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Abstract—This paper presents an approach to enhance the
performance of floating offshore wind turbines mounted on
semi-submersible platforms through the integration of a Super-
Twisting Sliding Mode Collective Blade Pitch Controller (STSM-
CBPC) with a Recurrent Radial Basis Function Neural Network
(RRBFNN). The proposed CBPC, developed based on a refined
nonlinear control-oriented model, leverages the RRBFNN as an
adaptive estimator to address lumped uncertainties and external
disturbances, when operating above the rated wind speed. The
recurrent neural network features a dual feedback loop structure.
The internal feedback loop, operating on the hidden layer, and
the external feedback loop, enabling the transmission of the
output signal back into the input signal, collectively contribute
to a comprehensive capture of the system’s state information.
To ensure convergence, adaptive laws governing the neural
network are derived through Lyapunov analysis, ensuring real-
time updates to the RRBFNN parameters. Simulation results
demonstrate the superior performance of the proposed CBPC
over the baseline gain scheduling proportional integral controller
for regulating rotor speed and mitigating platform motion.

Index Terms—Super-twisting sliding mode control, recurrent
neural network, floating offshore wind turbine

I. INTRODUCTION

In the face of intensifying concerns surrounding global
warming, the imperative for meeting climate targets, and the
ever-growing demand for sustainable energy solutions, the
field of renewable technologies is witnessing rapid evolution.
Among these advancements, Floating Offshore Wind Turbines
(FOWTs) stand out as a pioneering innovation within the
realm of wind energy. Leveraging the distinctive advantage
of a floating platform, FOWTs enable the strategic placement
of turbines at greater distances from coastlines, facilitating
extensive deployment with minimal visual impact. While this
strategic positioning holds the promise of enhanced power
generation, it also introduces a spectrum of control challenges.
The operational range of wind turbines, segmented into regions
based on incident wind speed, necessitates tailored control
strategies. Region III, characterized by wind speeds surpassing
the rated value, becomes a focal point where the primary

objective is to maintain generated power at its rated value.
However, the inherent nonlinear dynamics of FOWT systems,
compounded by hydrodynamic and mooring dynamics due to
the floating platform, add a layer of complexity into effective
control mechanisms. Notably, the manifestation of the negative
damping phenomenon in Region III poses the risk of instability
in the platform’s pitching motion, demanding precision in
power regulation coupled with the minimization of platform
motion.

While conventional control methodologies, originally de-
signed for fixed wind turbines, have been adapted for FOWT
systems using controllers such as Gain Scheduling Propor-
tional Integral (GSPI) [1], their limitations in terms of sensi-
tivity to external disturbances and limited robustness against
unmodeled dynamics promote the exploration of more so-
phisticated alternatives. Various linear control strategies, em-
ploying model linearization around specific operating points,
have been proposed. However, their efficacy is degraded when
the turbine operates away from the defined operating point.
Addressing these challenges, a more promising alternative
involves the adoption of nonlinear controllers. The Super-
Twisting algorithm-based Sliding Mode (STSM) controller
emerges as a compelling choice, demonstrating significant
performance while mitigating the chattering issues associated
with standard Sliding Mode Control (SMC). In tackling Re-
gion III control challenges in FOWT systems, researchers
have developed a first-order SMC based on a reduced model
[2]. Additionally, an STSM controller has been successfully
implemented [3], [4], leveraging a linear model generated
by OpenFAST [5]. Embracing a continuous approach with
adaptive methods, an adaptive version of the STSM controller
has demonstrated superior performance in rotor speed control,
power regulation, and the platform pitch motion reduction
compared to traditional GSPI approaches [6].

