
Finite-valued Streaming String Transducers
Emmanuel Filiot∗

emmanuel.filiot@ulb.be
Université libre de Bruxelles

Bruxelles, Belgium

Ismaël Jecker†
ismael.jecker@gmail.com
Université de Besançon

Besançon, France

Christof Löding
loeding@cs.rwth-aachen.de
RWTH Aachen University

Aachen, Germany

Anca Muscholl
anca@labri.fr

LaBRI, Université Bordeaux
Bordeaux, France

Gabriele Puppis‡
gabriele.puppis@uniud.it

University of Udine
Udine, Italy

Sarah Winter
sarah.winter@irif.fr

IRIF, Université Paris-Cité
Paris, France

ABSTRACT
A transducer is finite-valued if for some bound 𝑘 , it maps any given
input to at most 𝑘 outputs. For classical, one-way transducers, it
is known since the 80s that finite valuedness entails decidability
of the equivalence problem. This decidability result is in contrast
to the general case, which makes finite-valued transducers very
attractive. For classical transducers it is also known that finite
valuedness is decidable and that any 𝑘-valued finite transducer can
be decomposed as a union of 𝑘 single-valued finite transducers.

In this paper, we extend the above results to copyless streaming
string transducers (SSTs), answering questions raised by Alur and
Deshmukh in 2011. SSTs strictly extend the expressiveness of one-
way transducers via additional variables that store partial outputs.
We prove that any 𝑘-valued SST can be effectively decomposed
as a union of 𝑘 (single-valued) deterministic SSTs. As a corollary,
we obtain equivalence of SSTs and two-way transducers in the
finite-valued case (those two models are incomparable in general).
Another corollary is an elementary upper bound for checking equiv-
alence of finite-valued SSTs. The latter problem was already known
to be decidable, but the proof complexity was unknown (it relied
on Ehrenfeucht’s conjecture). Finally, our main result is that finite
valuedness of SSTs is decidable. The complexity is PSpace, and even
PTime when the number of variables is fixed.

CCS CONCEPTS
• Theory of computation → Transducers; Streaming models.

KEYWORDS
Streaming string transducers, finite valuedness, decomposition

1 INTRODUCTION
Finite-state word transducers are simple devices that allow to rea-
son about data transformations in an effective, and even efficient
way. In their most basic form they transform words using finite
control. Unlike automata, their power heavily depends on various
parameters, like non-determinism, the capability of scanning the

∗Emmanuel Filiot is a senior research associate at F.R.S.-FNRS. Research on this work
by Emmanuel Filiot was partly funded by the F.R.S.-FNRS – under the MIS project
F451019F.
†This work is partly funded by the ERC grant INFSYS (agreement no. 950398) and by
the EIPHI Graduate School (contract ANR-17-EURE-0002).
‡Research on this work by Gabriele Puppis was partly funded by the GNCS-INdAM,
Gruppo Nazionale Calcolo Scientifico-Istituto Nazionale di Alta Matematica.

input several times, or the kind of storage they may use. The old-
est transducer model, known as generalized sequential machine,
extends finite automata by outputs. Inspired by an approach that
applies to arbitrary relational structures [13], logic-based trans-
ductions were considered by Engelfriet and Hoogeboom [19] and
shown to be equivalent to functional (a.k.a. single-valued) two-way
transducers. Ten years later Alur and Cerný [2] proposed streaming
string transducers (SST), a one-way model that uses write-only reg-
isters as additional storage. Registers can be updated by appending
or prepending strings, or concatenated, but not duplicated (they
are copyless). They showed that SSTs are equivalent to the model
studied by [19] in the functional case. These equivalences support
thus the notion of “regular” word functions, in the spirit of classical
results on regular word languages from automata theory and logics
due to Büchi, Elgot, Trakhtenbrot, Rabin, and others.

In the non-functional case the picture is less satisfactory, as
equivalence only holds between SSTs and non-deterministic MSO
transductions [5], which extend the original MSO transductions by
existentially quantified monadic parameters. On the other hand,
two-way transducers and SSTs become incomparable. Moreover,
the equivalence problem for the non-deterministic models is unde-
cidable, even for one-way transducers [22, 28]. There is however a
class of relations that is almost as nice as (regular) word functions:
this is the class of finite-valued relations, namely, relations that
associate a uniformly bounded number of outputs with each input.

