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Abstract— The study introduces a novel Radial Basis Func-
tion Neural Network-based Super-Twisting Sliding Mode Col-
lective Blade Pitch Control (RBFNN-STSM-CBPC), designed
specifically for semi-submersible platform-based Floating Off-
shore Wind Turbines (FOWTs) operating above rated speed
(Region III). The proposed composite controller is developed
using a refined nonlinear Control-Oriented Model, including
lumped unmodeled dynamics and external disturbances. To
our knowledge, this is the first time that a neural network
STSM-CPBC approach is designed for this application. The
RBFNN operates as an adaptive observer for the lumped
disturbance, enhancing the robustness and performance of the
standard STSM-CBPC for the same gains. Its adaptive law,
formulated through the Lyapunov method, ensures stability
and convergence by adjusting the adaptive weight. Simulation
results demonstrate the superiority of the RBFNN-STSM-
CBPC over the standard STSM-CBPC method in regulating
rotor speed and mitigating platform motion.

I. INTRODUCTION

The global commitment to reduce CO2 emissions and
lower fossil fuel consumption, coupled with the increasing
energy demand, is driving rapid advancements in renewable
energy technologies. Departing from traditional bottom-fixed
installations, Floating Offshore Wind Turbines represent a
significant innovation in the field of wind energy. The
floating platform allows the deployment of wind turbines
farther from the coast, enabling large-scale implementation
with reduced visibility. Moreover, FOWT systems harness
superior wind resources in terms of increased intensity and
reduced turbulence, thereby enhancing power extraction. The
wind turbine’s operating range is divided into four regions
based on incoming wind speed, each with specific control
objectives. In operating Region III, where the wind speeds
surpass the rated speed, the primary control objective is
to regulate generated power at its rated value. However,
the development of adaptive and robust controllers becomes
challenging due to the nonlinear dynamics inherent in FOWT
systems. The floating nature of FOWTs introduces additional
dynamics, including hydrodynamic and mooring dynamics,
as well as combined environmental loads such as wind,
waves, and currents, leading to a complex nonlinear system.
Especially in Region III, the apparition of the negative
damping phenomenon [1] can induce instability in the plat-
form pitching motion. Therefore, controllers must not only
ensure rated power extraction but also minimize structural
movements. This paper addresses these challenges with a
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focus on developing a model-based collective blade pitch
control to ensure optimal performance.

Conventional control methods derived from fixed wind
turbines have been adapted to FOWT systems. A Gain
Scheduling Proportional Integral (GSPI) controller was em-
ployed in [2] to mitigate the negative damping phenomenon
by adjusting the rotor speed based on the blade angle activity.
This configuration is commonly regarded as the baseline
controller for FOWTs, serving as a benchmark for testing
newly developed controllers. However, these adapted conven-
tional controllers remain sensitive to external disturbances
and lack robustness against unmodelled dynamics. Several
linear controllers have been proposed, leveraging simplify
nonlinear models [3], [4], [5] of system dynamics. These
simplified models are linearized around an operating point
for the implementation of linear control systems, leading
to performance degradation when the turbine operates away
from the defined operating point.

Nonlinear controllers, particularly Sliding Mode Con-
trollers (SMCs), have proven effective in managing external
disturbances and model uncertainties for a large range of
nonlinear systems. Employing discontinuous control signals,
SMC guarantees the convergence of the sliding variable to
the origin in finite time, with gains determined using upper-
bound information regarding disturbances and uncertainties.
However, the inherent discontinuity in the control input can
result in chattering effects, leading to over-actuation and
performance degradation. Addressing these challenges, the
Super-Twisting algorithm-based Sliding Mode (STSM) con-
troller has been employed for its high-performance character-
istics. Considering Region III control challenges for FOWT
systems, researchers have developed a first-order SMC based
on a reduced model in [6]. Additionally, an STSM controller
has been effectively implemented in [7] and [8], leveraging
a linear model generated by OpenFAST [9]. Adopting a
continuous approach with adaptive methods, an adaptive
form of the STSM controller has been employed in [10],
showcasing superior performance in terms of rotor speed
control, power regulation, and reduction of the platform
pitch motion when compared to traditional GSPI approaches.
Furthermore, in [11], a new iteration of the adaptive STSM
controller has been designed, featuring adaptive laws with
two parameters and applied to the FOWT system in Region
III.

