
Determinisation and Unambiguisation of
Polynomially-Ambiguous Rational Weighted Automata

Ismaël Jecker∗†
University of Franche-Comté

Besançon, France

Filip Mazowiecki∗‡
f.mazowiecki@mimuw.edu.pl

University of Warsaw
Warsaw, Poland

David Purser∗
D.Purser@liverpool.ac.uk

Department of Computer Science
University of Liverpool

Liverpool, UK

ABSTRACT
We study the determinisation and unambiguisation problems of
weighted automata over the field of rationals: Given a weighted
automaton, can we determine whether there exists an equivalent
deterministic, respectively unambiguous, weighted automaton? Re-
cent results by Bell and Smertnig show that the problem is decidable,
however they do not provide any complexity bounds. We show
that both problems are in PSPACE for polynomially-ambiguous
weighted automata.

CCS CONCEPTS
• Theory of computation → Formal languages and automata
theory; Models of computation.

KEYWORDS
Weighted automata, determinisation, unambiguisation

Full proofs can be found in the arXiv version [18].

1 INTRODUCTION
Weighted automata are a popular model of computation assigning
values to words [13]. The domain of these values has a semiring
structure (a structure with addition and product that can define
matrix multiplication). Two popular domains are: the field of ratio-
nals; and the min-plus semiring over naturals extended with +∞
(also known as the tropical semiring). Depending on the domain
the values have different interpretation. The most intuitive setting,
called probabilistic automata [26], is when the words are assigned
their probability of being accepted (this is a special case of the field
of rationals).

We investigate the determinisation problem (also known as the
sequentiality problem): given a weighted automaton decide if there
is an equivalent deterministic weighted automaton. If it is the case
we say that the automaton is determinisable. The problem can
be stated for any semiring, but it is very different depending on
the choice (see the survey [24]). For example, if the semiring is
the Boolean semiring then weighted automata coincide with fi-
nite automata and the problem trivialises as every automaton can
be determinised. Recently, the problem has been shown to be de-
cidable for the field of rationals, but no complexity bounds were
provided [3]. For the tropical semiring determinisation remains an

∗Supported by the ERC grant INFSYS, agreement no. 950398.
†Supported by the EIPHI Graduate School, contract ANR-17-EURE-0002
‡Supported by Polish National Science Centre SONATA BIS-12 grant number
2022/46/E/ST6/00230.

intriguing open problem: decidability is known only for weighted
automata with bounded ambiguity [22, 24].

Classes with bounded ambiguity can be defined for any automata
model (not only weighted automata). The simplest and most studied
is the class of unambiguous automata, where every word has at
most one accepting run (but the automaton does not have to be
deterministic). This class has received a lot of attention for many
automata models (see e.g. the survey [8]). Unambiguous weighted
automata are a mathematically elegant class of functions, as they
capture functions that use only the semiring product. A lot of re-
search on the determinisation problem focused on the subproblem
when the input automaton is unambiguous [21, 25]. In this case
automata that can be determinised are characterised by forbidding
a simple pattern in the automaton, called the twins property, which
can be detected in polynomial time. Due to these results, papers
often focus on the unambiguisation problem, i.e. whether there ex-
ists an equivalent unambiguous automaton. The mentioned work
deals with the tropical semiring and its variants. A similar charac-
terisation also works over the field of rationals, which we describe
in ??. Thus for unambiguous weighted automata over rationals the
determinisation problem is decidable in polynomial time, which
we consider a folklore result.

Other popular classes of bounded ambiguity are: finitely-
ambiguous automata and polynomially-ambiguous automata, where
the number of accepting runs is bounded by a constant and a poly-
nomial in the size of input word, respectively. Both classes are
characterised by forbidding simple patterns that can be detected in
polynomial time [33]. The decidability results of determinisation
over the tropical semiring are for precisely these two classes [22, 24].
In general classes of automata with bounded ambiguity are well-
known restrictions studied also in other areas [1, 9, 27].

We focus on the field of rationals, which recently gained more
attention. For simplicity of explanation we present it now assuming
weighted automata are over integers. In 2021 Bell and Smertnig [2]
proved Reutenauer’s conjecture [28]. It states that a weighted au-
tomaton is unambiguisable if and only if the image of the automaton
is a set of integers with finitely many prime divisors.1 One impli-
cation is straightforward, as unambiguous weighted automata can
only output values obtained as a product of its weights. The other
implication is the core of the paper [2]. An important step is to
compute the linear-hull of the input automaton, which boils down
to computing the linear Zariski closure of the semigroup generated
by the input matrices. It turns out that the input automaton is un-
ambiguisable if and only if its linear hull is unambiguous, reducing
the unambiguisation problem to computing the linear hull. The
1The conjecture (now theorem) is stated more generally for any field.

https://orcid.org/0000-0002-6527-4470
https://orcid.org/0000-0002-4535-6508
https://orcid.org/0000-0003-0394-1634

Ismaël Jecker, Filip Mazowiecki, and David Purser

fact that it is computable essentially follows from computability
of the Zariski closure (not linear) [16]. In a recent paper Bell and
Smertnig [3] focus on directly computing the linear Zariski closure,
however, still no complexity upper bound is known.

Our contribution. Following the work of Bell and Smertnig we
study the determinisation and unambiguisation problems over the
field of rationals. Our result is the following

Theorem 1.1. Unambiguisability and determinisability are de-
cidable in polynomial space for polynomially-ambiguous weighted
automata.

A detailed overview of our approach is summarised in Section 3,
after introducing the necessary technical preliminaries. Roughly
speaking, our approach is to reduce the problems to patterns that
behave like in the unary alphabet, i.e. by pumping the same in-
fix. Over the unary alphabet the problem boils down to analysing
simple properties of linear recurrence sequences (see [1] or [23]).
For polynomially-ambiguous weighted automata we crisply char-
acterise the automata which can be determinised/unambiguised
through a notion we call pumpability. Crucially, our notion of
pumpability can be decided using a standard zeroness test for
weighted automata — the automaton we require to do this is of
exponential size, but combining this with an NC2 algorithm for
zeroness we obtain polynomial space. Both of our decision proce-
dures for unambiguisation and determinisation are in PSPACE, but
our algorithm is not effective, i.e. in the case there is an equivalent
deterministic/unambiguous automaton our algorithm does not con-
struct it. An equivalent deterministic automaton can be constructed
using our proof techniques, but the deterministic automaton would
be of nonelementary size. We leave open whether the equivalent
deterministic automaton needs to be this large, and whether the
equivalent unambiguous automaton can be constructed using our
proof techniques.

Related work. For the max-plus semiring decidability of the un-
ambiguisation and determinisation problems remain open. How-
ever, Kirsten and Lobardy [20] show that both are decidable for
polynomially-ambiguous automata. The seminal result for weighted
automata over the field of rationals is due to Schützenberger [30],
who proved that equivalence is decidable. The problem is known
to be even in NC2 [19, 32] (thus in particular in polynomial time).
Other problems like containment or emptiness are undecidable
already for probabilistic automata [26]. Recently these undecidable
problems gained attention for weighted automata with restricted
ambiguity. The goal is to determine the border of decidability be-
tween the classes: finitely ambiguous, polynomially-ambiguous,
and the full class of weighted automata [4, 7, 10, 12, 14]. The deter-
minisation problem is known to be a particular variant of register
minimisation, see e.g. [11]. Recently, following the work of Bell
and Smertnig [2], it was proved that register minimisation is also
decidable over the field of rationals [5].

2 PRELIMINARIES
2.1 Weighted automata
A weighted automaton A is a tuple (𝑄, Σ, 𝑀, 𝐼, 𝐹), where 𝑄 is a
finite set of states, Σ is a finite alphabet, 𝑀 : Σ → Q𝑄×𝑄 is a

transition weighting function, and 𝐼 , 𝐹 ⊆ Q𝑄 are the initial and the
final vectors, respectively.

For every word 𝑤 = 𝑎1 . . . 𝑎𝑛 we define the matrix 𝑀 (𝑤) =

𝑀 (𝑎1)𝑀 (𝑎2) . . . 𝑀 (𝑎𝑛). We denote the empty word by 𝜀, and𝑀 (𝜀)
is the identity matrix. For every word 𝑤 ∈ Σ∗, the automaton
outputs A(𝑤) = 𝐼𝑇𝑀 (𝑤)𝐹 . We say two automata A and B over Σ
are equivalent if A(𝑤) = B(𝑤) for every𝑤 ∈ Σ∗

We can also interpret a weighted automaton as a finite automaton
with weighted edges: when 𝑥 ≠ 0 we denote 𝑀 (𝑎)𝑝,𝑞 = 𝑥 by a
transition 𝑝

𝑎:𝑥−−−→ 𝑞. We say a state 𝑞 is initial if 𝐼 (𝑞) ≠ 0 and final if
𝐹 (𝑞) ≠ 0.

The size of the automaton A, denoted |A|, is the number of
states of the automaton. The norm of A, denoted | |A||, is the
largest absolute value of numerators and denominators of numbers
occurring in𝑀, 𝐼 and 𝐹 . Observe the automaton can be represented
using 𝑂 (|A|2 log(| |A||)) bits.

Definition 2.1. We say a matrix𝑀 is p-triangular if there exists
a permutation matrix 𝑃 such that 𝑃𝑀𝑃−1 is upper triangular.

Remark 2.2. The diagonal entries of an upper-triangular matrix
are exactly the eigenvalues of the matrix. Since permutations do not
change which entries are on the diagonal (only their order), when
we refer to diagonal entries of p-triangular matrix, we equivalently
refer to the eigenvalues of the matrices.

2.2 Paths, runs, counting runs, and the monoid
of structures

A path of A over𝑤 = 𝑎1 . . . 𝑎𝑛 is a sequence of states 𝑞1, . . . , 𝑞𝑛+1
such that for 1 ≤ 𝑖 ≤ 𝑛 we have 𝑞𝑖

𝑎𝑖 :𝑥𝑖−−−−→ 𝑞𝑖+1 (recall, this notation
entails that 𝑥𝑖 ≠ 0). The value of a path is the product of the 𝑥𝑖 . A
path is a cycle if 𝑞1 = 𝑞𝑛+1. A path is a run if 𝑞1 is initial and 𝑞𝑛+1 is
final, and the value of the run is the product of 𝐼 (𝑞1), 𝐹 (𝑞𝑛+1) and
the value of the path. A state 𝑞 is reachable if there exists an initial
state 𝑝 such that there is a path from 𝑝 to 𝑞. A state 𝑞 is coreachable
if there exists a finial state 𝑟 such that there is a path from 𝑞 to 𝑟 .
Henceforth, we assume every state is reachable and coreachable
(by trimming the automaton where necessary).

We denote by #runsA (𝑤) the number of distinct runs of A over
the word𝑤 .

Remark 2.3. The existence of a run from 𝑝 to 𝑞 on 𝑤 does not
necessarily entail that A(𝑤) ≠ 0. The value of all the runs on 𝑤

may sum to zero, as A is not necessarily non-negative.

Given 𝑥 ∈ Q, let 𝑥 = 1 if 𝑥 ≠ 0 and 𝑥 = 0 if 𝑥 = 0. We extend
the notion point wise to the transitions, initial and final states:
𝑀 (𝑎)𝑝,𝑞 = 𝑀 (𝑎)𝑝,𝑞 , 𝐼𝑞 = 𝐼𝑞 and 𝐹𝑞 = 𝐹𝑞 . Moreover, for every
word 𝑤 = 𝑎1 . . . 𝑎𝑛 we let 𝑀 (𝑎1𝑎2 . . . 𝑎𝑛) = 𝑀 (𝑎1) ⊗ 𝑀 (𝑎2) ⊗
. . . ⊗ 𝑀 (𝑎𝑛), where ⊗ is matrix multiplication over the Boolean
semiring (i.e., 1 + 1 = 1). For a given matrix 𝑀 , we say that 𝑀 is
the structure of the matrix. The set of structures equipped with the
matrix multiplication ⊗ forms a monoid, often called the monoid
of Boolean matrices in the literature. We say that a matrix 𝑀 has
idempotent structure if its structure is an idempotent element of this
monoid:𝑀 = 𝑀 ⊗ 𝑀 .

Determinisation and Unambiguisation of Polynomially-Ambiguous Rational Weighted Automata

≡
2

2

Figure 1: Example of a unary weighted automaton. The input label of all edge is the letter 𝑎 (omitted on the picture), and
unlabelled edges are assumed to have weight 1. If 𝑛 is even then A(𝑎𝑛) = 1 + ∑𝑛/2−1

𝑖=0 2𝑖 = 2𝑛/2 and if 𝑛 is odd then A(𝑎𝑛) = 1.
The automaton on the left is polynomially-ambiguous, and unambiguisable as depicted on the right, but the function is not
determinisable (see the twins property in ??).

2.3 Determinisim, ambiguity and decision
problems

Definition 2.4. We say that an automaton A is:

• deterministic if it has at most one non-zero entry in 𝐼 , and
𝑀 (𝑎) has at most one non-zero entry on every row for
every 𝑎 ∈ Σ,

• unambiguous if #runsA (𝑤) ≤ 1 for every word𝑤 ∈ Σ∗,
• finitely ambiguous if there exists 𝑘 such that #runsA (𝑤) ≤

𝑘 for every word𝑤 ∈ Σ∗,
• polynomially-ambiguous if there exists a polynomial 𝔭 such

that #runsA (𝑤) ≤ 𝔭(|𝑤 |) for every word𝑤 ∈ Σ∗, and
• exponentially ambiguous otherwise, in particular,

#runsA (𝑤) ≤ |𝑄 | |𝑤 |+1 for every𝑤 ∈ Σ∗.