Example 1.1. Let 𝑛 ∈ N and consider the relation

𝑅𝑛 =
{
(𝑣1 . . . 𝑣𝑘 , 𝑣𝑖) | 𝑘 ∈ N, 1 ≤ 𝑖 ≤ 𝑘, ∀1 ≤ 𝑗 ≤ 𝑘, 𝑣 𝑗 ∈ {0, 1}𝑛

}
.

E.g. (001011, 00), (001011, 10), (001011, 11) ∈ 𝑅2. For all 𝑛, the rela-
tion 𝑅𝑛 is 2𝑛-valued and realizable by a (one-way) finite transducer
𝑇𝑛 , which uses non-determinism to guess an index 𝑖 ∈ {1, . . . , 𝑘}.
It keeps on reading its input (in successive rounds of length 𝑛 to
read the bit-vectors 𝑣1, . . . , 𝑣𝑖−1) while outputting nothing, until
it non-deterministically decides to output 𝑣𝑖 in 𝑛 successive steps,
and then keeps on reading the remaining 𝑣𝑖+1, . . . , 𝑣𝑘 while out-
putting nothing, and accepts. The transducer 𝑇𝑛 has 𝑂 (𝑛) states
and the number of accepting runs per input is unbounded because
𝑘 is arbitrary and if 𝑣𝑥 = 𝑣𝑦 for some 𝑥 < 𝑦, then this accounts
for two accepting runs and a single output. The ambiguity can be
bounded, but at the cost of an exponential blow-up, for instance by
making the transducer initially guess a word 𝑣 ∈ {0, 1}𝑛 (stored in
memory), output it, and then verify 𝑣 = 𝑣𝑖 for some 1 ≤ 𝑖 ≤ 𝑘 .

Filiot et al.

Finite-valued transductions were intensively studied in the set-
ting of one-way transducers. In addition to the fact that finite-valued
one-way transducers are exponentially more succinct than their
finitely-ambiguous counterpart, as illustrated by Example 1.1, one
of the main advantages of this class is the decidability of the equiv-
alence problem [14].1 Inspired by [14] the equivalence problem for
𝑘-valued SSTs was shown to be decidable in [35]. However both
results rely on the Ehrenfeucht conjecture [1, 23] and therefore
provide no elementary upper bounds.

For one-way transducers and for a fixed 𝑘 , being 𝑘-valued can
be checked in PTime [26]. It is also known that every 𝑘-valued one-
way transducer can be effectively decomposed into a union of 𝑘
unambiguous one-way transducers of exponential size [40, 43, 44].
For both two-way transducers and SSTs, checking 𝑘-valuedness for
fixed 𝑘 is a PSpace problem (see e.g. [5] for SSTs). Decomposing
finite-valued SSTs and deciding finite-valuedness for SSTs were
listed as open problems in [5], more than 10 years back. Compared
to one-way finite transducers, new challenges arise with SSTs, due
to the extra power they enjoy to produce outputs. For example over
the alphabet Σ = {0, 1}, consider the set of pairs (𝑤, 0𝑛0 1𝑛1) and
(𝑤, 1𝑛1 0𝑛0), where𝑤 ∈ Σ∗ and 𝑛𝑏 is the number of bits 𝑏 ∈ {0, 1} in
𝑤 . The outputs are essentially the concatenated numbers of 0 and
1, in unary, and in any order. This transduction is 2-valued, but not
realizable by any one-way finite transducer. However, the following
single-state SST 𝑇 with 2 registers 𝑋0, 𝑋1 (both initially empty)
realizes it: whenever it reads 𝑏 ∈ {0, 1}, it non-deterministically
does the update𝑋𝑏 := 𝑏𝑋𝑏 or𝑋𝑏 := 𝑋𝑏𝑏 (while𝑋1−𝑏 is unchanged),
and eventually outputs either 𝑋0𝑋1 or 𝑋1𝑋0. The ability of SSTs to
generate outputs non-linearly makes their study challenging. To
illustrate this, consider the following slight modification of𝑇 : 𝑋0 is
initialized with 1 instead of the empty word. The resulting SST is
not finite-valued anymore, because on reading 0𝑛 , it would output
0ℓ10𝑚 for all ℓ,𝑚 such that ℓ +𝑚 = 𝑛.