Although the STSM controller demonstrates significant
efficacy, challenges arising from the bounded sign function
necessitate innovative solutions. Slower convergence of the
sliding variable when distant from the origin necessitates an



increase in gains, exacerbating the occurrence of chattering
effects. To address this limitation, introducing an artificial
neural network as an estimator becomes a pivotal strategy
to enhance the STSM controller in managing uncertainties
and disturbances inherent in the model. Leveraging on the
capability of neural networks to approximate a diverse range of
nonlinear functions, their integration with the STSM controller
strengthens the system’s robustness. The resultant composite
controller design achieves control objectives and disturbance
attenuation through the feedback regulation mechanism of
the controller and the neural network estimator, respectively.
Recurrent Neural Networks (RNNs) are particularly investi-
gated for their capacity to approximate dynamic mappings.
Thus, RNNs have attracted considerable attention as a popular
and effective approximator in the control of dynamic sys-
tems. Additionally, the Radial Basis Function Neural Network
(RBENN) stands out as a well-explored class known for its
straightforward. Therefore, the synergistic combination of both
structures, RNN and RBFNN, enhances the overall approx-
imation ability. Prior research has explored the integration
of neural networks with Sliding Mode Control (SMC) for
nonlinear systems. For instance, in [7], a robust adaptive
SMC strategy based on RBFNN is presented for time-varying
systems. In another instance [8], an SMC scheme based on
an RBFNN is proposed for robotic manipulators, where the
RBF network approximates the nonlinear dynamics of the
robot. Moreover, a neural network-based SMC employing dual
feedback loop recurrent structure has been investigated for
MEMS gyroscopes in [9].

In this paper, a Recurrent RBFNN (RRBFNN), harnessing
the dynamic approximation capabilities of RNNs and the struc-
tured simplicity of RBFNNSs, is proposed as an indispensable
complement to the STSM controller. This synergistic inte-
gration aims to enhance robustness, resulting in a composite
controller design capable of achieving control objectives and
mitigating disturbances.

The paper is structured as follows: In Section II, a refined
nonlinear Control-Oriented Model (COM) is presented, speci-
fying the essential controlled dynamics. Section III introduces
the structure of the RRBFNN estimators. The design of
the RRBFNN-based STSM-CBPC (RRBFNN-STSM-CBPC),
detailing the formulation of adaptive laws for the RRBFNN is
given in Section IV. Section V validates the proposed CBPC
through a comparative analysis against the standard STSM-
CBPC and the Baseline controller. Finally, Section VI provides
a conclusive overview of the paper.

II. FLOATING OFFSHORE WIND TURBINE MODEL

In this study, the NREL OC4-DeepCwind 5 MW semi-
submersible Floating Offshore Wind Turbine (FOWT) [10] is
considered. The control laws are derived based on the Homer
nonlinear COM [11], which serves as a foundational frame-
work for designing nonlinear controllers [12]. This section
offers a condensed overview of the chosen model, presenting
dynamic reformulations essential for crafting effective nonlin-
ear controllers.

A. Refined Control-Oriented Model

In this study, the nacelle yaw motion is neglected, and the
semi-submersible FOWT is treated as a single rigid body.
The state vector encompasses position and orientation states,
denoted as x,, and 6, respectively, including their derivatives.
Additional states, namely rotor azimuth angle €, and rotor
speed w,, are incorporated, leading to the following state
vector : .

x = [xp,0p,0p, 7, 0p,w,] " 1)

with x©, =[z,y,2] and 0, =[0,,0,,0.].

The control input vector u for operating in Region III is
composed of the blade pitch angle 3, as the generator torque
T, is fixed at its rated value here.

u=/p 2)

The nonlinear COM underwent simplifications through the
adoption of a one-mass rigid shaft model to capture the
drive-train dynamics w,. The resulting simplified equation is
expressed as follows:

. 1 P

Wy = jl(;r — nng) (3)
where n, represents the gearbox ratio, and J; denotes the low-
speed shaft equivalent inertia. The aerodynamic power P is
defined as:

1
P = 5pa7TRng()\76) ||UTLH§) (4)

where p, is the air density, R, is the effective rotor radius,
v, is the equivalent velocity vector normal to the face of the
rotor, C), is the power coefficient—a highly nonlinear function
of the tip speed ratio A = ﬁij‘; and 8. || - |2 denotes the
Euclidean norm of a vector.

Additionally, a sole thrust force denotes as F' is employed
to encapsulate all forces arising from the interaction between
the wind and the FOWT. This force is applied at the central
thrust point within the hub.

1
F = 2 pamRICi(A, B) [[vul] v ®)

where C; represents the thrust coefficient, a deeply nonlinear
function of variables A and f.