These characterisations lead to the following natural problems:

• The determinisation problem asks, given a weighted au-
tomatonA, if there is an equivalent deterministic weighted
automaton. If the answer is positive, we say A is determin-
isable.

• The unambiguisation problem asks, given a weighted au-
tomatonA, if there is an equivalent unambiguous weighted
automaton. If the answer is positive, we say A is unam-
biguisable.

An example polynomially-ambiguous weighted automaton that is
unambiguisable but not determinisable is depicted in Figure 1.

2.4 Closure properties
We recall a standard result: weighted automata are closed under
negation, difference and product.

Lemma 2.5. Let A1 and A2 be weighted automata over Σ.
• The function −A1 : 𝑢 ↦→ −A1 (𝑢) is recognised by an au-

tomaton of size |A1 | and norm | |A1 | |;
• The functionA1−A2 : 𝑢 ↦→ A1 (𝑢)−A2 (𝑢) is recognised by

an automaton of size |A1 |+|A2 | and normmax{| |A1 | |, | |A2 | |};
• The function A1 · A2 : 𝑢 ↦→ A1 (𝑢) · A2 (𝑢) is recognised by

an automaton of size |A1 | · |A2 | and norm | |A1 | | · | |A2 | |.
Furthermore, if we assume that we can compute the weight of a
given transition in A1 (respectively A2) in space 𝑂 (log(| |A1 | |))
(respectively 𝑂 (log(| |A2 | |))) then we can compute the weight of a
given transition in A1 − A2 or A1 · A2 in space 𝑂 (log(| |A1 | | ·
| |A2 | |)).

2.5 Assumptions
In this paper, without loss of generality, we only consider weighted
automata that satisfy the following two assumptions:

Non-negative transitions. We assume that the weight of every path
is non-negative, although the run, when combined with 𝐼 , 𝐹 , may
be negative. Formally, we assume that 𝑀 (𝑎)𝑝,𝑞 ≥ 0 for all 𝑎 ∈
Σ, 𝑝, 𝑞 ∈ 𝑄 . Should the condition fail, there is a polynomial time
algorithm to produce an equivalent weighted automaton whose
matrix entries are non-negative. Below is the formal construction in
which the negative values only appear in the final vector, a similar
construction allows them to appear only in the initial vector.

Given A = (𝑄, Σ, 𝑀, 𝐼, 𝐹), we construct an equivalent weighted
automaton A′ = (𝑄 ′, Σ, 𝑀′, 𝐼 ′, 𝐹 ′). Let 𝑄 ′ = {𝑞− | 𝑞 ∈ 𝑄} ∪ {𝑞+ |
𝑞 ∈ 𝑄}. Given a transition 𝑞

𝑎:𝑥−−−→ 𝑝 in A, we add the following
transitions to A′:

• 𝑞+
𝑎:𝑥−−−→ 𝑞+ and 𝑞−

𝑎:𝑥−−−→ 𝑞− if 𝑥 ≥ 0,
• 𝑞+

𝑎:−𝑥−−−−→ 𝑞− and 𝑞−
𝑎:−𝑥−−−−→ 𝑞+ if 𝑥 < 0.

For every 𝑞 ∈ 𝑄 , we let:
• 𝐼 (𝑞+) = 𝐼 (𝑞) if 𝐼 (𝑞) ≥ 0 and 0 otherwise,
• 𝐼 (𝑞−) = −𝐼 (𝑞) if 𝐼 (𝑞) < 0 and 0 otherwise,
• 𝐹 (𝑞+) = 𝐹 (𝑞),
• 𝐹 (𝑞−) = −𝐹 (𝑞).

Claim 2.6. A′ (𝑤) = A(𝑤) for all𝑤 ∈ Σ∗.

Proof. Consider a run on𝑤 from 𝑞 to 𝑝 in A. We consider the
equivalent run inA′, which goes from either𝑞+ or𝑞− to 𝑝+ or 𝑝− . It
is clear that the absolute value is maintained by the translation, we
verify the correct sign is preserved. The sign of 𝐼 ′, 𝑀′ are positive,
thus the sign of the run in A′ depends only on 𝐹 ′.

First suppose the number of negative transitions taken in the run
is even. In this case the sign should be that of 𝐼 (𝑞)𝐹 (𝑞). If 𝐼 (𝑞) ≥ 0,
then the path goes from 𝑞+ to 𝑝+, which has the same sign as 𝐹 (𝑝).
If 𝐼 (𝑞) < 0 then the path goes from 𝑞− to 𝑝− , in which case the
sign of both 𝐼 and 𝐹 are swapped, thus the sign of 𝐼 (𝑞)𝐹 (𝑞) is the
same as 𝐼 (𝑞−)𝐹 (𝑝−).

Secondly suppose the number of negative transitions taken in
the run is odd, in which case the sign should be swapped from that
of 𝐼 (𝑞)𝐹 (𝑝). If 𝐼 (𝑞) ≥ 0, the sign should be opposite to 𝐹 (𝑝), indeed
the path goes from 𝑞+ to 𝑝− , for which the sign 𝐹 ′ (𝑝−) is swapped
from that of 𝐹 (𝑝). If 𝐼 (𝑞) < 0, the sign should be the same as 𝐹 (𝑝),
indeed the path goes from 𝑞− to 𝑝+, for which the sign of 𝐹 ′ (𝑝+) is
the same as 𝐹 (𝑝). □

Ismaël Jecker, Filip Mazowiecki, and David Purser

Remark 2.7. A crucial consequence of this assumption is that
for every word 𝑢 ∈ Σ∗, each entry (𝑀 (𝑢))𝑖 𝑗 of the matrix𝑀 (𝑢) is
non-zero if and only if there exists (at least) one path labelled by 𝑢
between 𝑖 and 𝑗 . Note that this is not necessarily the case if negative
weights are allowed, since then distinct runs can cancel each other.
Stated more formally, this assumption implies that the function
mapping a word 𝑢 ∈ Σ∗ to the structure𝑀 (𝑢) of the corresponding
matrix is a monoid homomorphism between the free monoid Σ∗

and the finite monoid of Boolean matrices:𝑀 (𝑢𝑣) = 𝑀 (𝑢) ⊗𝑀 (𝑣)
for every 𝑢, 𝑣 ∈ Σ∗.

Integer values. We assume that the weights of the automaton are
integer values rather than rational values. That is,𝑀 : Σ → Z𝑄×𝑄 ,
𝐼 , 𝐹 ∈ Z𝑄 .

In case the condition does not hold, an integer weighted automa-
ton A′ can be constructed such that A is unambiguisable (resp.
determinisable) if and only ifA′ is unambiguisable (resp. determin-
isable). To this end, we rely on the following construction: Given an
automaton B = (𝑄, Σ, 𝑀, 𝐼, 𝐹) and 𝑡 ∈ Q, let B𝑡 = (𝑄, Σ, 𝑀′, 𝐼 ′, 𝐹)
be the automaton constructed fromB bymultiplying all the weights
by 𝑡 , that is, 𝐼 ′ (𝑞) = 𝑡𝐼 (𝑞), 𝐹 ′ (𝑞) = 𝑡𝐹 (𝑞), and𝑀′ (𝑎)𝑝,𝑞 = 𝑡𝑀 (𝑎)𝑝,𝑞
for all 𝑎 ∈ Σ and 𝑝, 𝑞 ∈ 𝑄 .

We letA′ = A𝑥 , where 𝑥 ∈ Q is defined as follows: Let 𝑋 be the
set of denominators of transition weights, initial weights and final
weights of A, and let 𝑥 = lcm(𝑋). Note that |𝑥 | ≤ | |A|| |𝑋 | , thus
log(𝑥) ≤ |𝑋 | log(| |A||), and observe that |𝑋 | and log(| |A||) are
both polynomial in the size of the representation ofA. As required,
all the weights ofA′ are in Z. Moreover, for every unambiguous au-
tomaton B equivalent toA the automaton B𝑥 is unambiguous and
equivalent to A′, and for every unambiguous automaton B′ equiv-
alent to A′ the automaton B′

1/𝑥 is unambiguous and equivalent to
A. The same holds when unambiguous is replaced by deterministic.

3 OVERVIEW OF OUR MAIN RESULT
We start with an overview that presents the ideas behind our deci-
sion procedure, the technical details are presented in the following
sections. Our algorithms deciding whether a weighted automaton
A = (𝑄, Σ, 𝑀, 𝐼, 𝐹) is unambiguisable, respectively determinisable,
rely on the study of the behaviours of A over families of words of
the form (𝑢𝑣𝑛𝑤)𝑛∈N, with 𝑢, 𝑣,𝑤 ∈ Σ∗. Since A(𝑢𝑣𝑛𝑤) is defined
as 𝐼 · 𝑀 (𝑢) · 𝑀 (𝑣)𝑛 · 𝑀 (𝑤) · 𝐹 , understanding these behaviours
reduces to understanding powers of matrices.

Lemma 3.1. Let𝑀 be an𝑚 ×𝑚 matrix with the set of eigenvalues
{𝑑1, 𝑑2, . . . , 𝑑𝑘 } ⊆ N, and let ®𝑥, ®𝑦 ∈ Q𝑚 . There exist 𝑘 polynomials
𝑝1, 𝑝2, . . . , 𝑝𝑘 such that

®𝑥𝑇 ·𝑀𝑛 · ®𝑦 =

𝑘∑︁
𝑖=1

𝑑𝑛𝑖 · 𝑝𝑖 (𝑛) for all 𝑛 ≥ 𝑚. (1)

Moreover, if 𝑝1, 𝑝2, . . . , 𝑝𝑘 are all constant polynomials, with at most
one 𝑝 𝑗 not constantly 0, and the matrix𝑀 is invertible; then

®𝑥𝑇 ·𝑀𝑛 · ®𝑦 = 𝑑𝑛𝑗 · ®𝑥
𝑇 · ®𝑦 for all 𝑛 ≥ 0. (2)

It is standard that a sequence ®𝑥𝑇 ·𝑀𝑛 · ®𝑦 forms a linear recurrence
sequence which admits a closed form like the one given in Equa-
tion (1). Thus Equation (1) can be derived from standard results on
linear recurrence sequences (see e.g. [15, Section 2]). We complete

the proof in Section 3.1 to get the precise form required in Equa-
tion (2). It is nontrivial as it holds for 𝑛 ≥ 0 (not just 𝑛 big enough).
This will be crucial in the later proofs. Overall, Lemma 3.1 has two
purposes:

(1) Equation (1) expresses the behaviours ofA over families of
the form (𝑢𝑣𝑛𝑤)𝑛≥ |A| . This allows us to define the notion
of pumpability (resp. blind pumpability) by forbidding bad
behaviours (the ones that match no unambiguous automa-
ton). We show that this is a necessary criterion for unam-
biguisability (resp. determinisability) (see Proposition 3.3).

(2) Equation (2) allows us to establish that pumpability (resp.
blind pumpability) is sufficient to ensure unambiguisability
(resp. determinisability) for polynomially-ambiguous WA
(see Proposition 3.4).

Remark that the eigenvalues of a matrix over N do not have to
be rational numbers, and might be complex numbers, which make
it more difficult to distinguish good behaviours from bad. In further
definitions we often restrict ourselves to p-triangular matrices to
avoid dealing with complex numbers: As stated in Remark 2.2 the
eigenvalues of such a matrix are its diagonal entries.

Excluding bad behaviours. As a direct consequence of Equation (1),
we get that for every 𝑢, 𝑣,𝑤 ∈ Σ∗ such that𝑀 (𝑣) is a p-triangular
matrix,

A(𝑢𝑣𝑛𝑤) =
𝑘∑︁
𝑖=1

𝑑𝑛𝑖 · 𝑝𝑖 (𝑛) for every 𝑛 ≥ |A|,

where {𝑑1, 𝑑2, . . . , 𝑑𝑛} is the set of diagonal entries of 𝑀 (𝑣), and
𝑝1, 𝑝2, . . . , 𝑝𝑛 are polynomials.We show that ifA is unambiguisable,
then this expression needs to collapse to some simple periodic
expression for every choice of 𝑢, 𝑣,𝑤 . We formalise this through
the notions of pumpable automata and blindly pumpable automata
(in the latter, the pumping does not depend on the suffix, which, as
we will show, is required for determinisability).

Definition 3.2. A weighted automaton A is pumpable if for all
𝑢, 𝑣,𝑤 ∈ Σ∗ such that𝑀 (𝑣) is a p-triangular matrix there is an entry
𝑑 of the diagonal of𝑀 (𝑣) satisfying

A(𝑢𝑣 |A |+𝑛𝑤) = 𝑑𝑛 · A(𝑢𝑣 |A |𝑤) for every 𝑛 ∈ N.

Moreover, we say that A is blindly pumpable if the entry 𝑑 does
not depend on the suffix𝑤 , that is, for all 𝑢, 𝑣 ∈ Σ∗ such that𝑀 (𝑣)
is a p-triangular matrix there is an entry 𝑑 of the diagonal of𝑀 (𝑣)
satisfying

A(𝑢𝑣 |A |+𝑛𝑤) = 𝑑𝑛 · A(𝑢𝑣 |A |𝑤) for every𝑤 ∈ Σ∗ and 𝑛 ∈ N.

The interest of this definition is reflected by Proposition 3.3,
proved in Section 4.

Proposition 3.3. Every unambiguisable weighted automaton is
pumpable, and every determinisable weighted automaton is blindly
pumpable.

