TABLE II: Simulation platform PF1 to PF3

Type PF1 PF2 PF3

p1 p2 p3 p4 p1 p2 p3 p1 p2 p3

A 10 - 100 1000 10 50 40 100 100 100
B - 10 10 - 100 - - 20 - -
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Fig. 7a: Simulation with platform PF1 and job J1

On these figures we can observe three different behaviors
for the algorithms. First, on Fig. 7a GATS generates nearly
optimal results which tends toward an efficiency of 1 around
250 workflows.

On the opposite, the steady-state gives poor efficiencies, two
times less than the GATS when the number of jobs is less than
200. Then the efficiency slowly increases. The reason of these
poor efficiencies is that this approach try to use as much as
possible the whole platform capabilities to optimize the flow:
so it uses p4 for executing A tasks while it cost almost 100
times more than on other machines. To use p4, the algorithm
generate a very long period of 110 workflows, 220 tasks. Due
to its conception, the algorithm first generates all the tasks
needed to enter the steady-state period: 110 A tasks in the case
of platform PF1 and workflow J1. This means that before
entering the steady-state period the algorithm must perform
110 A tasks and, when the number of jobs is less than 110,
the schedule does not start a period. Then, we have to execute
110 workflows more to realize a period. This means than under
220 workflows no complete period is realized. For sets of
workflows bigger than 220, the steady-state will progressively
makes up the difference with the other algorithms and tends
toward optimal. So, a first drawback of this algorithm is that,
by using all the resources available on the platform, it may
generate poor schedules.

Another important remark on the steady-state schedule for
the PF1/J1 case is that it starts by an initialization phase
that generates all the needed tasks to enter the period. For
these tasks, the aim is not to find the best schedule of the
workflows implied in the initialization phase but rather to reach
the period. We can illustrate that with the case of platform
PF1 and job J1. Each period computed by the steady-state
algorithm will generate 110 tasks. So to enter this period, we
need to generate 110 A tasks that have precedence constraints
with the 110 B tasks that will be executed in the period.
Obviously, looking at the PF1 platform, it does not lead to a
good schedule to first executes all these A tasks. This is the
reason why the schedule behaves so badly in this case.
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Fig. 7b: Simulation with platform PF2 and job J1
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Fig. 7c: Simulation with platform PF3 and job J1

For the on-line scheduling, the efficiencies are stable around
0.9 which is rather good, but as good as for the GATS. The
explanation is the short view of this algorithm: at each step
it just schedules the ready tasks without taking the rest of the
workflows that has to be done. So it does not benefit form a
global view on the schedule. We can consider that this result
is rather good compared to the simplicity of the algorithm.

On Fig. 7b, for platform PF2 and the same job J1, all the
algorithms gets near optimal results. We can note that, in this
case, the solution was obvious: the scheduling algorithms do
not have an other choice than executing B tasks on processor
p1 and these tasks are critical as it it possible to execute A
tasks more quickly either on processor p2 or processor p3.
In this case, the short view of the on-line algorithm, is not a
drawback as there is nothing else to do than executing as fast
as possible these B tasks.

On Fig. 7c, for PF3 platform and the same J1 job, we can
note that the GATS algorithm decreases its efficiencies when
the number of workflows to execute increases. The on-line
algorithm is stable almost the same as on Fig. 7a while steady-
state algorithm quickly tends toward an optimal efficiency. The
reason of these behavior is the choice that has to be done on
processor p1. To get good efficiencies, the three processors
must be used to execute A tasks and sometimes processor p1
must be used to execute B tasks. The steady-state algorithm
find the optimal flow, with a period of 200 where p1 start
by executing 5 B tasks, for 100 and then execute one A
while the other processors execute 2 A tasks each. In this
case, GATS cannot find an optimal schedule when the size of
the worksflows set is greater than 200. This results is closely
linked to the size of the GATS period which is set to 400 tasks
in this case, so 200 workflows. For the on-line algorithm, the
results are explained as for Fig. 7a: the short view cannot
anticipate to optimize.

In general, for small jobs, the scheduling decision is often
simple and all the algorithms get good efficiencies, very close
to the optimal. When the number of workflows is less that
hundred, the GATS often gets the best efficiencies. However,
the results are not reliable in the sense that on some particular
values it may perform very badly. The standard list algorithm
performs rather well but does not always reach the optimality:
it may stay around 0.9 even when the number of workflows
increase. The steady-state scheduling has to make up its
initialization and termination stages.

From the three figures, Fig. 7a, Fig. 7b and Fig. 7c,
we can also conclude that the architecture/characteristics of
the platform impact on the algorithm behavior as, for the
same simple job, the efficiencies may vary according to the
following observations:

• the heterogeneity of the platform will extend the period
and leads to longer initialization/termination phases and
thus to an higher cost. So this algorithm will have no
interest until a high number of workflows.

• the complexity of the platform may generate poor results
for the GATS algorithm. This is probably linked to its
division into intervals.

• the short view of the on-line algorithm may lower its
efficiencies in some cases, in particular when the critical
task must be executed on one processor and that other,
earlier tasks, may be also affected to this processor.

In the following we study the behavior of the algorithms
with much complex workflows.

B. Medium jobs

In this part we study the execution of jobs J2 and J3 (see
Fig. 8 on the same platform PF4 (see Table 3). The aim here
is, on the one hand, to see if the behaviors differ when the
complexity and size of the workflow is higher and, on the other
hand, to analyze these behaviors regarding to the heterogeneity
of the platform.

A

B
C D(J2)

A
B

A
A(J3)

Fig. 8: Medium jobs

On the platforms given in Table 3 and compared to the
platforms of Table 2 the heterogeneity is lower for both
the execution times and the application available one the
platforms.