The resulting equation of motion are then presented as
follow:

(mglg + ma)_l F

Tm
i | =|ROI,'RO) (Ta+Tp+Tc+Tp)
Wy 7 (o —ngTy ©

= f(z,u,v,w)

where, my is the total mass of the FOWT while m,, represents
the hydrodynamic added mass vector. T's, T, T, Tp are
the aerodynamic torque vector, the buoyancy torque vector,
the mooring line torque vector, the hydrodynamic drag and
inertial torque vector, respectively, Iy denotes the inertia tensor
of the FOWT, R(6) is the simplified rotation matrix, and f =
(z,u, v, w) constitutes the nonlinear function vector describing



the equations of motion. Here, v and w are the wind and wave
disturbance vectors, respectively.

B. Model Dynamics Adjustments for Control Design

In Region III, the principal control objectives involve reg-
ulating the generator power to its rated value. Considering
T, fixed, this objective is equivalent to maintaining the rotor
speed at its rated value w,. s, expressed as the tracking error e,..
Simultaneously, a secondary imperative for efficient operation
involves ensuring stability in the platform pitch movement by
driving the platform pitch rate w, to zero, expressed as e,:

—0=w,. 7)

Since both dynamics share the same control input 3, a
challenge arises in the form of an under-actuated control
problem. To address this, the rated rotor speed w,q is adapted
from a fixed value to a linear function w}’; correlated with the
platform pitch rate:

€r = Wy — Wref, €y = Wy

1— kywy) ®)

where £, is a positive constant. Consequently, the control
objective for the FOWT in Region III is to drive the following
composite tracking error e to zero:

— wWref(1 — kywy) = e, + ke,  (9)

where k; = kywycyr is a positive constant scalar.

However, achieving these control objectives is impeded by
the intricate coupling between states and control inputs in w,.-
and 9'y-dynamics. Hence, a reformulation of these dynamics
is essential for the effective design of the control system.
The thrust and power coefficients, denoted as C,(A,3) and
C¢(A, B), are modeled through polynomial functions:

CPO‘?ﬁ) :gcpﬁ""fcw Ct(>\75) =g+ for

where gep, get, fep and fe; are polynomial functions with
respect to . .
This leads to refined dynamics for w, and 6,:

Wy = ér =98+ Dy, wy = ay = gyﬂJFDy (1)

where w, denotes the platform pitch rate, and g,, g, are
nonlinear functions of w, and w, respectively. The lumped
uncertainties and external disturbances for each dynamics are
represented by D, and Dy, defined as follows:

w:ef = w"'d(

*
€=Wr — Wpef =Wy

(10)

{gr = 2le7 2gcp ||V’ﬂ||2 (12)
aT R n
D, = f;ler fcp ||VTL||2 ?Tg
9y = doger | Vall5 (02 + 62 + 62 + 1) (13)
Dy = dofet||Vall5 (63 + 65 + 62 + 1) + D,

where Dy, and dy are expressed as detailed in [13].
Assumption 1. D, gmd its derivative DT are bounded with
|D.| < A1 and |D,| < ppo, where A and Ao are two
positive constants.

Assumption 2. D, and its derivative D, are bounded with
|Dy| < Ay1 and |Dy| < Ay, where \y; and Ao are two
positive constants.

ITI. RECURRENT RADIAL BASIS FUNCTION NEURAL
NETWORK ESTIMATOR

This section presents the overall architecture of the consid-
ered RRBFNN, chosen for its significant ability to approximate
unknown nonlinear functions in dynamic systems.

A. RRBFNN Structure

RNN structures are categorized into two classes based on
the nature of feedback signals they employ, either the internal
signal or the output signal as the feedback signal. The former
structure is known as the internal feedback loop, while the
later structure is named external feedback loop. The considered
RRBFNN’s structure, as depicted in Fig. 1, comprises an input
layer, a hidden layer, and an output layer. This design leverages
both internal and external feedback loops, enabling the capture
of both internal states and output information. Moreover, the
hidden layer adopts the well-established Gaussian RBFNN
structure. The signal propagation within the neural network

3
=

Hidden Layer

Fig. 1. RRBFNN structure

unfolds as follows:
Input Layer: The output signal yfl) of the i-th neuron of

the input layer of M neurons is expressed as:

D)yx(1) (3)

z, W " ex

yV = Sl (14)
eexy

where X = [x(ll) . xgvlj)] is the input signal vector where

:cgl) is the input value for the i-th neuron. The output vector

is denoted as Y1) = [yil) .. .yg\}[)], exy® and eexy® repre-
sents the output signals of the RRBFNN output layer in the
previous and pre-previous time steps, resyectlvely The input
weight vector denoted as W) = W(1 WMl)] connects
the output signal to the input layer of the external recurrent
loop.