Taking advantage of good behaviours. Unfortunately, the converse
statement of Proposition 3.3 does not hold in general, because of
the following limitations:

(1) Pumpability refers to p-triangular matrices, which do not
appear in some automata;

Determinisation and Unambiguisation of Polynomially-Ambiguous Rational Weighted Automata

(2) Pumpability only guarantees a periodic behaviour over the
words where some factor 𝑣 is pumped several times: How do
we ensure that this nice behaviour extends to words where
such a repetition never happens, for instance square-free
words?

To overcome these limitations, we restrict ourselves to polynomially-
ambiguous automata. In this setting matrices with an idempotent
structure are p-triangular matrices (Lemma 5.8), and the presence
of such matrices is guaranteed by Ramsey’s theorem (Lemma 5.7).
On top of this, we remark that Equation (2) in Lemma 3.1 would
counteract the second limitation, but the prescribed behaviour starts
only from𝑚 = 0 only applies to invertible matrices. The restriction
to polynomially-ambiguous WA further allows us to show that
sufficiently long words contain invertible-like idempotent entries
in which Equation (2) can be applied.

Thus, restricting ourselves to polynomially-ambiguous automata
allows us to get rid of the limitations preventing the converse of
Proposition 3.3. We obtain the following result, proved in Section 5:

Proposition 3.4. LetA be a polynomially-ambiguous automaton.
If A is pumpable then it is unambiguisable, and if A is blindly
pumpable then it is determinisable.

Deciding Pumpability. With Propositions 3.3 and 3.4, we have iden-
tified a class of weighted automata for which pumpability, respec-
tively blind pumpability, characterises unambiguisability, respec-
tively determinisability. We finally show in Section 6 that we can
decide the two former notions in polynomial space:

Proposition 3.5. We can decide in polynomial space whether a
givenweighted automaton is pumpable, respectively blindly pumpable.

Together, Propositions 3.3 to 3.5 entail our main theorem.

Theorem 1.1. Unambiguisability and determinisability are de-
cidable in polynomial space for polynomially-ambiguous weighted
automata.

We now prove Lemma 3.1 in the next subsection and prove
Propositions 3.3 to 3.5 in the next sections.

3.1 Proof of Lemma 3.1
The proof of Lemma 3.1 relies on two lemmas. Lemma 3.6 shows
that every matrix can be transformed (via an appropriate change
of basis) into a diagonal block matrix where each block is an upper
triangular matrix whose diagonal entries share the same value. It
is a standard construction in linear algebra: for instance, such a
change of basis is used to transform a matrix into its Jordan normal
form [31, Appendix B].

Lemma 3.6. Let𝑀 be a matrix with eigenvalues {𝑑1, 𝑑2, . . . , 𝑑𝑘 } ⊆
N. There exists an invertible matrix 𝑃 such that 𝑃−1𝑀𝑃 = 𝐵1 ⊕
𝐵2 ⊕ · · · ⊕ 𝐵𝑘 is a block diagonal matrix where each 𝐵𝑖 is an upper
triangular matrix whose diagonal entries all equal 𝑑𝑖 .

We use this result to reduce the study of the powers of a matrix
to the study of the powers of its blocks. We move to Lemma 3.7
that shows that these blocks are easy to handle, using the fact that
the diagonal entries of an individual block share the same value.

Lemma 3.7. Let 𝐵 be an 𝑚 ×𝑚 upper triangular matrix whose
diagonal entries all have the same value 𝑑 ∈ N, and let ®𝑥, ®𝑦 ∈ Q𝑚 .
There exists a polynomial 𝑝 such that

®𝑥𝑇 · 𝐵𝑛 · ®𝑦 = 𝑑𝑛 · 𝑝 (𝑛) for all 𝑛 ≥ 𝑚.

Moreover, if 𝑑 > 0 and 𝑝 is a constant polynomial then

®𝑥𝑇 · 𝐵𝑛 · ®𝑦 = 𝑑𝑛 · ®𝑥𝑇 · ®𝑦 for all 𝑛 ≥ 0.

Proof of Lemma 3.7. Let 𝐵 be an upper triangular𝑚×𝑚 matrix
whose diagonal entries all have the same value 𝑑 ∈ N. Remark that
in the specific case where 𝑑 = 0 the matrix 𝐵 is nilpotent (𝐵𝑚 = 0),
which immediately implies the desired statement: for all vectors
®𝑥, ®𝑦 ∈ Q𝑚 we have ®𝑥𝑇 · 𝐵𝑛 · ®𝑦 = 0 for all 𝑛 ≥ 𝑚, hence every
polynomial 𝑝 fits. We now suppose that 𝑑 > 0. We decompose 𝐵 as
the sum of the matrix 𝑑 · Id obtained by multiplying the identity by
𝑑 , and the remainder 𝐵0 = 𝐵 − 𝑑 · Id. This decomposition has the
following properties:

• The two components commutemultiplicatively: (𝑑 ·Id)·𝐵0 =
𝑑𝐵0 = 𝐵0 · (𝑑 · Id);

• 𝐵0 is a strictly upper triangular matrix, and it is nilpotent:
𝐵𝑚0 = 0.

This allows us to give a nice expression for the value of the powers
of 𝐵:

𝐵𝑛 =

𝑛∑︁
𝑖=0

(
𝑛

𝑖

)
(𝑑 · Id)𝑛−𝑖 · 𝐵𝑖0 =

𝑚′∑︁
𝑖=0

(
𝑛

𝑖

)
𝑑𝑛−𝑖𝐵𝑖0 = 𝑑𝑛 ·

𝑚′∑︁
𝑖=0

(
𝑛

𝑖

)
·
𝐵𝑖0
𝑑𝑖

with𝑚′ = min(𝑛,𝑚).
Therefore, for every pair of vectors ®𝑥, ®𝑦 ∈ Q𝑚 we get

®𝑥𝑇 · 𝐵𝑛 · ®𝑦 = 𝑑𝑛 ·
𝑚′∑︁
𝑖=0

(
𝑛

𝑖

)
·
®𝑥𝑇 · 𝐵𝑖0 · ®𝑦

𝑑𝑖︸ ︷︷ ︸
𝑝 (𝑛)

with𝑚′ = min(𝑛,𝑚) . (3)

As indicated by the underbrace, we let 𝑝 denote the sum in Equa-
tion (3) in the case where𝑚′ =𝑚. To conclude the proof, it remains
to show that the expression 𝑝 is a polynomial in 𝑛, and that if 𝑝 is
of degree 0 then ®𝑥𝑇 · 𝐵𝑛 · ®𝑦 = 𝑑𝑛 · ®𝑥𝑇 · ®𝑦 for all 𝑛 ≥ 0. Let us focus
on the summands composing 𝑝: For every 0 ≤ 𝑖 ≤ 𝑚 we have(

𝑛

𝑖

)
·
®𝑥𝑇 · 𝐵𝑖0 · ®𝑦

𝑑𝑖
=

®𝑥𝑇 · 𝐵𝑖0 · ®𝑦
𝑑𝑖 · 𝑖 (𝑖 − 1) (𝑖 − 2) · . . . · 2 · 1︸ ︷︷ ︸

∈Q

·𝑛(𝑛 − 1) (𝑛 − 2) . . . (𝑛 − 𝑖 + 1) .

This expression is a polynomial of degree 𝑖 if ®𝑥𝑇 · 𝐵𝑖0 · ®𝑦 ≠ 0, and it
is constantly zero if ®𝑥𝑇 · 𝐵𝑖0 · ®𝑦 = 0. Since 𝑝 (𝑛) is equal to the sum
of all these expressions, we get that 𝑝 (𝑛) is a polynomial whose
degree is equal to the largest 𝑖 satisfying ®𝑥𝑇 · 𝐵𝑖0 · ®𝑦 ≠ 0 (or 𝑝 (𝑛) is
constantly zero if no such 𝑖 exists). In particular, if 𝑝 is a constant
polynomial we get that ®𝑥𝑇 · 𝐵𝑖0 · ®𝑦 = 0 for every 1 ≤ 𝑖 ≤ 𝑚, thus
Equation (3) yields the desired expression:

®𝑥𝑇 · 𝐵𝑛 · ®𝑦 = 𝑑𝑛 ·
(
𝑛

0

)
· ®𝑥𝑇 · 𝐵00 · ®𝑦 = 𝑑𝑛 · ®𝑥𝑇 · ®𝑦 for all 𝑛 ≥ 0. □

Ismaël Jecker, Filip Mazowiecki, and David Purser

Proof of Lemma 3.1. Let𝑀 be an𝑚 ×𝑚 matrix with eigenval-
ues {𝑑1, 𝑑2, . . . , 𝑑𝑛} ⊆ N. We begin by transforming𝑀 into a block
diagonalmatrix according to Lemma 3.6: 𝑃−1𝑀𝑃 = 𝐵1⊕𝐵2⊕· · ·⊕𝐵𝑘 .
Since𝑀𝑛 = 𝑃 · (𝐵𝑛1 ⊕ 𝐵𝑛2 ⊕ · · · ⊕ 𝐵𝑛

𝑘
) · 𝑃−1, we get

®𝑥𝑇 ·𝑀𝑛 · ®𝑦 =
4.1

𝑘∑︁
𝑖=1

®𝑥𝑇𝑖 ·𝐵𝑛𝑖 · ®𝑦𝑖 =
4.2

𝑘∑︁
𝑖=1

𝑑𝑛𝑖 ·𝑝𝑖 (𝑛) for all 𝑛 ≥ 𝑚, where:

(4)

4.1 The vectors ®𝑥𝑇1 , ®𝑥
𝑇
2 , . . . , ®𝑥

𝑇
𝑘
, respectively ®𝑦1, ®𝑦2, . . . , ®𝑦𝑘 , are ob-

tained by cutting ®𝑥𝑇 · 𝑃 , respectively 𝑃−1 · ®𝑦, into parts
whose sizes fit the blocks 𝐵1, 𝐵2, . . . , 𝐵𝑘 ;

4.2 The polynomials 𝑝1, 𝑝2, . . . , 𝑝𝑛 are obtained by applying
Lemma 3.7 to each block.

This concludes the proof of Equation (1) of Lemma 3.1.
In order to prove the second part, we now suppose that thematrix

𝑀 is invertible. This implies that none of its eigenvalues equals
zero. Therefore, if on top of that we suppose that 𝑝1, 𝑝2, . . . , 𝑝𝑘 are
all constant polynomials, and that only 𝑝 𝑗 is not constantly 0, we
can apply the second part of Lemma 3.7 to get:

5.1 ®𝑥𝑇
𝑗
· 𝐵𝑛

𝑗
· ®𝑦 𝑗 = 𝑑𝑛

𝑗
®𝑥𝑇
𝑗
· ®𝑦 𝑗 for all 𝑛 ∈ N;

5.2 For every 𝑖 ≠ 𝑗 , ®𝑥𝑇
𝑖
· 𝐵𝑛

𝑖
· ®𝑦𝑖 = 0 for all 𝑛 ∈ N (thus in particular

®𝑥𝑇
𝑖
· ®𝑦𝑖 = 0).

We use these properties to refine Equation (4) into Equation (2) of
Lemma 3.1:

®𝑥𝑇 ·𝑀𝑛 · ®𝑦 =

𝑘∑︁
𝑖=1

®𝑥𝑇𝑖 · 𝐵𝑛𝑖 · ®𝑦𝑖 =
5.1−5.2

𝑑𝑛𝑗 · ®𝑥
𝑇
𝑗 · ®𝑦 𝑗

=
5.2

𝑘∑︁
𝑖=1

𝑑𝑛𝑗 · ®𝑥
𝑇
𝑖 · ®𝑦𝑖 (5)

= 𝑑𝑛𝑗 · ®𝑥
𝑇 · ®𝑦 for all 𝑛 ∈ N. □

4 PUMPABLE AUTOMATA
The goal of this section is to prove Proposition 3.3:

Proposition 3.3. Every unambiguisable weighted automaton is
pumpable, and every determinisable weighted automaton is blindly
pumpable.

We begin by establishing the possible behaviours of unambigu-
ous automata, respectively deterministic automata, over families of
words of the form (𝑢𝑣𝑛𝑤)𝑛∈N (Lemma 4.1). Then, to prove Propo-
sition 3.3, we show that, given a weighted automaton A, for each
triple 𝑢, 𝑣,𝑤 ∈ Σ∗, if we take the possible values of (A(𝑢𝑣𝑛𝑤))𝑛∈N
(which are described by Equation (1) of Lemma 3.1) and remove all
the behaviours that do not fit an unambiguous (resp. deterministic)
weighted automaton (which are described by Lemma 4.1), then we
are left with exactly the behaviours fitting a pumpable (respectively
blindly pumpable) automaton.

Lemma 4.1. Let A be a weighted automaton.
(1) If A is unambiguous, then for all 𝑢, 𝑣,𝑤 ∈ Σ∗ there exist

𝑚,𝑑 ∈ N and 𝜆 > 0 such that

A(𝑢𝑣𝑚+𝜆𝑛𝑤) = 𝑑𝑛 · A(𝑢𝑣𝑚𝑤) for all 𝑛 ∈ N.

(2) IfA is deterministic, then for all𝑢, 𝑣 ∈ Σ∗ there exist𝑚,𝑑 ∈ N
and 𝜆 > 0 such that

A(𝑢𝑣𝑚+𝜆𝑛𝑤) = 𝑑𝑛 · A(𝑢𝑣𝑚𝑤) for all𝑤 ∈ Σ∗ and 𝑛 ∈ N.