Another open problem was the relationship between SSTs and
two-way transducers in the finite-valued case. It is not hard to see
that the standard translation from deterministic two-way transduc-
ers to deterministic SSTs also applies to the finite-valued case, see
the proof of Theorem 1.3 below. The converse translation however
is far more complicated and relies on a decomposition theorem for
SSTs, which we establish here.

Contributions. The results presented in this paper draw a rather
complete picture about finite-valued SSTs, answering several open
problems from [5]. First, we show that 𝑘-valued SSTs enjoy the
same decomposition property as one-way transducers:

Theorem 1.2. For all 𝑘 ∈ N, every 𝑘-valued SST can be decom-
posed into a union of 𝑘 single-valued (or even deterministic) SSTs. The
complexity of the construction is elementary.

An important consequence of the above theorem is the equiva-
lence of SSTs and two-way transducers in the finite-valued setting:

Theorem 1.3. Let 𝑅 ⊆ Σ∗ × Σ∗ be a finite-valued relation. If 𝑅
can be realized by an SST, then an equivalent two-way transducer
can be effectively constructed, and vice-versa.

1[14] states that their proof works for two-way transducers as well.

A second consequence of Theorem 1.2 is an elementary upper
bound for the equivalence problem of finite-valued SSTs [35]:

Theorem 1.4. The equivalence problem for 𝑘-valued SSTs can be
solved with elementary complexity.

Proof. Given two 𝑘-valued SSTs𝑇,𝑇 ′, we first decompose them
into unions of 𝑘 single-valued SSTs 𝑇1, . . . ,𝑇𝑘 and 𝑇 ′

1 , . . . ,𝑇
′
𝑘
, re-

spectively. By [2] we can even assume that every 𝑇𝑖 and 𝑇 ′
𝑗
is a

deterministic SST. Finally, [5, Theorem 4.4] shows how to check
the equivalence of

⋃𝑘
𝑖=1𝑇𝑖 and

⋃𝑘
𝑖=1𝑇

′
𝑖
in PSpace. □

Our last, and main, contribution is to establish the decidability
of finite valuedness for SSTs:

Theorem 1.5. Given any SST 𝑇 , we can decide in PSpace if 𝑇
is finite-valued, and in PTime if the number of variables is fixed.
Moreover, this problem is at least as hard as the equivalence problem
for deterministic SSTs.

This last result is the most technical one, and requires to reason
on particular substructures (W-patterns) of SSTs. Such substruc-
tures have been already used for one-way transducers, but for SSTs
genuine challenges arise. The starting point of our proof is a recent
result allowing to determine if two runs of an SST are far apart [20].
The proof then relies on identifying suitable patterns and extend-
ing techniques from word combinatorics to more involved word
inequalities.

Based on the equivalence between SSTs and two-way transducers
in the finite-valued setting (Theorem 1.3), and the decidability of
finite valuedness for SST (Theorem 1.5), we exhibit an alternative
proof for the following (known) result:

Corollary 1.6 ([46]). Finite-valuedness of two-way transducers
is decidable in PSpace.

Observe also that without the results in this paper, the result
of [46] could not help to show Theorem 1.5, because only the con-
version of finite-valued two-way transducers into finite-valued
SSTs was known (under the assumption that any input positions is
visited a bounded number of times), but not the other way around.
Finally note that Theorem 1.2 (and Theorem 1.3) also provides a
decomposition result for finite-valued two-way transducers.

We also observe that since SSTs and non-deterministic MSO
transductions are equivalent [5], Theorem 1.5 entails decidability of
finite valuedness for non-deterministic MSO transductions as well.
Moreover, since in the single-valued case, deterministic SSTs and
MSO transductions are also equivalent [2], Theorem 1.2 implies
a decomposition result for MSO transductions: any 𝑘-valued non-
deterministic MSO transduction can be decomposed as a union of
𝑘 (deterministic) MSO transductions. Finally, from Theorem 1.3,
we also get that under the assumption of finite valuedness, non-
deterministic MSO transductions, two-way transducers and SST
are equally expressive.

A long version of the paper is available at http://arxiv.org/abs/
2405.08171.