Nevertheless, the STSM controller’s use of the bounded
sign function results in slower convergence of the sliding
variable when far away from the origin [12]. To enhance con-
vergence, gains must be increased, exacerbating chattering



effects. To overcome this limitation, an artificial neural net-
work can be employed as a model-free disturbance observer
to assist the STSM control in dealing with uncertainties and
disturbance within the model. As neural networks exhibit
significant capabilities in approximating a wide range of non-
linear functions, when integrated with STSM controller, they
enhance the system’s robustness. The resulting composite
controller design achieve control objectives and disturbance
attenuation through the controller-based feedback regulation
mechanism and the neural network estimator, respectively.
The Radial Basis Function Neural Network (RBFNN) repre-
sents a well-explored class of neural network known for its
simple and widely investigated network structure. Previous
research has explored the application of RBFNN in combi-
nation with SMC for nonlinear systems. For instance, [13]
presents a robust adaptive SMC strategy based on an RBFNN
for time-varying systems. In [14], a SMC scheme based on
an RBFNN is proposed for robotic manipulators, where the
RBF network approximates the nonlinear dynamics of the
robot. Additionally, RBFNN-based STSM controller has also
been studied for MEMS gyroscopes [15].

This paper introduces the design of an innovative RBFNN-
based STSM Collective Blade Pitch Controller (RBFNN-
STSM-CBPC) for the semi-submersible FOWT [16]. Lever-
aging the rearranged Homer nonlinear Control-Oriented
Model (COM) [17], the RBFNN-STSM-CBPC aims to regu-
late rotor speed at its rated value while minimizing platform
pitch motion in Region III. Given the intricate nature of
FOWT modeling, the RBFNN is employed to effectively
capture unknown model uncertainties and disturbances, fa-
cilitating controller design based on the nonlinear COM
without necessitating an exact mathematical model. This
novel composite controller combines a STSM controller
with a RBFNN disturbance observer, and an error estimator
to offset the theoretical minimum estimation error inherent
in the RBFNN, thereby enhancing system robustness and
improving control performance.

The paper is organized as follows: In Section II, the Homer
nonlinear COM is presented, along with the reformulation
of the necessary dynamics for developing the model-based
controller in Region III. Section IV presents the design of
the RBFNN-STSM-CBPC along with the control objectives.
Section V validates the proposed CBPC through comparative
co-simulation test. Finally, Section VI concludes the paper.

II. FOWT SYSTEM MODELLING

The specific semi-submersible FOWT considered in
this study is the NREL OC4-DeepCwind 5 MW semi-
submersible FOWT [16]. In the derivation of the control
laws, the Homer nonlinear COM [5] has been chosen, serving
as the foundation for designing nonlinear controllers. This
section provides a partial presentation of the selected model,
outlining the necessary dynamic reformulations required to
facilitate the design of effective nonlinear controllers.

A. Considered COM

The considered semi-submersible FOWT, composed of the
floating platform and wind turbine is regarded as a single
rigid body. In this study, the nacelle yaw motion is neglected
and the one-mass rigid shaft model expressed as (1) is
selected as the dynamic model of the drive-train:

ω̇r =
1

Jl
(
PA

ωr
− ngTg) (1)

where PA is the aerodynamic power, ng is the gearbox ratio,
Tg is the generator torque, and Jl is the low-speed shaft
equivalent inertia.

The states include xm, ym, zm, θx, θy , θz and their time
derivatives, as defined in [5]. Taking into account the adopted
dynamic model of the drive-train, the other considered states
are the rotor azimuth angle θr and the rotor speed ωr. Thus,
the state vector defined in this study is expressed as:

x = [xm, θ, θr, ẋm, θ̇, ωr]
⊤ (2)

with xm = [xm, ym, zm] and θ = [θx, θy, θz].