Proof. These results follow from a standard pumping argument:
in every automaton, long enough runs eventually visit a cycle. Since
unambiguous weighted automata have at most one run over each
input word, pumping such a cycle amounts to multiplying the run
by the weight of the cycle. On top of this, the second item follows
from the fact that in a deterministic automaton the pumped constant
cannot depend on the suffix that is yet to be read. Let us now prove
these results formally.
(1) LetA be an unambiguous automaton, and let𝑢, 𝑣,𝑤 ∈ Σ∗. First,
remark that if for every𝑚 ≥ |A| the automatonA has no run over
𝑢𝑣𝑚𝑤 , then A(𝑢𝑣𝑚𝑤) = 0, and the statement is easily satisfied
by picking 𝑚 = |A|, 𝑑 = 0 and 𝜆 = 1. Now let us suppose that
there exists𝑚 ≥ |A| such that A has a run 𝜌 over 𝑢𝑣𝑚𝑤 . Since
|A| denotes the number of states of A, 𝜌 can be factorised into
three subruns such that the middle part is a cycle which processes
a non-empty power 𝑣𝜆 of the word 𝑣 . Therefore, if we denote by 𝑑
the weight of this middle part, we get that for all 𝑛 ∈ N the automa-
ton A has a run over 𝑢𝑣𝑚+𝜆𝑛𝑤 which has weight 𝑑𝑛 · A(𝑢𝑣𝑚𝑤).
However, since A is unambiguous by supposition, this is the only
run over this input word, hence A(𝑢𝑣𝑚+𝜆𝑛𝑤) = 𝑑𝑛 · A(𝑢𝑣𝑚𝑤),
which concludes the proof.

(2) Let A be a deterministic automaton, and let 𝑢, 𝑣 ∈ Σ∗. The
proof is nearly identical to the one for the unambiguous setting: If
for every𝑚 ≥ |A| the automaton A has no path over 𝑢𝑣𝑚 starting
in an initial state, then A(𝑢𝑣𝑚𝑤) = 0 for every 𝑤 ∈ Σ∗, and we
are done. If there exists𝑚 ≥ |A| such that A has a path over 𝑢𝑣𝑚
starting from the initial state with someweight 𝑥 , then this path will
visit a cycle while reading a non-empty power 𝑣𝜆 of 𝑣 . Therefore,
for every 𝑛 ∈ N there exists a path in A over 𝑢𝑣𝑚+𝜆𝑛 that starts
in an initial state and has weight 𝑑𝑛 · 𝑥 . Since A is deterministic,
there cannot be any other such path, hence for every 𝑤 ∈ Σ∗ we
get that A(𝑢𝑣𝑚+𝜆𝑛𝑤) = 𝑑𝑛 · A(𝑢𝑣𝑚𝑤), as required. □

Proof of Proposition 3.3.
Fix a weighted automaton A = (𝑄, Σ, 𝑀, 𝐼, 𝐹).

Unambiguisability implies pumpability. Let us suppose that A is
unambiguisable, and let U be an unambiguous automaton equiva-
lent to A. Let 𝑢, 𝑣,𝑤 ∈ Σ∗ such that𝑀 (𝑣) is a p-triangular matrix.
We compare the behaviour of A andU over the family of words
(𝑢𝑣𝑛𝑤)𝑛∈N. The behaviour of A is described by Equation (1) of
Lemma 3.1:

A(𝑢𝑣𝑛𝑤) =
𝑘∑︁
𝑖=1

𝑑𝑛𝑖 · 𝑝𝑖 (𝑛) for every 𝑛 ≥ |A|, (6)

where {𝑑1, 𝑑2, . . . , 𝑑𝑛} is the set of diagonal entries of 𝑀 (𝑣) and
𝑝1, 𝑝2, . . . , 𝑝𝑛 are polynomials. The behaviour of U is described by
Lemma 4.1: There exist 𝑑,𝑚 ∈ N and 𝜆 > 0 such that

U(𝑢𝑣𝑚+𝜆𝑛𝑤) = 𝑑𝑛 · U(𝑢𝑣𝑚𝑤) for all 𝑛 ∈ N.

Since A is equivalent toU, these two behaviours need to match.
Intuitively, this implies that Equation (6) collapses to a single term
of the form A(𝑢𝑣𝑛𝑤) = 𝛿𝑛 · 𝐶 (so that it mirrors the behaviour

Determinisation and Unambiguisation of Polynomially-Ambiguous Rational Weighted Automata

of U), which proves the desired result as this fits the definition
of a pumpability. We now present the formal details proving this
intuition. First, remark that(

𝑘∑︁
𝑖=1

𝑑𝑚+𝜆𝑛
𝑖 · 𝑝𝑖 (𝑚 + 𝜆𝑛)

)
− 𝑑𝑛 · U(𝑢𝑣𝑚𝑤)

= A(𝑢𝑣𝑚+𝜆𝑛𝑤) − U(𝑢𝑣𝑚+𝜆𝑛𝑤) = 0 for all 𝑛 ≥ |A|.

Let us rewrite the left-hand side as
∑𝑘
𝑖=1 (𝑑𝜆𝑖)

𝑛 · 𝑝′
𝑖
(𝑛), where

𝑝′𝑖 (𝑛) =
{
𝑑𝑚
𝑖
𝑝𝑖 (𝑚 + 𝜆𝑛) if 𝑑𝜆

𝑖
≠ 𝑑 ;

𝑑𝑚
𝑖
𝑝𝑖 (𝑚 + 𝜆𝑛) − U(𝑢𝑣𝑚𝑤) if 𝑑𝜆

𝑖
= 𝑑.

Since
∑𝑘
𝑖=1 (𝑑𝜆𝑖)

𝑛 ·𝑝′
𝑖
(𝑛) = 0 for all 𝑛 ∈ N and the 𝑑𝑖 are distinct pos-

itive integers, every 𝑝′
𝑖
is constantly 0: Otherwise,

∑𝑘
𝑖=1 (𝑑𝜆𝑖)

𝑛 ·𝑝′
𝑖
(𝑛)

would behave asymptotically like (𝑑𝜆
𝑗
)𝑛 · 𝑝′

𝑗
(𝑛) (contradicting the

fact that it is 0), where 𝑑 𝑗 is the largest 𝑑𝑖 such that the correspond-
ing 𝑝′

𝑖
is not constantly 0. As a consequence, for every 1 ≤ 𝑖 ≤ 𝑘 :

• If 𝑑𝜆
𝑖
≠ 𝑑 the fact that 𝑝′

𝑖
(𝑛) = 𝑑𝑚

𝑖
𝑝𝑖 (𝑚 + 𝜆𝑛) is constantly

0 implies that either 𝑑𝑖 = 0 or 𝑝𝑖 (𝑛) is constantly 0;
• If 𝑑𝜆

𝑖
= 𝑑 the fact that 𝑝′

𝑖
(𝑛) = 𝑑𝑚

𝑖
𝑝𝑖 (𝑚 +𝜆𝑛) −U(𝑢𝑣𝑚𝑤) is

constantly 0 implies that either 𝑑𝑖 = 0 (and U(𝑢𝑣𝑚𝑤) = 0),
or 𝑝𝑖 (𝑛) is constantly U(𝑢𝑣𝑚𝑤)

𝑑𝑚
𝑖

.
We update Equation (6) accordingly: If there exist 𝑑 𝑗 such that
𝑑 = 𝑑𝜆

𝑗
, then A(𝑢𝑣𝑛𝑤) = 𝑑𝑛

𝑗
· U(𝑢𝑣𝑚𝑤)

𝑑𝑚
𝑗

for every 𝑛 ≥ |A|. Other-
wise, A(𝑢𝑣𝑛𝑤) = 0 for every 𝑛 ≥ |A|. Remark that both cases fit
the requirement of the definition of pumpability: A(𝑢𝑣 |A |+𝑛′

𝑤) =
𝑑𝑛

′
𝑗

· A(𝑢𝑣 |A |𝑤) for every 𝑛′ ≥ 0. Since this holds for every
triple 𝑢, 𝑣,𝑤 ∈ Σ∗ required in Definition 3.2 we deduce that A
is pumpable.

Determinisability implies blind pumpability. If A is equivalent
to a deterministic automaton D, in particular A is unambiguis-
able, thus, as we just proved, it is pumpable. Towards building a
contradiction, suppose that A is not blindly pumpable: there exists
𝑢, 𝑣,𝑤1,𝑤2 ∈ Σ∗ such that A(𝑢𝑣 |A |+𝑛𝑤1) = 𝑑𝑛1 · A(𝑢𝑣 |A |𝑤1) and
A(𝑢𝑣 |A |+𝑛𝑤2) = 𝑑𝑛2 · A(𝑢𝑣 |A |𝑤2) for all 𝑛 ∈ N, yet 𝑑1 ≠ 𝑑2 and
A(𝑢𝑣 |A |𝑤1) ≠ 0 ≠ A(𝑢𝑣 |A |𝑤2). We compare these expressions
with the behaviours of D, described by Lemma 4.1: There exist
𝑑,𝑚 ∈ N and 𝜆 > 0 such that D(𝑢𝑣𝑚+𝜆𝑛𝑤1) = 𝑑𝑛 · D(𝑢𝑣𝑚𝑤1)
and D(𝑢𝑣𝑚+𝜆𝑛𝑤2) = 𝑑𝑛 · D(𝑢𝑣𝑚𝑤2) for all 𝑛 ∈ N. Since 𝑑1 and
𝑑2 are distinct integers, 𝑑 cannot match both 𝑑𝜆1 and 𝑑𝜆2 , hence A
and D disagree on the value of either 𝑢𝑣𝑚+𝜆𝑛𝑤1 or 𝑢𝑣𝑚+𝜆𝑛𝑤2 for
𝑛 sufficiently large. This contradicts the fact that the two automata
are equivalent. □

5 DEPUMPABLE AUTOMATA
This section is devoted to the proof of Proposition 3.4, which we
recall:

Proposition 3.4. LetA be a polynomially-ambiguous automaton.
If A is pumpable then it is unambiguisable, and if A is blindly
pumpable then it is determinisable.

Our proof relies on the following lemma, which shows that,
once we restrict ourselves to polynomially-ambiguous automata,
pumpable automata are also depumpable:

Lemma 5.1 (Depumping lemma).
Let A be a polynomially-ambiguous automaton. There exists a con-
stant 𝑅A such that every word 𝑢 ∈ Σ∗ satisfying |𝑢 | = 𝑅A can be
decomposed into three parts 𝑢 = 𝑢1𝑢2𝑢3 such that 𝑢2 ≠ 𝜀 and

(1) If A is pumpable, for each 𝑣 ∈ Σ∗ there exist an entry 𝑑 of
the matrix𝑀 (𝑢2) such that A(𝑢𝑣) = 𝑑 · A(𝑢1𝑢3𝑣);

(2) If A is blindly pumpable, there exists an entry 𝑑 of the
matrix 𝑀 (𝑢2) such that for all 𝑣 ∈ Σ∗ we have A(𝑢𝑣) =

𝑑 · A(𝑢1𝑢3𝑣).

Remark that the order of the quantifiers is different in the two
items: In Item 2 the entry 𝑑 does not depend on the suffix 𝑣 . The
proof of Lemma 5.1 is presented in Subsection 5.2.

Remark. The following proof only use the assumption that A
is polynomially-ambiguous and pumpable (respectively blindly
pumpable) to enable the use of the depumping lemma: In other
words, extending the depumping lemma to awider class of automata
would result in extending Proposition 3.4 in the same manner.

Proof of Proposition 3.4. LetA be a polynomially-ambiguous
automaton. We prove both parts of Proposition 3.4 independently.

Pumpability implies unambiguisability. Let us suppose that A
is pumpable. We prove that it is unambiguisable relying on the
following characterisation by Bell and Smertnig.

Theorem 5.2 ([2]). A weighted automaton over integers A is
unambiguisable if and only if the set of prime divisors of the set
{A(𝑤) | 𝑤 ∈ Σ∗} is finite.

We show that the set of prime divisors of the image of A (the
set of output values of A over all words) is finite by building an
upper bound according to the following intuition: For each 𝑢 ∈ Σ∗,
repeated application of the depumping lemma allows us to express
A(𝑢) as a product of the form A(𝑢′) · ∏𝑛

𝑖=1 𝑑𝑖 , where both A(𝑢′)
and the 𝑑𝑖 are bounded. This gives us a bound for the prime divisors
of A(𝑢).

Let us formalise this idea. Let 𝑁 ∈ N be an integer such that
for every 𝑢 ∈ Σ∗ of length at most 𝑅A all the entries of 𝑀 (𝑢) are
smaller than 𝑁 and A(𝑢) < 𝑁 . We prove by induction on the
length that for every word 𝑢 ∈ Σ∗, the prime factors of A(𝑢) are
all smaller than 𝑁 .

The base case of the induction is immediate: If |𝑢 | ≤ 𝑅A , then by
definition of 𝑁 we get that 𝐴(𝑢) is smaller than 𝑁 , thus its prime
factors are also smaller than 𝑁 .

Now let us suppose that |𝑢 | > 𝑅A and that for every word
𝑢′ shorter than 𝑢 the prime factors of A(𝑢′) are smaller than 𝑁 .
By applying Lemma 5.1 to the prefix of size 𝑅A of 𝑢 we obtain a
decomposition 𝑢 = 𝑢1𝑢2𝑢3𝑣 satisfying 0 < |𝑢2 | ≤ 𝑅A and A(𝑢) =
𝑑 ·A(𝑢1𝑢3𝑣) for some entry 𝑑 of𝑀 (𝑢2). We conclude by remarking
that 𝑑 < 𝑁 since |𝑢2 | ≤ 𝑅A , and the prime factors ofA(𝑢1𝑢3𝑣) are
smaller than 𝑁 by the induction hypothesis.

Blind pumpability implies determinisability. Let us suppose that
A is blindly pumpable. We use the depumping Lemma to build a
deterministic automaton D equivalent to A.