TABLE III: Simulation platforms PF4

Type PF4

p1 p2 p3 p4

A 20 - - 20
B 10 10 - -
C - 10 10 -
D - - - 10
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Fig. 9a: Simulation with platform PF4 and job J2
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Fig. 9b: Simulation with platform PF4 and job J3

The results shown on Fig. 9a can be compared to Fig. 7a,
where the steady-state slowly improve its efficiencies, and the
results shown on Fig. 9b can be compared to Fig. 7c.

C. Big/complex jobs

This last part presents results with bigger jobs. To evaluate
the impact of the dependency on the efficiencies, we use the
same set of tasks but with different dependencies. Note that,
as explained before, we have no communication cost in the
experiments so that the deviations between the algorithms
efficiencies is just linked to the dependencies characteristics.

A B C D A B C D A(J4)

A
A B C D

B C D A
(J5)

A B C D

A B C D

A
(J6)

(J7)
B

C

D

A

B

A C

D

A

Fig. 10: Complex jobs

We execute these jobs on two different platforms PF5 and
PF6 given in Table 4. Platform PF5 is very simple and have
homogeneous execution time. We added two more processors
on platform PF6. These processors have heterogeneous exe-
cution times for the different services.

Globally, the results in these cases are good as must of
them are no more worst than 10% from the optimal. So
the response of the algorithms to the complexity of the
workflow is good. There no need to presents the results of the
algorithms on platform PF5 as all the algorithms find nearly

TABLE IV: Simulation platforms PF5 and PF6

Type PF5 PF6

p1 p2 p3 p4 p1 p2 p3 p4 p5 p6

A 10 - - - 10 - - - 100 1000
B - 10 - - - 10 - - 10 -
C - - 10 - - - 10 - 10 10
D - - - 10 - - - 10 - -
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Fig. 11a: Simulation with platform PF6 and job J4

optimal solutions for these workflows, whatever the number
of workflows is. The difference between the algorithms results
are limited to the initialization phase and are lower than 2%
from the optimal.

For platform PF7, just adding two more processors gives
very different results as shown on Fig. 11a and Fig. 11b. On
Fig. 11b, all the algorithms performs well while on Fig. 11a,
on-line and steady-state are 10% away from optimal, even for
500 jobs, and GATS decreases with the number of jobs.

The on-line algorithm and the steady-state algorithm per-
forms equivalently due to the size of the steady-state period.
The size of the period 100 and it terminates 37 jobs during
this period. This means that the initialization phase have to
execute a little bit less than 37×8 partial jobs before reaching
the steady-state period. As a consequence, most of the 500
jobs are executed outside the period and the results are no so
good.

For “chain like” jobs as J4 and J6, GATS performs well
until 250 jobs but its efficiency collapses for bigger sets of
jobs, while for J7 jobs the results are close to the optimal
(see Fig. 11b). For J5, the efficiencies start to be unstable from
250 jobs. This probably depends on the interval size used. The
explanation is in the length of the longest path in the workflow
graph: the longest the path is the worst GATS behaves. When
we have long path in the workflow’s graph then the time spent
by one workflow instance in the system increases. So the cost,
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Fig. 11b: Simulation with platform PF6 and job J7



TABLE V: Schedule computation costs

Size On-line scheduler Steady-state GATS
100 0.04s 0.05s 60.53s
200 0.10s 0.11s 85.46s
500 0.29s 0.23s 239.25s
750 0.79s 0.75s 439.25s
1000 1.09s 0.90s 617.43s

in term of idle time on processors, of using several intervals
for GATS also increases. One solution to this problem could
be to use bigger periods to limit these waste of time, however
this increases the computing complexity of the schedule as
shown is the next part.

D. Computation time of the schedules

In this part we compare the time costs to compute a
schedule. As the workflows are executed on a grid, what we
want is to execute them as soon as we get the resource or
the nodes from the reservation service. So the time spent to
compute the schedule is of importance as during this time we
cannot execute the workflows.

The Table 5 shows the average time needed on an Intel Xeon
running at 3.2 GHz to compute the schedules depending on the
number of workflows to execute. Both the on-line algorithm
and the steady-state algorithm are very fast to compute the
schedule. GATS gets reasonable execution time for less than
200 jobs but clearly does not support on the fly execution
above this value.

VII. CONCLUSION AND FUTURE WORKS

The paper presents a study on three different scheduling
algorithms for a set of jobs on SOA grids. Our application
context focus on workflows applied to data and a typical use
case of this work is the processing of sets of data for medical
analysis and image rendering. The originality of the work is,
on the one hand, the schedule of identical jobs which allows
to use algorithms designed for flow optimization and, on the
other hand, the SOA grid context where not all applications
or services are available on all servers. Each of the three
compared algorithm is suited for a specific need: the on-line
algorithm is simple, the steady-state algorithm guaranties an
optimal flow and the GATS algorithm generates schedules with
good makespan.

This study exhibit several results: the impact of the platform
and of the workflow characteristics on the efficiencies and
some drawbacks in the algorithms design. The on-line algo-
rithm suffers from a short view and use processors that will be
needed in the close future for critical tasks. The steady-state
algorithm has too long sub-optimal stages when the platform
is heterogeneous or when the workflows are complex. The
GATS algorithm becomes costly and instable or generates
poor schedules in some cases when the number of workflows
increases.

Our future works will concentrate on improving these
algorithms to fill these deficiencies. For the on-line algorithm,

we will try to extend its view by defining a scheduling
window where critical tasks could be identified. For the GATS
algorithm, we clearly need to reduce its cost. A possible
way is to better tune the genetic parameters and adapt the
interval size depending on the platform. Finally, the steady
state scheduling can be improved by optimizing the period
size and the initialization stage.
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