The control input vector u includes the blade pitch angle
β and the generator torque Tg .

u = [β, Tg]
⊤ (3)

Based on [5], and considering the one-mass rigid shaft
model (1), the equations of motion of the semi-submersible
FOWT can be expressed as:ẍm

θ̈
ω̇r

 =

(mgI3 +ma)
−1

(FA + FB + FC + FD)
R(θ)I−1

θ R(θ)⊤ (TA +TB +TC +TD)
1
Jl

(
PA

ωr
− ngTg

)


= f(x,u,v,w)

(4)

with R(θ) =

 1 −θz θy
θz 1 −θx
−θy θx 1

 (5)

where mg is the total mass of the FOWT, ma is the
hydrodynamic added mass vector, FA, FB , FC , FD are
the aerodynamic force vector, the buoyancy force vector,
the mooring line force vector, the hydrodynamic drag and
inertial force vector, respectively, TA, TB , TC , TD are
the aerodynamic torque vector, the buoyancy torque vector,
the mooring line torque vector, the hydrodynamic drag and
inertial torque vector, respectively, Iθ is the inertia tensor
of the FOWT, R(θ) is the simplified rotation matrix, and
f = (x,u,v,w) is the nonlinear function vector describing
the equations of motion, where v and w are the wind and
wave disturbance vectors, respectively.

B. Model Reformulation for Nonlinear Model-Based Control

Given the high coupling between the states and control
inputs in (4), direct design of the nonlinear controller using
the dynamics of ωr and θ̇y becomes challenging. Therefore,
it is necessary to reformulate the dynamics of θ̇y and ωr

presented in (4).



In this study, a single thrust force FA is used to represent
all forces resulting from the interaction between the wind
and the FOWT. This force acts at the center of thrust in the
hub. Thus, FA can be expressed as:

FA =
1

2
ρaπR

2
rCt(λ, β) ∥vn∥2 vn (6)

where ρa is the air density, Rr is the effective rotor radius,
vn is the equivalent velocity vector normal to the face of the
rotor, Ct is the thrust coefficient that is a highly nonlinear
function in terms of the tip speed ratio λ = Rrωr

∥vn∥2
and β,

∥ · ∥2 denotes the Euclidean norm of a vector. Furthermore,
the aerodynamic power PA can be expressed as:

PA =
1

2
ρaπR

2
rCp(λ, β) ∥vn∥32 (7)

where Cp is the power coefficient, a highly nonlinear func-
tion in terms of λ and β.

Both thrust and power coefficients, Ct(λ, β) and Cp(λ, β)
are modeled by polynomial functions and rearranged as:

Ct(λ, β) = gctβ + fct

Cp(λ, β) = gcpβ + fcp
(8)

where gct, gcp, fct and fcp are polynomial functions of λ.
Based on (4), substituting (8) into (6)-(7), and taking the

external disturbances, parametric uncertainties and unmod-
eled dynamics into account, the dynamics of θ̇y and ωr can
be rewritten as:

ω̇y = θ̈y = gyβ +Hy

ω̇r = θ̈r = grβ +Hr

(9)

where ωy is the platform pitch rate, gy and gr are nonlinear
function of ωy and ωr respectively, Hy and Hr are consid-
ered lumped uncertainties and external disturbances, defined
as: {

gy = dθgct ∥vn∥22 (θ2x + θ2y + θ2z + 1)

Hy = dθfct ∥vn∥22 (θ2x + θ2y + θ2z + 1) +Dθy

(10)

{
gr =

ρaπR
2
r

2Jlωr
gcp ∥vn∥32

Hr =
ρaπR

2
r

2Jlωr
fcp ∥vn∥32 −

ng

Jl
Tg

(11)

with Dθy and dθ expressed as in [18].
Assumption 1: Hy and its time derivative Ḣy are bounded

such that |Hy| ≤ ρy1 and |Ḣy| ≤ ρy2 for two positive
constants ρy1 and ρy2.

Assumption 2: Hr and its time derivative Ḣr are bounded
such that |Hr| ≤ ρr1 and |Ḣr| ≤ ρr2 for two positive
constants ρr1 and ρr2.

III. CONTROL DESIGN

This section presents the design of the RBFNN-STSM-
CBPC for the FOWT system in Region III. This CBPC
consists of three components: the standard STSM-CBPC, the
RBFNN, and the error estimator.