We begin with an informal description of the behaviour of D.
The states of D are the words 𝑢 ∈ Σ∗ satisfying |𝑢 | ≤ 𝑅A . The
automaton D starts by keeping track in its state of the input word

Ismaël Jecker, Filip Mazowiecki, and David Purser

read so far, and preserves a weight equal to 1. WheneverD reaches
a state corresponding to a word 𝑢 of length 𝑅A , it “depumps” it:
According to Lemma 5.1 there exists a decomposition 𝑢 = 𝑢1𝑢2𝑢3
and an entry 𝑑 of𝑀 (𝑢) such thatA(𝑢𝑤) = 𝑑 · A(𝑢1𝑢3𝑤) for every
suffix𝑤 ∈ Σ∗. Therefore, D can immediately produce the weight 𝑑
corresponding to the infix 𝑢2, and transition towards the state 𝑢1𝑢3.
Finally, when D finishes reading its input, it produces the weight
A(𝑣) corresponding to its current state 𝑣 . In order to prove that
such an automaton is indeed equivalent to A, we now formalise
this construction.

We define the deterministic automaton D = (𝑄 ′, Σ, 𝑀′, 𝐼 ′, 𝐹 ′) as
follows. First, we introduce the depumping function cut : Σ𝑅A →
Σ∗×Z that depumps deterministically the words of size 𝑅A : it picks,
for each 𝑢 ∈ Σ∗ such that |𝑢 | = 𝑅A , a pair (𝑢′, 𝑑) satisfying

• 𝑢 = 𝑢1𝑢2𝑢3 for some 𝑢1, 𝑢2, 𝑢3 ∈ Σ∗ and 𝑢′ = 𝑢1𝑢3;
• |𝑢′ | < 𝑅A ;
• 𝑑 is an entry of𝑀 (𝑢2);
• A(𝑢𝑣) = 𝑑 · A(𝑢1𝑢3𝑣) for every 𝑣 ∈ Σ∗.

Note that this function exists: Lemma 5.1 guarantees the existence
of at least one such pair (𝑢′, 𝑑) for every𝑢 ∈ Σ𝑅A . To ensure thatD
is deterministic, cut can pick any fixed pair for every 𝑢 ∈ Σ𝑅A , for
instance, the minimal pair according to the lexicographical order.
We now define the components of D:

• 𝑄 ′ = {𝑞𝑢 | 𝑢 ∈ Σ∗, |𝑢 | < 𝑅A };
• For every 𝑢 ∈ 𝑄 ′ and 𝑎 ∈ Σ,

– If |𝑢𝑎 | < 𝑅A then 𝑞𝑢
𝑎:1−−→ 𝑞𝑢𝑎 ;

– If |𝑢𝑎 | = 𝑅A then 𝑞𝑢
𝑎:𝑑−−−→ 𝑞𝑢′ where cut(𝑢𝑎) = (𝑢′, 𝑑).

• 𝐼 ′ (𝑞𝜀) = 1 and 𝐼 ′ (𝑞𝑢) = 0 for every 𝑢 ≠ 𝜀;
• 𝐹 ′ (𝑞𝑢) = A(𝑢).

The automatonD is deterministic: There is exactly one initial state,
and for every state 𝑞𝑢 and letter 𝑎 there is exactly one outgoing
transition from 𝑢 labelled by 𝑎. All that remains to show is that
D(𝑢) = A(𝑢) for every𝑢 ∈ Σ∗. To this end, we prove the following
claim:

Claim 5.3. The weight 𝑥 of the (single) path 𝑞𝜀 , 𝑞𝑢1 , 𝑞𝑢2 , . . . , 𝑞𝑢𝑛
of D over 𝑢 starting from the initial state 𝑞𝜀 satisfies A(𝑢𝑤) =

𝑥 · A(𝑢𝑛𝑤) for every𝑤 ∈ Σ∗.

Remark that, by definition of the final vector 𝐹 , this immediately
implies that D(𝑢) = A(𝑢). We prove the claim by induction on
the size of 𝑢. If |𝑢 | < 𝑅A the result is immediate: the path of D
over 𝑢 that starts from the initial state has weight 1 and ends in
the state 𝑞𝑢 (thus 𝑢𝑛 = 𝑢). Now suppose that |𝑢 | ≥ 𝑅A . Let us
denote 𝑢 = 𝑣𝑎 with 𝑣 ∈ Σ∗ and 𝑎 ∈ Σ. Remark that the path of
D over 𝑣 starting from the initial state is obtained by removing

the last transition 𝑞𝑢𝑛−1
𝑎:𝑑−−−→ 𝑞𝑢𝑛 of the path over 𝑢. Therefore,

for every 𝑤 ∈ Σ∗, applying the induction hypothesis to 𝑣 yields
that A(𝑢𝑤) = A(𝑣𝑎𝑤) = 𝑥

𝑑
· A(𝑢𝑛−1𝑎𝑤). We distinguish two

possibilities, depending on the type of transition used while reading
the last letter 𝑎 of 𝑢:

• If |𝑢𝑛−1𝑎 | < 𝑅A , then 𝑢𝑛 = 𝑢𝑛−1𝑎 and 𝑑 = 1, hence

A(𝑢) = 𝑥

𝑑
· A(𝑢𝑛−1𝑎𝑤) = 𝑥 · A(𝑢𝑛𝑤);

• If |𝑢𝑛−1𝑎 | = 𝑅A , then cut(𝑢𝑛−1𝑎) = (𝑢𝑛, 𝑑), hence

A(𝑢) = 𝑥

𝑑
· A(𝑢𝑛−1𝑎𝑤) = 𝑥 · A(𝑢𝑛𝑤).

The last equality follows from the definition of cut. □

Remark 5.4. While our decision procedure is in PSPACE, the size
of the automaton D, should it be constructed, depends on 𝑅A . We
will see in the next section this will be quite big (non-elementary).
Our decision procedure does not need to construct D.

5.1 Replacing pumpable idempotents with
invertible matrices

To prove Lemma 5.1 we will need a technical lemma that allows
us to find pumpable fragments and replace them with invertible
matrices. Some ideas here are similar to those in [6], in particular
the idea behind Claim 5.6 is similar to [6, Lemma 8].

Let us consider the family of functions (tower𝑟)𝑟 ∈N defined
inductively as follows:

tower0 (𝑥) = 𝑥 for all 𝑥 ∈ N;
tower𝑟+1 (𝑥) = 𝑥 · tower𝑟 (𝑥𝑥) for all 𝑥 ∈ N.

Lemma 5.5. Let 𝑟 be the maximal rank of the matrices {𝑀 (𝑎) |
𝑎 ∈ Σ}. Then for all ℓ ≥ 1, every word 𝑢∗ ∈ Σ∗ satisfying |𝑢 | ≥
tower𝑟 (2ℓ · |Σ|) can be decomposed as 𝑢 = 𝑢⊢𝑢1𝑢2 . . . 𝑢ℓ𝑢⊣ such that

• for every 1 ≤ 𝑖 ≤ ℓ the word 𝑢𝑖 is nonempty;
• for every 1 ≤ 𝑖 ≤ 𝑗 ≤ ℓ there exists an invertible matrix 𝑀

satisfying, for all 𝑛 ≥ 0:

𝑀 (𝑢⊢𝑢1𝑢2 . . . 𝑢𝑖−1 (𝑢𝑖 . . . 𝑢 𝑗)𝑛𝑢 𝑗+1 . . . 𝑢ℓ𝑢⊣)
= 𝑀 (𝑢⊢𝑢1𝑢2 . . . 𝑢𝑖−1) ·𝑀𝑛 ·𝑀 (𝑢 𝑗+1 . . . 𝑢ℓ𝑢⊣) . (7)

The proof will rely on the following claim.

Claim 5.6. If the rank of𝐴𝐵𝐴 is equal to the rank of𝐴, there exists
an invertible matrix 𝐶 satisfying (𝐴𝐵)𝑛𝐴 = 𝐶𝑛𝐴 for all 𝑛 ≥ 0.

Proof. If the rank of 𝐴 and 𝐴𝐵𝐴 are equal, then their images
are the same. Let 𝑉 ⊆ Q𝑚 be this image. Note that 𝐴𝐵 can be seen
as a linear transformation on Q𝑚 , and 𝐴𝐵 restricted to𝑉 , i.e. 𝐴𝐵 |𝑉 ,
is a bijection. Let ®𝑣1, . . . , ®𝑣𝑠 be a basis of 𝑉 and let ®𝑣𝑠+1, . . . , ®𝑣𝑚 be
such that ®𝑣1, . . . , ®𝑣𝑚 is a basis of Q𝑚 .

Recall that a linear transformation Q𝑚 → Q𝑚 is uniquely de-
fined by fixing the images of a basis. Let ®𝑤1, . . . , ®𝑤𝑠 be the images
of ®𝑣1, . . . , ®𝑣𝑠 when applying the linear transformation 𝐴𝐵, and ob-
serve that these also span 𝑉 . The matrix 𝐶 is defined by the linear
transformation that maps ®𝑣𝑖 to ®𝑤𝑖 for all 1 ≤ 𝑖 ≤ 𝑠 and ®𝑣𝑖 to ®𝑣𝑖 for
𝑠 + 1 ≤ 𝑖 ≤ 𝑚.

It is clear that 𝐶 is invertible as its image has 𝑚 independent
vectors. Also by definition (𝐴𝐵)𝐴 = 𝐶𝐴. The general property for
all powers is proved by induction:

(𝐴𝐵)𝑛𝐴 = (𝐴𝐵)𝑛−1𝐴𝐵𝐴 = 𝐶𝑛−1𝐴𝐵𝐴 = 𝐶𝑛𝐴. □

Proof of Lemma 5.5. We prove the lemma by induction on 𝑟 ,
the maximal rank of the matrices {𝑀 (𝑎) | 𝑎 ∈ Σ}.

If 𝑟 = 0 the proof is straightforward: by definition of 𝑟 for every
letter 𝑎 ∈ Σ the matrix𝑀 (𝑎) has rank 0, thus it is the null matrix.
Then for every word 𝑢 = 𝑎1𝑎2 . . . 𝑎𝑛 of size 𝑛 ≥ tower0 (2ℓ · |Σ|) =
2ℓ · |Σ| > ℓ · |Σ|, the left-hand side of Equation (7) is equal to the
null matrix for every choice of 𝑖, 𝑗 and 𝑛. Therefore, we satisfy the
statement by setting 𝑢⊢ = 𝜀, 𝑢𝑖 = 𝑎𝑖 for every 1 ≤ 𝑖 ≤ ℓ · |Σ| and

Determinisation and Unambiguisation of Polynomially-Ambiguous Rational Weighted Automata

𝑢⊣ = 𝑎ℓ · |Σ |+1 . . . 𝑎𝑛 . Note that the lemma holds for any choice of an
invertible matrix𝑀 .

Now let us suppose that 𝑟 > 0 and that the lemma holds
for 𝑟 − 1. Let 𝑥 = 2ℓ · |Σ|, and let 𝑢 ∈ Σ∗ be a word satisfy-
ing |𝑢 | > tower𝑟 (𝑥) = 𝑥tower𝑟−1 (𝑥𝑥). We consider the decom-
position 𝑢 = 𝑣1𝑣2 . . . 𝑣tower𝑟−1 (𝑥𝑥)𝑣 such that |𝑣𝑖 | = 𝑥 for every
1 ≤ 𝑖 ≤ tower𝑟−1 (𝑥𝑥). We distinguish two cases:
• Suppose that there exists 1 ≤ 𝑖 ≤ tower𝑟−1 (𝑥𝑥) such that the

rank of 𝑀 (𝑣𝑖) is 𝑟 . Since |𝑣𝑖 | = 𝑥 > ℓ · |Σ|, there is one letter
𝑎 ∈ Σ that occurs ℓ + 1 times in 𝑣𝑖 :

𝑣𝑖 = 𝑤0𝑎𝑤1𝑎𝑤2 . . . 𝑎𝑤ℓ𝑎𝑤ℓ+1 for some𝑤0,𝑤1, . . . ,𝑤ℓ+1 ∈ Σ∗ .

Moreover, since the rank of both𝑀 (𝑣𝑖) and𝑀 (𝑎) is 𝑟 , for every
1 ≤ 𝑖 ≤ 𝑗 ≤ ℓ the rank of𝑀 (𝑎)𝑀 (𝑤𝑖 . . . 𝑎𝑤 𝑗)𝑀 (𝑎) is also 𝑟 . As a
consequence, Claim 5.6 guarantees the existence of an invertible
matrix 𝐶 satifying for all 𝑛 ≥ 0:

𝑀 ((𝑎𝑤𝑖 . . . 𝑎𝑤 𝑗)𝑛𝑎) = 𝑀 (𝑎𝑤𝑖 . . . 𝑎𝑤 𝑗)𝑛 ·𝑀 (𝑎) = 𝐶𝑛 ·𝑀 (𝑎) .
Therefore, the decomposition 𝑢 = 𝑢⊢𝑢1𝑢2 . . . 𝑢ℓ𝑢⊣ where 𝑢𝑖 =

𝑎𝑤𝑖 for every 1 ≤ 𝑖 ≤ ℓ satisfies the statement of the lemma.
• Suppose that for every 1 ≤ 𝑖 ≤ tower𝑟−1 (𝑥𝑥) the matrix𝑀 (𝑣𝑖)

has a rank smaller than 𝑟 . In order to apply the induction hy-
pothesis, we now consider the alphabet Γ = {𝑣𝑖 | 1 ≤ 𝑖 ≤
tower𝑟−1 (𝑥𝑥)}. Then for every letter 𝑎 ∈ Γ we have that the
rank of𝑀 (𝑎) is smaller than or equal to 𝑟 − 1. Moreover, since
the length of each 𝑣𝑖 is 𝑥 , we get that |Γ | ≤ |Σ|𝑥 . Therefore, the
word𝑤 = 𝑣1𝑣2 . . . 𝑣tower𝑟−1 (𝑥𝑥) ∈ Γ∗ satisfies

|𝑤 | = tower𝑟−1 (𝑥𝑥)
= tower𝑟−1 ((2ℓ · |Σ|)𝑥)
> tower𝑟−1 (2ℓ · |Σ|𝑥)
≥ tower𝑟−1 (2ℓ · |Γ |).