2 PRELIMINARIES
For convenience, technical terms and notations in the electronic
version of this manuscript are hyper-linked to their definitions
(cf. https://ctan.org/pkg/knowledge).

http://arxiv.org/abs/2405.08171
http://arxiv.org/abs/2405.08171
https://ctan.org/pkg/knowledge

Finite-valued Streaming String Transducers

Hereafter, N (resp. N+) denotes the set of non-negative
(resp. strictly positive) integers, and Σ denotes a generic alphabet.

Words and relations. We denote by 𝜀 the empty word, by |𝑢 | the
length of aword𝑢 ∈ Σ∗, and by𝑢 [𝑖] its 𝑖-th letter, for 1 ≤ 𝑖 ≤ |𝑢 |.We
introduce a convolution operation on words, which is particularly
useful to identify robust and well-behaved classes of relations, as
it is done for instance in the theory of automatic structures [8].
For simplicity, we only consider convolutions of words of the same
length. Given 𝑢, 𝑣 ∈ Σ∗, with |𝑢 | = |𝑣 |, the convolution 𝑢 ⊗ 𝑣 is a
word over (Σ2)∗ of length |𝑢 | = |𝑣 | such that (𝑢⊗𝑣) [𝑖] = (𝑢 [𝑖], 𝑣 [𝑖])
for all 1 ≤ 𝑖 ≤ |𝑢 |. For example, (𝑎𝑏𝑎) ⊗ (𝑏𝑐𝑐) = (𝑎, 𝑏) (𝑏, 𝑐) (𝑎, 𝑐).
As ⊗ is associative, we may write 𝑢 ⊗ 𝑣 ⊗𝑤 for any words 𝑢, 𝑣,𝑤 .

A relation 𝑅 ⊆ (Σ∗)𝑘 is length-preserving if |𝑢1 | = · · · = |𝑢𝑘 | for
all (𝑢1, . . . , 𝑢𝑘) ∈ 𝑅. A length-preserving relation is automatic if the
language {𝑢1 ⊗ . . . ⊗𝑢𝑘 | (𝑢1, . . . , 𝑢𝑘) ∈ 𝑅} is recognized by a finite
state automaton. A binary relation 𝑅 ⊆ Σ∗ × Σ∗ (not necessarily
length-preserving) is 𝑘-valued, for 𝑘 ∈ N, if for all 𝑢 ∈ Σ∗, there
are at most 𝑘 words 𝑣 such that (𝑢, 𝑣) ∈ 𝑅. It is finite-valued if it is
𝑘-valued for some 𝑘 .

Variable updates. Fix a finite set of variables X = {𝑋1, . . . , 𝑋𝑚},
disjoint from the alphabet Σ. A (copyless) update is any mapping 𝛼 :
X → (Σ ⊎X)∗ such that each variable 𝑋 ∈ X appears at most once
in the word 𝛼 (𝑋1) . . . 𝛼 (𝑋𝑚). Such an update can be morphically
extended to words over Σ ⊎ X, by simply letting 𝛼 (𝑎) = 𝑎 for all
𝑎 ∈ Σ. Using this, we can compose any two updates 𝛼, 𝛽 to form a
new update 𝛼 𝛽 : X → (Σ ⊎ X)∗, defined by (𝛼 𝛽) (𝑋) = 𝛽 (𝛼 (𝑋))
for all 𝑋 ∈ X. An update is called initial (resp. final) if all variables
inX (resp.X\{𝑋1}) are mapped to the empty word. The designated
variable 𝑋1 is used to store the final output produced by an SST, as
defined in the next paragraph.

Streaming string transducers. A (non-deterministic, copyless)
streaming string transducer (SST for short) is a tuple 𝑇 =

(Σ,X, 𝑄,𝑄init, 𝑄final,Ω,Δ), where Σ is an alphabet, 𝑄 is a finite set
of states,𝑄init, 𝑄final ⊆ 𝑄 are the sets of initial and final states, Ω is
a function from final states to final updates, and Δ is a finite tran-
sition relation consisting of tuples of the form (𝑞, 𝑎, 𝛼, 𝑞′), where
𝑞, 𝑞′ ∈ 𝑄 are the source and target states, 𝑎 ∈ Σ is an input symbol,
and 𝛼 is an update. We often denote a transition (𝑞, 𝑎, 𝛼, 𝑞′) ∈ Δ by
the annotated arrow:

𝑞
𝑎/𝛼
−−−→ 𝑞′ .