A. Problem formulation

In Region III, the primary control objectives are the regula-
tion of the generator power to its rated value, while ensuring
stability in the platform pitching motion. The generator
power Pg can be described by the following expression [19],
[16]:

Pg = ηeηgTgωr (12)

where ηe is the generator efficiency.
Given that Tg is fixed at its rated value, the first control

objective of regulating generator power is equivalent to
maintaining the rotor speed at its rated value ωrd = 12.1rpm,
expressed as er. The second control objective, aiming at
reducing platform pitching motion, is equivalent to driving
the platform pitch rate ωy to zero, expressed as ey:

er = ωr − ωrd

ey = ωy − 0 = ωy.
(13)

The same control input β is found in both dynamics,
resulting in an under-actuated control problem. To address
this, the rated rotor speed ωrd is modified from a fixed value
to a linear function ω∗

rd correlated with the platform pitch
rate:

ω∗
rd = ωrd(1− kyωy) (14)

where ky is a positive constant.
Hence, the control objective for the FOWT in Region III

is to force the composite tracking error e expressed as (14)
to zero:

e = ωr − ω∗
rd = ωr − ωrd(1− kyωy)

= er + ksey
(15)

where ks = kyωrd is a positive constant scalar with units of
rpm · s/deg.

B. Standard STSM-CBPC Design

Acknowledge for its robustness in handling uncertainties
and disturbances, SMC stands as an effective choice for con-
trolling nonlinear systems, while the super-twisting algorithm
play a crucial role in alleviating chattering phenomena.

Based on (15) the proposed sliding variable is chosen as:

s = er + ksey. (16)

The first time derivative of s can be written as:

ṡ = ėr + ksėy = ω̇r + ksω̇y. (17)

Substituting (9) into (17), the derivative can be expressed
as:

ṡ = (grβ +Hr) + ks(gyβ +Hy) = gsβ +Hs (18)

where gs = gr + ksgy and Hs = Hr + ksHy is the lumped
uncertainties and external disturbance.

According to Assumption 1 and Assumption 2, |Hs| ≤ ρs1
and ˙|Hs| ≤ ρs2 hold for two positive constants ρs1 = ρr1 +
ksρy1 and ρs2 = ρr2 + ksρy2.



The control law of the standard STSM control is then
designed as:

βSTSM =
1

gs
(−k1

√
|s|sgn(s)− k2

∫
sgn(s)dτ) (19)

where k1 > 0 and k2 > 0 are controller gains, and sgn(·) is
the signum function.

To enhance the robustness and control performance of the
presented standard STSM-CBPC controller, an RBFNN is
integrated to attenuate disturbances.

C. RBFNN Design

The utilization of data-driven techniques, particularly ar-
tificial intelligence, for developing adaptive controllers for
FOWTs has experienced significant growth [20]. Addition-
ally, the integration of SMC with a RBFNN to create a
composite controller has been a subject of research for an
extended period. The RBFNN is specifically employed for
estimating and compensating the lumped disturbance Hs in
(18). The stability analysis is conducted to derive the adaptive
laws for the weights of the adopted neural network. This
section provides insight into the RBFNN structure and details
the design of the RBFNN-STSM-CBPC.

The standard structure of an RBFNN consists of three
layers: an input layer, a hidden layer, and an output layer
as illustrated in Fig.1.

Fig. 1. RBFNN structure with a dimensionality of 25.

In this study, the signal propagation of the neural network
is described as follows.

Input Layer: s and its time derivative ṡ are selected as two
input signals. As for output signals of the input layer, they
are expressed as:

y
(1)
1 = x

(1)
1 = s

y
(1)
2 = x

(1)
2 = ṡ

(20)

where x
(1)
1 and x

(1)
2 denote the input signals, while y

(1)
1 and

y
(1)
2 represent the output signals of the input layer.

Hidden Layer: This layer employs N neurons. The signal
propagation in the jth neuron is given as follows:

x
(2)
j =

[
y
(1)
1 − cj1

]2
2δ2j1

+

[
y
(1)
2 − cj2

]2
2δ2j2

, (21)

y
(2)
j = e−x

(2)
j , with j = 1, 2, . . . , N (22)

where x
(2)
j and y

(2)
j are the input and output signals, cj1 and

cj2 are the centers, while δj1 and δj2 are the widths of two
Gaussian functions, respectively.