Hidden Layer: The output signal y§2) of the i-th neurons
of the hidden layer composed of N neurons with Gaussian
activation function is expressed as:

(2)

y; =exp(—b;), with (15)
Mo (1) @), (2) 2
(y; "+ W7 exy;™ —cji)
0;=> 2 (16)

j=1



where the output vector of the hidden layer is Y(?) =
[ygz) . yﬁ)} and W) [Wl(Q) e WJ(VZ)] is the weight
vector of the internal recurrent loop, exyl@) is the out-
put signal of the hidden neurons at the previous time
step. C = [011...CM1...01N...CJWN] and B =
[b11...bapa .. bin ... by represent the centers and width
vectors of the Gaussian function respectively.

Output Layer: The output signal y®) of the neural network
is expressed as:

N
y® = WETY® = 3w ®y@

=1

a7

where W (3) = [Wl(g) . W](\,3 )] is the weight vector connecting
the hidden layer with the output neuron.

In this neural network structure, the weight vectors
WO W@ W) and the Gaussian parameters (C, B), are
adjusted online to converge towards a precise approximation.
Consequently, the RRBFNN output is given by:

y® (X, 1/{/(3)7 [/{/(2)7 ]/V(l)7 C,B) =

W(S)Ty(2)(X, W(Q),W(l),C,B). (%)

B. RRBFNN Estimator

The RRBFNN can be employed to approximate an unknown
nonlinear function f. The output of the neural network, aimed
at capturing f and denoted f, is given by:

f: WweTy(2) (X, w® w C,B) = w®Ty@  (19)

Based on the universal approximation property, there
exist optimal weight vectors and Gaussian parameters,
W W@ W= C* B* for the estimation of f such
that:

f= W(?’)*TY@)*(W(Q)*,W(l)*,C*,B*) + €

—WETy @ | (20)
where €* is the minimal approximation error of the neural
network. Thus the approximation error between f and f is
defined as:

f _ f — W(3)*Ty(2)* + e — W(3)TY(2)
= (W(?’) + W(3))T(y(2) + {/(2)) —WOTy @) L
WO Ty®@ L wdTy®@ L jyG)ITy (@) 4 *
2D
where, W3 = WG)* — w®) and Y = y@* _ y (@),
Based on the multi-variable expression of Y@, Taylor

expansion linearization is performed to obtain a partial linear
function of the adaptive parameters:

S Ow®) oW ) aC
v (22)
oYy @ .

+ B+9

0B

where W2 = W@ W@, Wwh = wh* Wl ¢ =
c*—-C, B=DB*— B, § is a high order term, and the partial
derivatives are defined as:

T
5yN(2)

0z

.
83]1(2)
0z

oY (2)

0Z @3)

with Z = WG W@ Wl C| B, respectively.
Substituting (22) into the expression of the approximation
error:

Fo foWOTY@ L@ Ty@ L [peTy@ 4 -

. 9y (@ Iy (@
— Ty 3T 2) ey
=Wl Ty® L w (aW(2) + aW<1>W

v - gyv@ B .

+ 68—00 + aa—BB +0)+WETY@ 4=

- oy @ oy @
— Ty @ 3T ) €y
=Wy AW (6W<2> awm "

Y@ - gy @ _

——B) +¢;
B
oC 0 24)

where e¢f = WO®T§ + WOTY® 4 ¢ is the lumped
approximation error of the neural network.