The size |𝑇 | of an SST 𝑇 is defined as the number of states plus the
size of its transition relation.

A run of 𝑇 is a sequence of transitions from Δ of the form

𝜌 = 𝑞0
𝑎1/𝛼1−−−−−→ 𝑞1

𝑎2/𝛼2−−−−−→ 𝑞2 . . . 𝑞𝑛−1
𝑎𝑛/𝛼𝑛−−−−−→ 𝑞𝑛 .

The input consumed by 𝜌 is the word in(𝜌) = 𝑎1 . . . 𝑎𝑛 . The update
induced by 𝜌 is the composition 𝛽 = 𝛼1 . . . 𝛼𝑛 . We write 𝜌 : 𝑢/𝛽 to
mean that 𝜌 is a run with 𝑢 as consumed input and 𝛽 as induced
update. A run 𝜌 as above is accepting if the first state is initial and
the last state is final, namely, if 𝑞0 ∈ 𝑄init and 𝑞𝑛 ∈ 𝑄final. In this
case, the induced update, extended to the left with the initial update
denoted by 𝜄 and to the right with the final update Ω(𝑞𝑛), gives
rise to an update 𝜄 𝛽 Ω(𝑞𝑛) that maps 𝑋1 to a word over Σ and all
remaining variables to the empty word. In particular, the latter

update determines the output produced by 𝜌 , defined as the word
out(𝜌) = (𝜄 𝛽 Ω(𝑞𝑛)) (𝑋1).

The relation realized by an SST 𝑇 is

ℛ(𝑇) =
{(

in(𝜌), out(𝜌)
)
∈ Σ∗ × Σ∗

�� 𝜌 accepting run of 𝑇
}

An SST is 𝑘-valued (resp. finite-valued) if its realized relation is so.
It is deterministic if it has a single initial state and the transition
relation is a partial function (from pairs of states and input letters
to pairs of updates and states). It is unambiguous if it admits at most
one accepting run on each input. Similarly, it is called 𝑘-ambiguous
if it admits at most 𝑘 accepting runs on each input. Of course, ev-
ery deterministic SST is unambiguous, and every unambiguous
SST is single-valued (i.e. 1-valued). Two SSTs 𝑇1,𝑇2 are equivalent
if ℛ(𝑇1) = ℛ(𝑇2). The equivalence problem for SSTs is undecid-
able in general, and it is so even for one-way transducers [22, 28].
However, decidability is recovered for finite-valued SSTs:

Theorem 2.1 ([35]). Equivalence of finite-valued SSTs is decidable.

Note that checking equivalence is known to be in PSpace for
deterministic SSTs. This easily generalizes to unions of determinis-
tic (hence single-valued) SSTs, because the equivalence checking
algorithm is exponential only in the number of variables:

Theorem 2.2 ([5]). The following problem is in PSpace: given
𝑛 + 𝑚 deterministic SSTs 𝑇1, . . . ,𝑇𝑛,𝑇 ′

1 , . . . ,𝑇
′
𝑚 , decide whether⋃𝑛

𝑖=1 ℛ(𝑇𝑖) =
⋃𝑚

𝑗=1 ℛ(𝑇 ′
𝑗
).

For any fixed 𝑘 , the 𝑘-valuedness property is decidable in PSpace:

Theorem 2.3 ([5]). For any fixed 𝑘 ∈ N, the following problem
is in2 PSpace: given an SST 𝑇 , decide whether 𝑇 is 𝑘-valued. It is
in PTime if one further restricts to SSTs with a fixed number of
variables.

The decidability status of finite valuedness for SSTs, that is, for
unknown 𝑘 , was an open problem. Part of our contribution is to
show that this problem is also decidable.

2.1 Pumping and word combinatorics
When reasoning with automata, it is common practice to use pump-
ing arguments. This section introduces pumping for SSTs, as well
as combinatorial results for reasoning about (in)equalities between
pumped outputs of SSTs.