Output Layer: The output signal denoted as Ĥs, represents
the estimated lumped disturbance in the s-dynamics and is
expressed as follows:

Ĥs = y
(3)
1 = W(2)⊤y(2) (23)

where W(2)⊤ and y(2) are the hidden layer weight vector
and output vector, respectively, and y

(3)
1 is the output signal.

Given the universal approximation property, there exists an
optimal output weight vector W(2) for the RBFNN enabling
the expression of the lumped disturbance Hs as:

Hs = W(2)∗⊤(n)y(2) + ε∗ (24)

where W(2)∗⊤ is the optimal hidden layer weight vector, ε∗

is the minimum estimation error of the neural network. In
this study, the value of W(2) is updated online by derived
learning laws.

D. RBFNN-STSM-CBPC Design

The design of the RBFNN-STSM-CBPC is presented in
this subsection. The block diagram of the control system is
represented in Fig.2.

Fig. 2. Bloc diagram of the RBFNN-STSM-CBPC

The neural network aims to capture and estimate the
unknown lumped disturbance denoted Hs. The input to the
RBFNN is x = [s, ṡ], and the output of the RBFNN is, Ĥs,
expressed as (23), where the weight vector W(2)⊤ is updated
by an adaptive law derived from Lyapunov stability theory.

Then, considering the sliding variable s (16) and its
dynamics ṡ (17), the control law for the RBFNN-STSM-
CBPC is formulated as follows:

β = βSTSM + βRBF + βec (25)

where βSTSM is the standard STSM-CBPC expressed as
(19), βRBF and βec are the RBFNN and the error estimators
expressed as:

βRBF = − 1

gs
Ĥs, βec = − 1

gs
εec (26)

where εec is the term updated by the adaptive law online.



Substituting (25) into (18), the s-dynamics can be de-
scribed as:

ṡ = gsβ +Hs = −k1
√

|s|sgn(s)− k2

∫
sgn(s)dτ

− Ĥs − εec +Hs

= −k1
√

|s|sgn(s)− k2

∫
sgn(s)dτ −∆W(2)⊤y(2) −∆ε

(27)
where ∆W (2) = W(2) −W(2)∗ and ∆ε = εec − ε∗.
Assumption 3: W(2)∗ and ε∗ are considered to be constant

in the derivation of the learning laws.
The following theorem establishes the criteria for selecting

the control gains and learning laws of the RBFNN-STSM-
CBPC to ensure the asymptotic convergence of s to the
origin.

Theorem 1: Regarding the system (27), considering k1 > 0
and k2 > 0, if the learning laws are selected as (28), s will
converge to the origin asymptotically.

Ẇ(2)⊤ = η1k2sgn(s)y(2), ε̇ec = η2k2sgn(s) (28)

where η1 and η2 denote positive learning rates. Proof: Firstly,
the system (27) is converted to the following form.{

ṡ = −k1
√

|s|sgn(s)−∆W(2)Ty(2) −∆ε+ ϕ

ϕ̇ = −k2sgn(s)
(29)

Then, the following Lyapunov candidate function [21] is
chosen for the system (29).

V = k2|s|+
1

2
ϕ2 +

1

2η1
∆W(2)⊤∆W(2) +

1

2η2
∆ε2 (30)

Based on Assumption 3 and (28), the first-time derivative
of V is:

V̇ = k2ṡsgn(s) + ϕϕ̇+
1

η1
∆W(2)⊤∆Ẇ(2) +

1

η2
∆ε∆ε̇

= k2(−k1
√
|s|sgn(s)−∆W(2)⊤y(2) −∆ε+ ϕ)sgn(s)

− ϕk2sgn(s) +
1

η1
∆W(2)⊤∆Ẇ(2) +

1

η2
∆ε∆ε̇

= −k1k2
√
|s| − 1

η1
∆W(2)⊤(η1k2y

(2)sgn(s)−∆Ẇ(2))

− 1

η2
∆ε(η2k2sgn(s)−∆ε̇) = −k1k2

√
|s|.