IV. ADAPTIVE CONTROL DESIGN

In this section, the synthesis of a composite control strategy
involving the STSM control and the presented RRBFNN is de-
tailed as illustrated in Fig. 2. The resulting controller, denotes

= Error estimator =4l L By
9s
Py Adaptive law (33)
RRBF N FOWT @
_ -
s D | 1 |Boirer - AP —
Neural Network—- — —'C System
d 9s —
(30) + model ®
atjg y
Wy, Adaptive laws (33)
Super-Twisting

Controller
s (29) Bstsm

Fig. 2. Bloc diagram of the RRBFNN-STSM-CBPC

as RRBFNN-STSM-CBPC, is expressed by the following
control law:

B = Bstsm + Orrer + B¢, (25)

where f[sysm represents the standard STSM-CBPC, while
Brrpr is the contribution from the neural network, with S,
the error estimation.

A. Super-Twisting Sliding Mode Control Design

The STSM controller, widely recognized for its robust
performances in handling first-order systems amid model
uncertainties and external disturbances, is introduced in this
subsection.



Based on the formulation of the composite tracking error
(9) the sliding variable s and its time derivative are defined as
follows:

8= Wp — Wref + kywrepwy = e, + kiey (26)

5= ér + ki€y = Wy + k. 27
Substituting (11) into (27) yields the time derivative expres-
sion:

5= (grﬂ + DT) + kl(gyﬂ + Dy) =aqf+D (28)

where ¢, = g, + kigy and D; = D, + k; D, represents the
unknown lumped uncertainties and external disturbance.
According to Assumption 1 and Assumption 2, |D;| < Ajy
and | D;| < A2 where Ay = A1 +kiAy1 and Ajg = Apo+ki Ay
are two positive constants.
The control law Bgrgsas is then given by:

BsTsm = é(—kl V]slsgn(s) — kg/sgn(s)dT). (29)
Here, k1 > 0, k3 > 0 are the STSM controller gains, and
sgn(+) is the signum function.
To enhance the robustness and control performance of the
presented standard STSM-CBPC controller, the RRBFNN is
integrated to attenuate disturbances.

B. Design of RRBFNN-STSM-CBPC

This subsection outlines the design of the adaptive
RRBFNN-STSM-CBPC.

The primary objective of the neural network is to capture
and estimate the unknown lumped disturbance denoted as D;.
The input to the RRBFNN is chosen as z = [s, §], and the
output of the RRBFNN corresponds to the estimated value
ﬁl. Thus, based on (19) and (20), the expression of 151 and
D; are given by:

Di=Y® =w@Ty® D =wT(n)y® e (30)
where the difference ﬁl =D, — ﬁl is defined as (23).

The control laws of the neural network estimator Srrgr and
the error estimator are formulated as:

1

- 1
BrrBr = —— Dy, ﬁal =——&. (€1}
gi agi
Substituting (25) into (28), the s-dynamics can be described

as:
$ = —k1/|s|sgn(s) — kg/sgn(s)dT —Di—e+ Dy (32)

The following theorem is used to update online the parame-
ters of the neural networks (W1 W) WG € B), and the
lumped neural network error ¢;, by adaptive laws derived from
Lyapunov stability analysis to ensure the asymptotic stability
of the closed-loop system.

Theorem 1. Regarding the system (32), considering k; > 0
and ko > 0, if the learning laws are selected as (33), s will
converge to the origin asymptotically.

T kesgn(s)Y®
m
72
W@T:_MWMQWQT%M
72
p(2)
WwoT — 47k259”(5)vv(3yr§?;0>
3
7 (2)
G _kgsgn(s)W(3)T%Y—C
4
. k wETxE k
BT — _ 289”(8) OB , él _ ngn(s) (33)
5 "6

where 11, 12, 13, N4, 15, Ne are positive learning rates.

Proof. The system (32) is converted to the following form.

§ = —ki/|s[sgn(s) + (D; — D) — 1 + ¢
. 34)
¢ = —kasgn(s)
The following Lyapunov candidate function [14] is chosen
for the system (34).