As a consequence, we can apply the induction hypothesis to
obtain a decomposition of the word𝑤 = 𝑣1𝑣2 . . . 𝑣tower𝑟−1 (𝑥𝑥) ∈
Γ∗, which can be transferred back to 𝑢. □

5.2 Proof of depumping lemma (Lemma 5.1)
We need two technical results. The first lemma, intuitively, shows
that we can find idempotents in long enough words. It is a direct
consequence of [17, Theorems 1 and 2].2 The second lemma shows
that idempotents for polynomially-ambiguous WA are p-triangular.
It is proved in ??.

Lemma 5.7. Given a weighted automaton A: let ℓ = (3 · 24 |A |2)𝐿 ,
where 𝐿 =

|A |2+|A |+2
2 . Let 𝑢 = 𝑢1 . . . 𝑢ℓ ∈ Σ+, where 𝑢𝑖 ∈ Σ+ for

all 1 ≤ 𝑖 ≤ ℓ . There exist 1 ≤ 𝑖 ≤ 𝑗 ≤ ℓ such that 𝑀 (𝑢𝑖 . . . 𝑢 𝑗) has
idempotent structure.

Lemma 5.8. Let A be a polynomially-ambiguous weighted au-
tomaton. For every 𝑢 ∈ Σ∗, if𝑀 (𝑢) has an idempotent structure then
it is p-triangular.

Proof. Let A be a polynomially-ambiguous automaton, let𝑚
denote the size of A and let 𝑢 ∈ Σ∗ such that 𝑀 (𝑢) has an idem-
potent structure. We construct a permutation 𝜎 : {1, 2, . . . ,𝑚} →
2The use of [17] is enabled thanks to our non-negative transitions assumption (see
Remark 2.7).

{1, 2, . . . ,𝑚} such that 𝑃−1𝜎 ·𝑀 (𝑢) ·𝑃𝜎 is an upper triangular matrix,
where 𝑃𝜎 is defined as

(𝑃𝜎)𝑖 𝑗 =
{

1 if 𝑗 = 𝜎 (𝑖);
0 otherwise. (8)

The idea behind the construction of 𝜎 is the following: we show that,
since 𝑀 (𝑢) has an idempotent structure and A is polynomially-
ambiguous, the non-zero entries of 𝑀 (𝑢) define a partial order on
the set of indices {1, 2, . . . ,𝑚}. We then show that any permutation
𝜎 which sorts these indices from largest to smallest fits the desired
requirements.

Formally, let us consider the binary relation ≤𝑢 over {1, 2, . . . ,𝑚}2
defined as

𝑖 ≤𝑢 𝑗 if 𝑖 = 𝑗 or (𝑀 (𝑢))𝑖 𝑗 > 0. (9)

We show that this relation is a partial order:
• Reflexivity: this follows immediately from the definition;
• Transitivity: If 𝑖 ≤𝑢 𝑗 and 𝑗 ≤𝑢 𝑘 with 𝑖 ≠ 𝑗 ≠ 𝑘 , thenwe get

(𝑀 (𝑢𝑢))𝑖𝑘 > (𝑀 (𝑢))𝑖 𝑗 · (𝑀 (𝑢)) 𝑗𝑘 > 0 as the entries of 𝑀
are non-negative. Since𝑀 (𝑢) has an idempotent structure,
this implies that (𝑀 (𝑢))𝑖𝑘 > 0, hence we have 𝑖 ≤𝑢 𝑘 ;

• Antisymmetry: suppose, towards building a contradiction,
that there exist 𝑖 ≠ 𝑗 satisfying 𝑖 ≤𝑢 𝑗 and 𝑗 ≤𝑢 𝑖 . This
implies that (𝑀 (𝑢𝑢))𝑖𝑖 > (𝑀 (𝑢))𝑖 𝑗 · (𝑀 (𝑢)) 𝑗𝑖 > 0 hence,
as𝑀 has an idempotent structure, (𝑀 (𝑢))𝑖𝑖 > 0. Therefore,
the automaton A has two distinct cycles on 𝑖 labelled by
𝑢𝑢: one that loops twice on 𝑖 (witnessed by (𝑀 (𝑢))𝑖𝑖 > 0),
and one that goes to 𝑗 while reading the first copy of 𝑢
((𝑀 (𝑢))𝑖 𝑗 > 0), and back to 𝑖 while reading the second
one ((𝑀 (𝑢)) 𝑗𝑖 > 0). This contradicts the fact that A is
polynomially-ambiguous: Weber and Seidl’s [33] showed
that an automaton is not polynomially-ambiguous if and
only if there exists a state 𝑞 and a word 𝑤 such that the
there are at least two different cycles on 𝑞 labelled by𝑤 .

Let 𝜎 be a permutation sorting {1, 2, . . . , 𝑛} from largest to smallest
according to ≤𝑢 :

𝑖 ≤𝑢 𝑗 implies 𝜎 (𝑖) ≥ 𝜎 (𝑗) for every 1 ≤ 𝑖, 𝑗 ≤ 𝑚. (10)

Finally, let 𝑃𝜎 be the corresponding permutation matrix (as de-
scribed by Equation (8)), and let 𝑀′ = 𝑃−1𝜎 · 𝑀 (𝑢) · 𝑃𝜎 . We con-
clude by showing that𝑀′ is an upper triangular matrix: For every
1 ≤ 𝑖 < 𝑗 ≤ 𝑚 we have that 𝜎−1 (𝑖) ≰𝑢 𝜎−1 (𝑗) (by the contra-
positive of Equation (10)), therefore (𝑀 (𝑢))𝜎−1 (𝑖)𝜎−1 (𝑗) = 0 by
Equation (9), and in turn:

(𝑀′)𝑖 𝑗 = (𝑃−1𝜎 ·𝑀 (𝑢) · 𝑃𝜎)𝑖 𝑗 = (𝑀 (𝑢))𝜎−1 (𝑖)𝜎−1 (𝑗) = 0. □

Proof of Lemma 5.1. Weonly prove Item 1, Item 2 can be proved
nearly identically, up to the quantifier alternation.

SupposeA is pumpable.We define ℓ as the constant in Lemma 5.7.
We define 𝑅A = tower𝑟 (2ℓ · |Σ|) as the constant from Lemma 5.5.
Let 𝑢, 𝑣 ∈ Σ∗ such that |𝑢 | = 𝑅A .

We start by picking the decomposition 𝑢 = 𝑢⊢𝑢1𝑢2 . . . 𝑢ℓ𝑢⊣ from
Lemma 5.5. By Lemma 5.7 we can choose 1 ≤ 𝑖 ≤ 𝑗 ≤ ℓ such
that 𝑀 (𝑢𝑖 . . . 𝑢 𝑗) has an idempotent structure. By Lemma 5.8 we
know that𝑀 (𝑢𝑖 . . . 𝑢 𝑗) is p-triangular. As A is pumpable, there is

Ismaël Jecker, Filip Mazowiecki, and David Purser

an entry 𝑑 ∈ N of the diagonal of𝑀 (𝑢𝑖 . . . 𝑢 𝑗) satisfying

A(𝑢⊢𝑢1 . . . 𝑢𝑖−1 (𝑢𝑖 . . . 𝑢 𝑗)𝑛𝑢 𝑗+1 . . . 𝑢ℓ𝑢⊣𝑣)

= 𝑑𝑛−|A| · A(𝑢⊢𝑢1 . . . 𝑢𝑖−1 (𝑢𝑖 . . . 𝑢 𝑗) |A |𝑢 𝑗+1 . . . 𝑢ℓ𝑢⊣𝑣)

for all 𝑛 ≥ |A|. Let us rewrite the left-hand side as a product of
matrices: 𝐼 ·𝑀 (𝑢⊢𝑢1 . . . 𝑢𝑖−1) ·𝑀 (𝑢𝑖 . . . 𝑢 𝑗)𝑛 ·𝑀 (𝑢 𝑗+1 . . . 𝑢ℓ𝑢⊣𝑣) · 𝐹 .
Lemma 5.5 allows us to replace 𝑀 (𝑢𝑖 . . . 𝑢 𝑗) with an invertible
matrix 𝑃 . We get:

𝐼 ·𝑀 (𝑢⊢𝑢1 . . . 𝑢𝑖−1) · 𝑃𝑛 ·𝑀 (𝑢 𝑗+1 . . . 𝑢ℓ𝑢⊣𝑣) · 𝐹

= 𝑑𝑛−|A| · A(𝑢⊢𝑢1 . . . 𝑢𝑖−1 (𝑢𝑖 . . . 𝑢 𝑗) |A |𝑢 𝑗+1 . . . 𝑢ℓ𝑢⊣𝑣)

for all 𝑛 ≥ |A|. As the right-hand side is composed of a single
power 𝑑𝑛 multiplied by a constant polynomial and 𝑃 is invertible,
we can rewrite it according to Equation (2) of Lemma 3.1:

𝐼 ·𝑀 (𝑢⊢𝑢1 . . . 𝑢𝑖−1) · 𝑃𝑛 ·𝑀 (𝑢 𝑗+1 . . . 𝑢ℓ𝑢⊣𝑣) · 𝐹
= 𝑑𝑛 · 𝐼 ·𝑀 (𝑢⊢𝑢1 . . . 𝑢𝑖−1) ·𝑀 (𝑢 𝑗+1𝑢ℓ𝑢⊣𝑣) · 𝐹

for all 𝑛 ∈ N. We revert 𝑃 to𝑀 (𝑢𝑖 . . . 𝑢 𝑗), which yields the expres-
sion required by Lemma 5.1 once we set 𝑛 = 1:

A(𝑢⊢𝑢1 . . . 𝑢𝑖−1 (𝑢𝑖 . . . 𝑢 𝑗)𝑛𝑢 𝑗+1 . . . 𝑢ℓ𝑢⊣𝑣)
= 𝑑𝑛 · A(𝑢⊢𝑢1 . . . 𝑢𝑖−1𝑢 𝑗+1 . . . 𝑢ℓ𝑢⊣𝑣). □

6 DECISION PROCEDURES
This section is devoted to proving:

Proposition 3.5. We can decide in polynomial space whether a
givenweighted automaton is pumpable, respectively blindly pumpable.

6.1 Deciding pumpability
We start by showing pumpability is decidable, in fact, we will show
that a seemingly weaker version of pumpability is decidable, how-
ever, we will observe that it is equivalent.

Let us recall (from Definition 3.2) that A is pumpable if for all
𝑢, 𝑣,𝑤 ∈ Σ∗ such that 𝑀 (𝑣) is p-triangular there is an entry 𝑑 of
the diagonal of𝑀 (𝑣) satisfying

A(𝑢𝑣 |A |+𝑛𝑤) = 𝑑𝑛 · A(𝑢𝑣 |A |𝑤) for every 𝑛 ∈ N. (11)

However, weak pumpability only requires that Equation (11) applies
for 𝑛 = 1:

Definition 6.1. (Weak Pumpability) A weighted automaton A is
weakly pumpable if for all𝑢, 𝑣,𝑤 ∈ Σ∗ such that𝑀 (𝑣) is p-triangular
there is an entry 𝑑 of the diagonal of𝑀 (𝑣) satisfying

A(𝑢𝑣 |A |+1𝑤) = 𝑑 · A(𝑢𝑣 |A |𝑤) . (12)

We show that pumpability and weak pumpability are equivalent:

Lemma 6.2. A weighted automaton A is weakly pumpable if and
only if A is pumpable.

Proof. It is immediate that a pumpable automaton is weakly
pumpable. We now suppose that A is a weakly pumpable automa-
ton and show A is also pumpable. Let𝑚 denote the size of A, and
consider any triple𝑢, 𝑣,𝑤 with𝑀 (𝑣) p-triangular. Then for all 𝑛 > 0

considering the triple 𝑢𝑣𝑛−1, 𝑣,𝑤 yields the existence of a diagonal
entry 𝑑𝑛 of𝑀 (𝑣) satisfying

A(𝑢𝑣𝑚+𝑛+1𝑤) = 𝑑𝑛 · A(𝑢𝑣𝑚+𝑛𝑤). (13)

To prove that A is pumpable, we show that all the 𝑑𝑛 are identical.
Consider the unary weighted automaton U satisfying U(𝑎𝑛) =

A(𝑢𝑣𝑛𝑤) for every𝑛 ∈ N. The automatonU is constructed with al-
phabet {𝑎}, over the same state space asA with initial vector 𝐼𝑀 (𝑢),
final vector𝑀 (𝑤)𝐹 and𝑀U (𝑎) = 𝑀 (𝑣). Equation (13) yields a se-
quence (𝑑𝑖)𝑖∈N of diagonal entries of𝑀 (𝑣) such that

U(𝑎𝑛) = 𝑑1𝑑2𝑑3 . . . 𝑑𝑛A(𝑢𝑣𝑚𝑤) for all 𝑛 ∈ N.