In order to have adequate properties for pumped runs of SSTs, the
notion of loop needs to be defined so as to take into account how the
content of variables “flows” into other variables when performing
an update. We define the skeleton of an update 𝛼 : X → (Σ ⊎ X)∗
as the update 𝛼 : X → X∗ obtained from 𝛼 by removing all the
letters from Σ. Note that there are only finitely many skeletons, and
their composition forms a finite monoid, called the skeleton monoid
(this is very similar to the flow monoid from [35], but does not rely
on any normalization).

A loop of a run 𝜌 of an SST is any factor 𝐿 of 𝜌 that starts and
ends in the same state and induces a skeleton-idempotent update,
2In [5], no complexity result is provided, but the decidability procedure relies on a
reduction to the emptiness of a 1-reversal𝑘 (𝑘+1)-counter machine, based on the proof
for equivalence of deterministic SST [3]. The counter machine is exponential in the
number of variables only, and the result follows since emptiness of counter machines
with fixed number of reversals and fixed number of counters is in NLogSpace [24].

Filiot et al.

namely, an update 𝛼 such that 𝛼 and 𝛼 𝛼 have the same skeleton.
For example, the update 𝛼 : 𝑋1 ↦→ 𝑎 𝑋1 𝑏 𝑋2 𝑐, 𝑋2 ↦→ 𝑎 is skeleton-
idempotent and thus can be part of a loop. We will often denote
a loop in a run by an interval [𝑖, 𝑗]. In this case, it is convenient
to assume that the indices 𝑖, 𝑗 represent “positions” in-between
the transitions, thus identifying occurrences of states; in this way,
adjacent loops can be denoted by intervals of the form [𝑖1, 𝑖2],
[𝑖2, 𝑖3], etc. In particular, if the run consists of 𝑛 transitions, then
the largest possible interval on it is [0, 𝑛]. For technical reasons,
we do allow empty loops, that is, loops of the form [𝑖, 𝑗], with 𝑖 = 𝑗

and with the induced update being the identity function on X.
The run obtained from 𝜌 by pumping 𝑛 times a loop 𝐿 is de-

noted pump𝑛
𝐿
(𝜌). If we are given an 𝑚-tuple of pairwise disjoint

loops 𝐿 = (𝐿1, . . . , 𝐿𝑚) and an 𝑚-tuple of (positive) numbers
𝑛 = (𝑛1, . . . , 𝑛𝑚), then we write pump�̄�

�̄�
(𝜌) for the run obtained by

pumping simultaneously 𝑛𝑖 times 𝐿𝑖 , for each 1 ≤ 𝑖 ≤ 𝑚.
The next lemma is a Ramsey-type argument that, based on the

number of states of the SST, the size of the skeleton monoid, and
a number 𝑛, derives a minimum length for a run to witness 𝑛 + 1
points and loops between pairs of any of these points. The reader
can refer to [30] to get good estimates of the values of 𝐸, 𝐻 .

Lemma 2.4. Given an SST, one can compute two numbers 𝐸, 𝐻
such that for every run 𝜌 , every 𝑛 ∈ N, and every set 𝐼 ⊆ {0, . . . , |𝜌 |}
of cardinality 𝐸𝑛𝐻 + 1, there is a subset 𝐼 ′ ⊆ 𝐼 of cardinality 𝑛 + 1
such that for all 𝑖 < 𝑗 ∈ 𝐼 ′ the interval [𝑖, 𝑗] is a loop of 𝜌 . The values
of 𝐸, 𝐻 are elementary in the size of the SST.

Below, we describe the effect on the output of pumping loops in
a run of an SST. We start with the following simple combinatorial
result:

Lemma 2.5. Let 𝛼 be a skeleton-idempotent update. For every vari-
able 𝑋 , there exist two words 𝑢, 𝑣 ∈ Σ∗ such that, for all positive
natural numbers 𝑛 ∈ N+, 𝛼𝑛 (𝑋) = 𝑢𝑛−1 𝛼 (𝑋) 𝑣𝑛−1.