(31)
Since V̇ ≤ 0, V̇ is negative semi-definite. Hence the

asymptotic convergence of s to the origin can be demon-
strated. The proof is completed.

IV. SIMULATIONS STUDY

To validate the effectiveness of the proposed CBPC, a
comparative co-simulation test was conducted using Mat-
lab/Simulink and OpenFAST. In this test, the performance of
the proposed CBPC are compared with the standard STSM-
CBPC (19) keeping the same values for k1 and k2, and the
baseline controller [2].

TABLE I
RELATED PARAMETERS OF THE CONTROL SYSTEM

Parameter Value Parameter Value
k1 2 gs −2.6296
k2 2 ωrd 12.1
ky 0.05 ωyd 0

A. Simulations Conditions
OpenFAST is employed for simulating the NREL OC4-

DeepCwind 5 MW semi-submersible FOWT. The wind and
wave profiles in Fig.3 are characterized by a mean wind
speed of 18 m/s with 15% turbulence, a wave height of
5.18 meters and a peak wave period of 12 seconds.

Fig. 3. Wind scenario (top) and wave height scenario (bottom)

The control parameters are listed as Table 1, where k1 and
k2 are the controller gains of (19). The input of the RBFNN
is x = [s ṡ]. The number of neurons in the hidden layer of
the network is N = 5, and the parameters of the Gaussian
basis function are taken as c = [[−1 − 0.5 0 0.5 1]; [−1 −
0.5 0 0.5 1]], b = 1, η1 = 0.05 and η2 = 0.5.

B. Discussion
The simulation results comparing the performance of

RBFNN-STSM-CBPC with STSM-CBPC and the baseline
GSPI controller for FOWT are illustrated in Fig.4.

In Table II, the mean values and standard deviations (STD)
for each signal are presented when the 50 first seconds of
the simulation have been removed. Both the RBFNN-STSM-
CBPC and STSM-CBPC controllers effectively regulate the
rotor speed to its rated value. However, the proposed RBF-
STSM-CBPC exhibits approximately half of the STD ob-
served in both the STSM-CBPC and the Baseline. Moreover,
the platform pitch angle θy and pitch rate ωy are better
regulated with lower STD compared to the RBFNN-STSM-
CBPC and the Baseline. Therefore, in terms of control objec-
tives, the RBFNN-STSM-CBPC outperforms the other two
methods. It is noteworthy that SMC can introduce aggressive
control inputs, evident in the wider variations of the blade
pitch angle compared to the Baseline for both STSM-CBPC
methods. There exists a trade-off that needs optimization
between blade pitch angle variations and achieving control
objectives, particularly in tracking the rotor’s rated speed and
minimizing platform pitch.



Fig. 4. Simulations results: RBF-STSM-CBPC, STSM-CBPC and baseline

TABLE II
MEAN ERRORS AND STANDARD DEVIATION RESULTS

Controllers Mean ωr STD ωr Mean θy STD θy
[rpm] [rpm] [deg] [deg]

GSPI 12.0984 1.2258 1.9314 1.0776
STSM 12.1509 1.2064 2.0102 1.5294

RBF-STSM 12.1102 0.6538 2.0071 0.9674

Mean ωy STD ωy Mean Thrust STD Thrust
[deg/s] [deg/s] [kN] [kN]

GSPI 0.0017 0.3919 472.7873 130.7851
STSM −0.0035 0.4641 485.3420 178.9801

RBF-STSM −0.0027 0.3493 486.8331 144.7849

V. CONCLUSION

This paper introduces the design of a RBFNN-STSM-
CBPC for semi-submersible FOWTs. By incorporating the
RBFNN to approximate lumped uncertainties and distur-
bances, the composite controller aims to regulate the rotor
speed to its rated value while minimizing platform pitching
motion. An error estimator compensates for the theoreti-
cal minimum estimation error of the neural network. The
integration of these three components within the control
scheme offers an adaptive control solution, leveraging the
robustness of SMC and the estimation capabilities of neural
networks. Simulation results validate the composite con-
troller’s effectiveness in addressing the complex dynamics
and uncertainties inherent in FOWTs operating in Region
III.
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