Since𝑀 (𝑣) has at most𝑚 distinct diagonal entries, this implies that
the set of prime divisors of {U(𝑎𝑛) | 𝑛 ∈ N} is finite. Therefore
U is unambiguisable by the characterisation of Theorem 5.2, and
Proposition 3.3 yields thatU is pumpable. In particular, consider
the triple (𝜀, 𝑎, 𝜀): we have that 𝑀 (𝑎) is p-triangular, so there is
some 𝑑 in the diagonal of𝑀 (𝑎) such that

U(𝑎𝑚+𝑛) = 𝑑𝑛U(𝑎𝑚) for all 𝑛 ∈ N.

By definition ofU, this entails that

A(𝑢𝑣𝑚+𝑛𝑤) = 𝑑𝑛A(𝑢𝑣𝑚𝑤) for all 𝑛 ∈ N.

Repeating for any 𝑢, 𝑣,𝑤 we have A is pumpable. □

For every weighted automaton A we show how to construct a
weighted automaton PA that has size exponential with respect to
A, and maps every word to 0 if and only if A is weakly pumpable.
Then, deciding weak pumpability of A amounts to deciding ze-
roness of PA , which can be done in polynomial space with respect
to the size of A. The next lemma presents constructions tailored to
the study of pumpable automata to be used as building blocks to
construct PA : Given A, we show how to construct automata that
recognise the triples 𝑢, 𝑣,𝑤 such that𝑀 (𝑣) is p-triangular, and that
compute the value mapped by A to the words (𝑢𝑣𝑛𝑤)𝑛∈N given
only 𝑢, 𝑣,𝑤 .

Lemma 6.3. Let A = (𝑄, Σ, 𝑀, 𝐼, 𝐹) be a weighted automaton of
size𝑚 = |A| over Σ, and let $ ∉ Σ.

(1) There exists an automaton T of size 2𝑚
2 + 2 and norm 1

satisfying

T (𝑢$𝑣$𝑤) = 1 for all 𝑢, 𝑣,𝑤 ∈ Σ∗ such that𝑀 (𝑣) is p-triangular;
T (𝑢) = 0 for all other 𝑢 ∈ (Σ ∪ {$})∗ .

(2) For all 𝑛 ∈ N there exist an automaton B𝑛 of size𝑚2𝑛 + 2𝑚
and norm | |A||𝑛 satisfying

B𝑛 (𝑢$𝑣$𝑤) = A(𝑢𝑣𝑛𝑤); for all 𝑢, 𝑣,𝑤 ∈ Σ∗ .

(3) For all 1 ≤ 𝑖 ≤ 𝑚 there exists an automaton C𝑖 of size𝑚 + 2
and norm | |A|| satisfying

C𝑖 (𝑢$𝑣$𝑤) = (𝑀 (𝑣))𝑖𝑖 for all 𝑢, 𝑣,𝑤 ∈ Σ∗ .

Remark 6.4. The values of B𝑛 and C𝑖 are unimportant and un-
specified when the input does not take the form 𝑢$𝑣$𝑤 for 𝑢, 𝑣,𝑤 ∈
Σ.

Proof Sketch.

Determinisation and Unambiguisation of Polynomially-Ambiguous Rational Weighted Automata

(1) The main states of T are the finite set of path structures
{𝑀 (𝑣) | 𝑣 ∈ Σ∗} (finitely many 0-1 matrices). On 𝑢$𝑣$𝑤 ,
the current path structure is updated while reading 𝑣 , while
𝑢 and𝑤 have no effect (the automaton loops in a holding
state before the first $ and different holding states after the
second $). The automaton outputs with weight 1 if it was
in a state representing a p-triangular matrix at the point of
reading the second $, and 0 otherwise.

(2) On 𝑢$𝑣$𝑤 , the automaton B𝑛 behaves like A on 𝑢 and
𝑤 . While reading 𝑣 , B𝑛 simultaneously guesses 𝑛 runs by
taking the 𝑛-fold product of the automaton, with transition
weights that are the product of the weights in each of the 𝑛
copies. The automaton must check that the 𝑖th guessed run
is a valid continuation of the (𝑖 − 1)th run (for 2 ≤ 𝑖 ≤ 𝑛);
the state remembers the starting state for each copy for the
duration of the run and then verifies that it matches the
final state of the previous copy at the point of reading the
second $.

(3) On 𝑢$𝑣$𝑤 , C𝑖 ignores 𝑢 and 𝑤 and behaves like A while
reading 𝑣 . So that only runs from 𝑖 to 𝑖 are considered inA,
the first $ leads to state 𝑖 and the second $ can only leave
state 𝑖 . □

We are now ready to show how to decide pumpability in polyno-
mial space. LetA be a weighted automaton of size𝑚, let $ be a fresh
symbol that is not in the alphabet of A, and let T , (B𝑛)𝑛∈N and
(C𝑖)1≤𝑖≤𝑚 be the weighted automata constructed in Lemma 6.3.
Using the result of Lemma 2.5 that the difference and product of
functions recognised by weighted automata are themselves effec-
tively expressible by weighted automata, let

PA = T ·
𝑚∏
𝑖=1

(B𝑚+1 − B𝑚C𝑖).

Lemma 6.5. PA maps every word to 0 if and only if A is weakly
pumpable.

Proof. By definition, PA maps every word to 0 if and only if
for every triple 𝑢, 𝑣,𝑤 ∈ Σ∗ such that T (𝑢$𝑣$𝑤) > 0 (i.e. 𝑀 (𝑣) is
p-triangular), there exists 1 ≤ 𝑖 ≤ 𝑚 satisfying

B𝑚+1 (𝑢$𝑣$𝑤) = B𝑚 (𝑢$𝑣$𝑤)C𝑖 (𝑢$𝑣$𝑤),

that is, there exists 1 ≤ 𝑖 ≤ 𝑚 satisfying

A(𝑢𝑣𝑚+1𝑤) = (𝑀 (𝑣))𝑖𝑖 · A(𝑢𝑣𝑚𝑤). □

It remains to confirm that we can check whether PA maps every
word to 0 in space polynomial in𝑚. First, remark that the size of
PA is exponential in𝑚:

|PA | = |T | ·
𝑚∏
𝑖=1

(|B𝑚+1 | + |B𝑚 | |C𝑖 |) ≤ (2𝑚
2
+ 2) · (𝑚4𝑚+1)𝑚

≤ 𝑚6𝑚2
(assuming𝑚 ≥ 2).

and the norm is also exponential in |A|, this entails that the weight
of any edge can be encoded in polynomial space:

| |PA | | = | |T | | ·
𝑚∏
𝑖=1

max{| |B𝑚+1 | |, | |B𝑚 | | |C𝑖 | |}

= 1 · (| |A||𝑚+1)𝑚 = | |A||𝑚
2+𝑚 . (14)

We show that zeroness of the exponential size automaton PA
can be decided in PSPACE. It is known that deciding equivalence of
Q-weighted automata is in NC2 [19, 32]. Recall, NC is the class of
problems decidable using a circuit of polynomial size and polyloga-
rithmic depth, with branching width at most two. Such problems
can be solved sequentially in polylogarithmic space [29].

In particular, this means the zeroness problem can be decided in
polylogarithmic space in the size of the automaton. Thus applying
the polylogarithmic space zeroness algorithm to the automaton P𝐴

requires only polylogarithmic space with respect to the exponential
size automaton PA , equivalently polynomial space with respect to
A. To conclude we show that any transition weight in PA can be
computed in polynomial space, so that the equivalence procedure
has access to any edge weight of PA , and thus any bit of the
representation of PA , in PSPACE.

Lemma 6.6. Given two states 𝑞, 𝑞′ of PA and 𝑎 ∈ Σ ∪ {$}, the
transition weight𝑀PA (𝑎)𝑞,𝑞′ can be computed in polynomial space.

Proof. First observe the same is true for T ,B𝑚+1,B𝑚 and C𝑖
for all 1 ≤ 𝑖 ≤ 𝑚. The automaton PA is built applying Lemma 2.5
polynomially many times. By induction, at each step the norm is
at most exponential (in total bounded by Equation (14)) and the
weight can be computed recursively in polynomial space using the
second part of Lemma 2.5. □

6.2 Deciding blind pumpability
We show that we can also decide blind pumpability in PSPACE,
again by reducing to the zeroness problem for weighted automata.
Let us compare pumpability and blind pumpability:

• Apumpable automaton requires, for any (𝑢, 𝑣,𝑤) triple with
𝑀 (𝑣) p-triangular, the existence of𝑑 such thatA(𝑢𝑣𝑚+𝑛𝑤) =
𝑑𝑛 · A(𝑢𝑣𝑚𝑤) for all 𝑛 ∈ N.

• A blindly pumpable automaton requires, for any (𝑢, 𝑣)
pair with 𝑀 (𝑣) p-triangular, the existence of 𝑑 such that
A(𝑢𝑣𝑚+𝑛𝑤) = 𝑑𝑛 · A(𝑢𝑣𝑚𝑤) for all𝑤 ∈ Σ∗ and 𝑛 ∈ N.

That is, in order to be blindly pumpable an automaton needs to be
pumpable, and on top of that for any (𝑢, 𝑣) pair the choice of𝑑 has to
be the same for all𝑤 . We start with the assumption that it is already
known that A is pumpable, by first applying the algorithm of the
previous subsection. We will then encode the requirement that the
choice of 𝑑 be the same for any two suffixes into a zeroness problem
(as in the previous subsection). In order to do this we generalise
the automata T and B𝑖 of Lemma 6.3 to read two suffixes:

Lemma 6.7. Let A = (𝑄, Σ, 𝑀, 𝐼, 𝐹) be a weighted automaton of
size𝑚 = |A| over Σ, and let $ ∉ Σ.

Ismaël Jecker, Filip Mazowiecki, and David Purser

(1) There exists an automaton T ′ of size 2𝑚
2 + 3 and norm 1

satisfying

T ′ (𝑢$𝑣$𝑤$𝑤 ′) = 1 for all 𝑢, 𝑣,𝑤,𝑤 ′ ∈ Σ∗ such that
𝑀 (𝑣) is p-triangular;

T ′ (𝑢) = 0 for all other 𝑢 ∈ (Σ ∪ {$})∗ .

(2) For all 𝑛 ∈ N there exist two automata B1,𝑛 , B2,𝑛 of size
𝑚2𝑛 + 2𝑚 + 1 and norm | |A||𝑛 satisfying

B1,𝑛 (𝑢$𝑣$𝑤$𝑤 ′) = B𝑛 (𝑢$𝑣$𝑤) for all 𝑢, 𝑣,𝑤,𝑤 ′ ∈ Σ∗;
B2,𝑛 (𝑢$𝑣$𝑤$𝑤 ′) = B𝑛 (𝑢$𝑣$𝑤 ′) for all 𝑢, 𝑣,𝑤,𝑤 ′ ∈ Σ∗ .

Proof. These automata are easily obtained by modifying the
constructions in Lemma 6.3. □

We combine these automata to construct an automaton that can
be used to check blind pumbability. Given an automaton A of size
𝑚, let

QA = T ′ · (B1,𝑚+1 · B2,𝑚 − B1,𝑚 · B2,𝑚+1).

Lemma 6.8. Let A be a pumpable automaton. Then A is blindly
pumpable if and only if QA maps every word to zero.

Proof. Suppose thatA is pumpable. Then for every𝑢, 𝑣,𝑤,𝑤 ′ ∈
Σ∗, if𝑀 (𝑣) is p-triangular there exist two entries 𝑑1 and 𝑑2 of the
diagonal of𝑀 (𝑣) satisfying

A(𝑢𝑣𝑚+𝑛𝑤) = 𝑑𝑛1 · A(𝑢𝑣𝑚𝑤) for all 𝑛 ≥ 0; (15)

A(𝑢𝑣𝑚+𝑛𝑤 ′) = 𝑑𝑛2 · A(𝑢𝑣𝑚𝑤 ′) for all 𝑛 ≥ 0. (16)

A direct consequence of these equations is that A(𝑢𝑣𝑚𝑤) = 0 if
and only if A(𝑢𝑣𝑚+𝑛𝑤) = 0 for all 𝑛 ≥ 0; and A(𝑢𝑣𝑚𝑤 ′) = 0 if
and only if A(𝑢𝑣𝑚+𝑛𝑤 ′) = 0 for all 𝑛 ≥ 0.

To decide whether A is blindly pumpable, we need to check
whether there exists a single entry 𝑑 = 𝑑1 = 𝑑2 that satisfies both
Equation (15) and Equation (16). Remark that it is sufficient to verify
the property at 𝑛 = 1 as the choice of 𝑑 is the same for all 𝑛 ≥ 1.
In other words we need to check that either A(𝑢𝑣𝑚𝑤) = 0 or
A(𝑢𝑣𝑤 ′) = 0 (in these cases every 𝑑 work), or

A(𝑢𝑣𝑚+1𝑤)
A(𝑢𝑣𝑚𝑤) =

A(𝑢𝑣𝑚+1𝑤 ′)
A(𝑢𝑣𝑚𝑤 ′) . (17)

To conclude the proof, observe that for every 𝑢, 𝑣,𝑤,𝑤 ′ ∈ Σ∗ the
automaton QA maps 𝑢$𝑣$𝑤$𝑤 ′ to 0 if and only if either:

• T ′ is zero, that is,𝑀 (𝑣) is not p-triangular;
• A(𝑢𝑣𝑚𝑤) = A(𝑢𝑣𝑚+1𝑤) = 0;
• A(𝑢𝑣𝑚𝑤 ′) = A(𝑢𝑣𝑚+1𝑤 ′) = 0;
• Equation (17) holds. □

Like PA , the size and norm of QA is exponential, and we can
test zeroness of QA in PSPACE.