1 1 < ~
V= kQ‘S‘ + 5(,252 -+ itT(W(:z)T?]lW(S))

1 - . 1 - .
- 5tr(W<2>T772W(2>) - 51m~(W<1>Tng~,I/I/(1)) (35)

| N DR 1
Ztr(CTnyC) + =tr(B"nsB) + — A&?
+27"( M4 )+27“( 15 )+2776 €]

where Ag; = ; — €. Based on (24), the time derivative of V'
can be calculated as:

V = kyssgn(s) + ¢ + 1
= ka(—k1\/|s[sgn(s) + (Dy — Dy) — &1 + ¢)sgn(s)
— pkasgn(s) + ¢
= —kiko /|5 + kasgn(s)WE Ty @

oy (@ . oy (@

(3)T (2) (1)
+ kasgn(s)W (8W(2) ETRe) w
) A ) Y CI NN .
WC’ 873B) — kgsgn(S)A€l + w

_ (36)
with 1) expressed as:

b= tr(WEO T W) 4 r (WO Ty )
+ tr(ﬁ/(l)Tngw(l)) + tr(é’ﬂué’) + tr(éTn5B) (37)
1 ..
+ —AgAgy.
Ul
Considering the properties of matrix trace and substituting
(33) and (37) into (36) leads to:

V = —kika/s|.

Since V < 0, V s negative semi-definite. Hence the
asymptotic convergence of s to the origin can be demonstrated.
The proof is completed. O

(38)



V. SIMULATIONS RESULTS

To assess the effectiveness of the RRBFNN-STSM-CBPC,
a co-simulation study was conducted using both Simulink
and OpenFAST. The performance of the proposed CBPC
was evaluated in comparison to the standard STSM-CBPC,
maintaining identical gain values (k;, k2), and alongside a
GSPI controller [1].

OpenFAST is utilized to simulate the NREL OC4-
DeepCwind 5 MW semi-submersible FOWT. The wind and
wave profiles are defined by a mean wind speed of 20 m/s
with 12% turbulence, a wave height of 3 meters, and a
peak wave period of 12 seconds. The control parameters
are chosen as k1 = ko = 2 representing the controller
gains of (29), k, = 0.05, and g = —2.6296. The input
of the RRBFNN is denoted as = = [s §]. The hidden
layer of the network consists of N = 5 neurons, and the
parameters of the Gaussian function are specified as ¢ =
[-1 -05 0 05 1);[-1 —-05 0 05 1]],b=2,
n1 = 10, ne = 10, n3 = 100, n4 = 100, ns = 10, and ng = 2.

The simulation results, depicted in Fig. 3, provide a com-
parative analysis of the performance among the RRBFNN-
STSM-CBPC, STSM-CBPC, and the GSPI controller.

‘—RRBFNN STSM CBPC —STS\I CBPC GSPI
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Fig. 3. Simulations results

TABLE 1
MEAN ERRORS AND STANDARD DEVIATION
Controllers Mean w, | STD w, Mean 6, | STD 6,
[rpm] [rpm] [deg] [deg]
GSPI 12.1642 0.8915 1.8906 0.4965
STSM-CBPC 12.1104 0.4767 1.9016 0.6153
RRBF-STSM-CBPC 12.1083 0.2192 1.9097 0.4326

Table I presents the means and standard deviations (STD)
values. The RRBFNN-STSM demonstrates superior perfor-
mance in regulating rotor speed to its rated value, achieving
a mean speed closer to the rated value compared to both the
STSM and the GSPI controller. Additionally, the STD of the
rotor speed with RRBFNN-STSM is nearly 4.5 times lower
than that of the GSPI and more than half that of the STSM. The
platform pitch angle 6, exhibits lower STD values with the
proposed CBPC, meeting control objectives more effectively
than the STSM controller. However, the RRBFNN-STSM

introduces a more aggressive blade pitch angle, resulting in
wider variations compared to the GSPIL.

VI. CONCLUSION

This paper presents the design of a RRBFNN-STSM-CBPC
tailored for a FOWT mounted on a semi-submersible plat-
form. Through the integration of RRBFNN to approximate
lumped uncertainties and external disturbances, the composite
controller is designed to achieve dual objectives: regulating
the rotor speed to its rated value and minimizing platform
pitching motion. By combining the robust characteristics of
SMC with the dynamic estimation capabilities of recurrent
neural networks, the proposed controller offers an adaptive
solution. Simulation results demonstrate the effectiveness of
the proposed CBPC in handling the intricate dynamics and
uncertainties associated with FOWTs operating in Region III.
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