It follows that pumping loops in a run corresponds to introducing
repeated copies of factors in the output. Similar results can be found
in [35] for SSTs and in [18, 36] for two-way transducers:

Corollary 2.6. Let 𝜌 be an accepting run of an SST and let 𝐿 =

(𝐿1, . . . , 𝐿𝑚) be a tuple of pairwise disjoint loops in 𝜌 . Then, for some
𝑟 ≤ 2𝑚 |X| there exist words 𝑤0, . . . ,𝑤𝑟 , 𝑢1, . . . , 𝑢𝑟 and indices 1 ≤
𝑖1, . . . , 𝑖𝑟 ≤ 𝑚, not necessarily distinct, such that for every tuple
𝑛 = (𝑛1, . . . , 𝑛𝑚) ∈ N𝑚+ of positive natural numbers,

out(pump�̄�
�̄�
(𝜌)) = 𝑤0 𝑢

𝑛𝑖1 −1
1 𝑤1 . . . 𝑢

𝑛𝑖𝑟 −1
𝑟 𝑤𝑟 .

Proof. This follows immediately from Lemma 2.5. Note that
the content of any variable 𝑋 just after pumping a loop either
appears as infix of the final output, or is erased by some later
update. In both cases, each pumped loop 𝐿𝑖 induces in the output
(𝑛𝑖 − 1)-folded repetitions of 2𝑘 (possibly empty) factors, where 𝑘
is the number of variables of the SST. Since the loops are pairwise
disjoint, they contribute such factors without any interference. The
final output out(pump�̄�

�̄�
(𝜌)) thus features repetitions of 𝑟 = 2𝑘𝑚

(possibly empty) factors. □

The rest of the section analyses properties of wordswith repeated
factors like the one in Corollary 2.6.

Definition 2.7. A word inequality with repetitions parametrized
in X is a pair 𝑒 = (𝑤,𝑤 ′) of terms of the form

𝑤 = 𝑠0 𝑡
x1
1 𝑠1 . . . 𝑡

x𝑚
𝑚 𝑠𝑚

𝑤 ′ = 𝑠′0 𝑡
′
1
y1 𝑠′1 . . . 𝑡 ′𝑛

y𝑛 𝑠′𝑛

where 𝑠𝑖 , 𝑡𝑖 , 𝑠′𝑗 , 𝑡
′
𝑗
∈ Σ∗ and x𝑖 , y𝑗 ∈ X for all 𝑖, 𝑗 . The set of solutions

of 𝑒 = (𝑤,𝑤 ′), denoted Sols(𝑒), consists of the mappings 𝑓 : X → N
such that 𝑓 (𝑤) ≠ 𝑓 (𝑤 ′), where 𝑓 (𝑤) is the word obtained from
𝑤 by substituting every formal parameter x ∈ X by 𝑓 (x), and
similarly for 𝑓 (𝑤 ′). A system of word inequalities is a non-empty
finite set 𝐸 of inequalities as above, and its set of solutions is given
by Sols(𝐸) = ⋂

𝑒∈𝐸 Sols(𝑒).

The next theorem states that if there exists a solution to a system
of inequalities parameterized by a single variable x, then the set of
solutions is co-finite.

Theorem 2.8 ([37, Theorem 4.3]). Given a word inequality 𝑒

with repetitions parameterized by single variable x, Sols(𝑒) is either
empty or co-finite; more precisely, if the left (resp. right) hand-side of
𝑒 contains𝑚 (resp. 𝑛) repeating patterns (as in Definition 2.7), then
either Sols(𝑒) = ∅ or |N \ Sols(𝑒) | ≤ 𝑚 + 𝑛.

Finally, we present two corollaries of the above theorem, that
will be used later. The first corollary concerns satisfiability of a
system of inequalities. Formally, we say that a word inequality 𝑒
(resp. a system of inequalities 𝐸) is satisfiable if its set of solutions
is non-empty.

Corollary 2.9. Let 𝐸 be a system of word inequalities. If every
inequality 𝑒 ∈ 𝐸 is satisfiable, then so is the system 𝐸.

The second corollary is related to the existence of large sets of
solutions for a satisfiable word inequality that avoid any correlation
between variables. To formalize the statement, it is convenient to fix
a total order on the variables of the inequality, say x1, . . . , x𝑘 , and
then identify every function 𝑓 : X → N with the 𝑘-tuple of values
𝑥 = (𝑥1, . . . , 𝑥𝑘), where 𝑥𝑖 = 𝑓 (x𝑖) for all 𝑖 = 1, . . . , 𝑘 . According
to this correspondence, the corollary states the existence of sets
of solutions that look like Cartesian products of finite intervals
of values, each with arbitrarily large cardinality. The statement of
the corollary is in fact slightly more complicated than this, as it
discloses dependencies between the intervals. We also observe that
the order in which we list the variables is arbitrary, but different
orders will induce different dependencies between intervals.