7 CONCLUSION
Asmentioned in the introduction our PSPACE upper bounds are not
constructive. If one would like to construct an equivalent determin-
istic automaton its size would be bounded by a tower of exponents
(see Remark 5.4, and recall that the constant 𝑅A is obtained from
Lemma 5.5). We cannot extract the unambiguous automaton from

our techniques3. Recall that for unambiguisation in the proof of
Proposition 3.4 we rely on Bell and Smertnig’s result: Theorem 5.2.
One could imagine a direct construction as we provide for the
deterministic automaton. The issue is that for unambiguous au-
tomata one would need to keep track of all nonzero runs. Given
an unambiguous automaton it is known that the number of such
runs is bounded [33], but the size of the unambiguous automaton
could be arbitrarily big. We leave open whether one could solve the
determinisation and unambiguisation problems constructively in
elementary time and space. The result of Bell and Smertnig applies
to any field, while we have focused on the field of rationals, we
leave open whether our result can be extended to other fields.

We do not provide any lower bound and we are unaware of
such a result, even for the general class of weighted automata
over rationals. We write a simple observation why obtaining lower
bounds seems to be difficult: Suppose one wants to encode a prob-
lem, e.g. satisfiability of a SAT formula. One would like to define
a weighted automaton A that behaves like a deterministic (unam-
biguous) weighted automaton D except if the formula is satisfied,
which unlocks some nondeterministic (ambiguous) behaviour. The
issue is that all natural encodings can be verified with an equiv-
alence query to the deterministic (unambiguous) automaton D,
which over the rationals is in NC2 [32].

REFERENCES
[1] Corentin Barloy, Nathanaël Fijalkow, Nathan Lhote, and Filip Mazowiecki. 2022.

A robust class of linear recurrence sequences. Inf. Comput. 289, Part (2022),
104964. https://doi.org/10.1016/j.ic.2022.104964

[2] Jason Bell and Daniel Smertnig. 2021. Noncommutative rational Pólya series.
Selecta Mathematica 27, 3 (2021), 1–34.

[3] Jason P. Bell and Daniel Smertnig. 2023. Computing the linear hull: Deciding
Deterministic? and Unambiguous? for weighted automata over fields. In LICS.
1–13. https://doi.org/10.1109/LICS56636.2023.10175691

[4] Paul C. Bell. 2022. Polynomially ambiguous probabilistic automata on restricted
languages. J. Comput. Syst. Sci. 127 (2022), 53–65. https://doi.org/10.1016/j.jcss.
2022.02.002

[5] Yahia Idriss Benalioua, Nathan Lhote, and Pierre-Alain Reynier. 2023. Register
Minimization of Cost Register Automata over a Field. CoRR abs/2307.13505
(2023). https://doi.org/10.48550/arXiv.2307.13505 arXiv:2307.13505

[6] Georgina Bumpus, Christoph Haase, Stefan Kiefer, Paul-Ioan Stoienescu, and
Jonathan Tanner. 2020. On the Size of Finite Rational Matrix Semigroups. In
47th International Colloquium on Automata, Languages, and Programming, ICALP
2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference) (LIPIcs, Vol. 168),
Artur Czumaj, Anuj Dawar, and Emanuela Merelli (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 115:1–115:13. https://doi.org/10.4230/LIPIcs.
ICALP.2020.115

[7] Dmitry Chistikov, Stefan Kiefer, Andrzej S. Murawski, and David Purser. 2022.
The Big-O Problem. Log. Methods Comput. Sci. 18, 1 (2022). https://doi.org/10.
46298/lmcs-18(1:40)2022

[8] Thomas Colcombet. 2015. Unambiguity in Automata Theory. In Descriptional
Complexity of Formal Systems - 17th International Workshop, DCFS 2015, Waterloo,
ON, Canada, June 25-27, 2015. Proceedings (Lecture Notes in Computer Science,
Vol. 9118), Jeffrey O. Shallit and Alexander Okhotin (Eds.). Springer, 3–18. https:
//doi.org/10.1007/978-3-319-19225-3_1

[9] Wojciech Czerwinski and Piotr Hofman. 2022. Language Inclusion for Boundedly-
Ambiguous Vector Addition Systems Is Decidable. In 33rd International Conference
on Concurrency Theory, CONCUR 2022, September 12-16, 2022, Warsaw, Poland
(LIPIcs, Vol. 243), Bartek Klin, Slawomir Lasota, and Anca Muscholl (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 16:1–16:22. https://doi.org/10.4230/
LIPIcs.CONCUR.2022.16

[10] Wojciech Czerwinski, Engel Lefaucheux, Filip Mazowiecki, David Purser, and
Markus A. Whiteland. 2022. The boundedness and zero isolation problems
for weighted automata over nonnegative rationals. In LICS ’22: 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5,

3Note that it can be constructed, just not necessarily from our techniques: since from
the decision procedure one can be sure of its existence, we can enumerate unambiguous
weighted automata and test each for equivalence.

https://doi.org/10.1016/j.ic.2022.104964
https://doi.org/10.1109/LICS56636.2023.10175691
https://doi.org/10.1016/j.jcss.2022.02.002
https://doi.org/10.1016/j.jcss.2022.02.002
https://doi.org/10.48550/arXiv.2307.13505
https://arxiv.org/abs/2307.13505
https://doi.org/10.4230/LIPIcs.ICALP.2020.115
https://doi.org/10.4230/LIPIcs.ICALP.2020.115
https://doi.org/10.46298/lmcs-18(1:40)2022
https://doi.org/10.46298/lmcs-18(1:40)2022
https://doi.org/10.1007/978-3-319-19225-3_1
https://doi.org/10.1007/978-3-319-19225-3_1
https://doi.org/10.4230/LIPIcs.CONCUR.2022.16
https://doi.org/10.4230/LIPIcs.CONCUR.2022.16

Determinisation and Unambiguisation of Polynomially-Ambiguous Rational Weighted Automata

2022, Christel Baier and Dana Fisman (Eds.). ACM, 15:1–15:13. https://doi.org/
10.1145/3531130.3533336

[11] Laure Daviaud. 2020. Register complexity and determinisation of max-plus
automata. ACM SIGLOG News 7, 2 (2020), 4–14. https://doi.org/10.1145/3397619.
3397621

[12] Laure Daviaud, Marcin Jurdzinski, Ranko Lazic, Filip Mazowiecki, Guillermo A.
Pérez, and James Worrell. 2021. When are emptiness and containment decidable
for probabilistic automata? J. Comput. Syst. Sci. 119 (2021), 78–96. https:
//doi.org/10.1016/j.jcss.2021.01.006

[13] Manfred Droste, Werner Kuich, and Heiko Vogler. 2009. Handbook of weighted
automata. Springer Science & Business Media.

[14] Nathanaël Fijalkow, Cristian Riveros, and James Worrell. 2017. Probabilistic
Automata of Bounded Ambiguity. In 28th International Conference on Concurrency
Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany (LIPIcs, Vol. 85),
Roland Meyer and Uwe Nestmann (Eds.). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 19:1–19:14. https://doi.org/10.4230/LIPIcs.CONCUR.2017.19

[15] Vesa Halava, Tero Harju, Mika Hirvensalo, and Juhani Karhumäki. 2005. Skolem’s
problem–on the border between decidability and undecidability. Technical Report.
Citeseer.

[16] Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. 2018.
Polynomial Invariants for Affine Programs. In Proceedings of the 33rd An-
nual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford,
UK, July 09-12, 2018, Anuj Dawar and Erich Grädel (Eds.). ACM, 530–539.
https://doi.org/10.1145/3209108.3209142

[17] Ismaël Jecker. 2021. A Ramsey Theorem for Finite Monoids. In 38th International
Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-
19, 2021, Saarbrücken, Germany (Virtual Conference) (LIPIcs, Vol. 187), Markus
Bläser and Benjamin Monmege (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 44:1–44:13. https://doi.org/10.4230/LIPIcs.STACS.2021.44

[18] Ismaël Jecker, Filip Mazowiecki, and David Purser. 2023. Determinisation and
Unambiguisation of Polynomially-Ambiguous Rational Weighted Automata.
arXiv:2310.02204 [cs.FL]

[19] Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and James
Worrell. 2013. On the Complexity of Equivalence and Minimisation for Q-
weighted Automata. Log. Methods Comput. Sci. 9, 1 (2013). https://doi.org/10.
2168/LMCS-9(1:8)2013

[20] Daniel Kirsten and Sylvain Lombardy. 2009. Deciding Unambiguity and Sequen-
tiality of Polynomially Ambiguous Min-Plus Automata. In 26th International
Symposium on Theoretical Aspects of Computer Science (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 3), Susanne Albers and Jean-Yves Marion
(Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
589–600. https://doi.org/10.4230/LIPIcs.STACS.2009.1850

[21] Daniel Kirsten and Ina Mäurer. 2005. On the Determinization of Weighted
Automata. J. Autom. Lang. Comb. 10, 2/3 (2005), 287–312. https://doi.org/10.
25596/jalc-2005-287

[22] Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. 2004.
Deciding unambiguity and sequentiality from a finitely ambiguous max-plus
automaton. Theor. Comput. Sci. 327, 3 (2004), 349–373. https://doi.org/10.1016/j.
tcs.2004.02.049

[23] Peter Kostolányi. 2022. Determinisability of unary weighted automata over the
rational numbers. Theor. Comput. Sci. 898 (2022), 110–131. https://doi.org/10.
1016/j.tcs.2021.11.002

[24] Sylvain Lombardy and Jacques Sakarovitch. 2006. Sequential? Theor. Comput.
Sci. 356, 1-2 (2006), 224–244. https://doi.org/10.1016/j.tcs.2006.01.028

[25] Mehryar Mohri. 1997. Finite-State Transducers in Language and Speech Process-
ing. Comput. Linguistics 23, 2 (1997), 269–311.

[26] Azaria Paz. 1971. Introduction to probabilistic automata. Academic Press.
[27] Mikhail A. Raskin. 2018. A Superpolynomial Lower Bound for the Size of Non-

Deterministic Complement of an Unambiguous Automaton. In 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic (LIPIcs, Vol. 107), Ioannis Chatzigiannakis, Christos
Kaklamanis, Dániel Marx, and Donald Sannella (Eds.). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 138:1–138:11. https://doi.org/10.4230/LIPIcs.ICALP.
2018.138

[28] Christophe Reutenauer. 1979. On Polya series in noncommuting variables. In Fun-
damentals of Computation Theory, FCT 1979, Proceedings of the Conference on Alge-
braic, Arthmetic, and Categorial Methods in Computation Theory, Berlin/Wendisch-
Rietz, Germany, September 17-21, 1979, Lothar Budach (Ed.). Akademie-Verlag,
Berlin, 391–396.

[29] Walter L. Ruzzo. 1981. On Uniform Circuit Complexity. J. Comput. Syst. Sci. 22,
3 (1981), 365–383. https://doi.org/10.1016/0022-0000(81)90038-6

[30] Marcel Paul Schützenberger. 1961. On the Definition of a Family of Automata. Inf.
Control. 4, 2-3 (1961), 245–270. https://doi.org/10.1016/S0019-9958(61)80020-X

[31] Gilbert Strang. 2022. Introduction to linear algebra. SIAM.
[32] Wen-Guey Tzeng. 1996. On Path Equivalence of Nondeterministic Finite Au-

tomata. Inf. Process. Lett. 58, 1 (1996), 43–46. https://doi.org/10.1016/0020-
0190(96)00039-7

[33] Andreas Weber and Helmut Seidl. 1991. On the Degree of Ambiguity of Finite
Automata. Theor. Comput. Sci. 88, 2 (1991), 325–349. https://doi.org/10.1016/0304-
3975(91)90381-B

https://doi.org/10.1145/3531130.3533336
https://doi.org/10.1145/3531130.3533336
https://doi.org/10.1145/3397619.3397621
https://doi.org/10.1145/3397619.3397621
https://doi.org/10.1016/j.jcss.2021.01.006
https://doi.org/10.1016/j.jcss.2021.01.006
https://doi.org/10.4230/LIPIcs.CONCUR.2017.19
https://doi.org/10.1145/3209108.3209142
https://doi.org/10.4230/LIPIcs.STACS.2021.44
https://arxiv.org/abs/2310.02204
https://doi.org/10.2168/LMCS-9(1:8)2013
https://doi.org/10.2168/LMCS-9(1:8)2013
https://doi.org/10.4230/LIPIcs.STACS.2009.1850
https://doi.org/10.25596/jalc-2005-287
https://doi.org/10.25596/jalc-2005-287
https://doi.org/10.1016/j.tcs.2004.02.049
https://doi.org/10.1016/j.tcs.2004.02.049
https://doi.org/10.1016/j.tcs.2021.11.002
https://doi.org/10.1016/j.tcs.2021.11.002
https://doi.org/10.1016/j.tcs.2006.01.028
https://doi.org/10.4230/LIPIcs.ICALP.2018.138
https://doi.org/10.4230/LIPIcs.ICALP.2018.138
https://doi.org/10.1016/0022-0000(81)90038-6
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1016/0020-0190(96)00039-7
https://doi.org/10.1016/0020-0190(96)00039-7
https://doi.org/10.1016/0304-3975(91)90381-B
https://doi.org/10.1016/0304-3975(91)90381-B

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Weighted automata
	2.2 Paths, runs, counting runs, and the monoid of structures
	2.3 Determinisim, ambiguity and decision problems
	2.4 Closure properties
	2.5 Assumptions

	3 Overview of our main result
	3.1 Proof of Lemma 3.1

	4 Pumpable automata
	5 Depumpable automata
	5.1 Replacing pumpable idempotents with invertible matrices
	5.2 Proof of depumping lemma (Lemma 5.1)

	6 Decision procedures
	6.1 Deciding pumpability
	6.2 Deciding blind pumpability

	7 Conclusion
	References