Corollary 2.10. Let 𝑒 be a word inequality with repetitions
parametrized in X = {x1, . . . , x𝑘 }. If 𝑒 is satisfiable, then

∃ℓ1 ∀ℎ1 . . . ∃ℓ𝑘 ∀ℎ𝑘 [ℓ1, ℎ1]︸ ︷︷ ︸
values for x1

× . . . × [ℓ𝑘 , ℎ𝑘]︸ ︷︷ ︸
values for x𝑘

⊆ Sols(𝑒) .

2.2 Delay between accepting runs
We briefly recall the definitions from [20] and introduce a measure
of similarity (called delay) between accepting runs of an SST that
have the same input and the same output.

We first give some intuition, followed by definitions and an ex-
ample. Naturally, the difference between the amount of output sym-
bols produced during a run should be an indicator of (dis)similarity.

Finite-valued Streaming String Transducers

However, as SSTs do not necessarily build their output from left to
right, one must also take into account the position where an output
symbol is placed. For example, compare two runs 𝜌 and 𝜌′ on the
same input that produce the same output 𝑎𝑎𝑎𝑏𝑏𝑏. After consuming
a prefix of the input, 𝜌 may have produced 𝑎𝑎𝑎_ _ _ and 𝜌′ may
have produced _ _ _𝑏𝑏𝑏. The amount of produced output symbols is
the same, but the runs are delayed because 𝜌 built the output from
the left, whereas 𝜌′ did it from the right. This idea of delay comes
with an important caveat. As another example, consider two runs
𝜌 and 𝜌′ on the same input that produce the same output 𝑎𝑎𝑎𝑎𝑎𝑎,
and assume that, after consuming the same prefix of the input, 𝜌
and 𝜌′ produced 𝑎𝑎𝑎_ _ _ and _ _ _𝑎𝑎𝑎, respectively. Note that the
output 𝑎𝑎𝑎𝑎𝑎𝑎 is a periodic word. Hence, it does not matter if 𝑎𝑎𝑎
is appended or prepended to a word with period 𝑎. In general, one
copes with this phenomenon by dividing the output into periodic
parts, where all periods are bounded by a well-chosen parameter𝐶 .
So, intuitively, the delay measures the difference between the num-
bers of output symbols that have been produced by the two runs,
up to the end of each of periodic factor. The number of produced
output symbols is formally captured by a weight function, defined
below, and the delay aggregates the weight differences.

For an accepting run 𝜌 , a position 𝑡 of 𝜌 , and a position 𝑗 in
the output out(𝜌), we denote by weight𝑡𝑗 (𝜌) the number of output
positions 𝑗 ′ ≤ 𝑗 that are produced by the prefix of 𝜌 up to position 𝑡 .
We use the above notation when 𝑗 witnesses a change in a repeating
pattern of the output. These changes in repeating patterns are called
cuts, as formalized below.

Let 𝑤 be any non-empty word (e.g. the output of 𝜌 or a factor
of it). The primitive root of 𝑤 , denoted root(𝑤), is the shortest
word 𝑟 such that 𝑤 ∈ {𝑟 }∗. For a fixed integer 𝐶 > 0 we define a
factorization𝑤 [1, 𝑗1],𝑤 [𝑗1+1, 𝑗2], . . . ,𝑤 [𝑗𝑛+1, 𝑗𝑛+1] of𝑤 in which
every 𝑗𝑖 is chosen as the rightmost position for which 𝑤 [𝑗𝑖−1 +
1, 𝑗𝑖] has primitive root of length not exceeding 𝐶 . These positions
𝑗1, . . . , 𝑗𝑛 are called 𝐶-cuts. More precisely:

• the first𝐶-cut of𝑤 is the largest position 𝑗 ≤ |𝑤 |, such that
|root(𝑤 [1, 𝑗]) | ≤ 𝐶;

• if 𝑗 is the 𝑖-th𝐶-cut of𝑤 , then the (𝑖 +1)-th𝐶-cut of𝑤 is the
largest position 𝑗 ′ > 𝑗 such that |root(𝑤 [𝑗 + 1, 𝑗 ′]) | ≤ 𝐶 .

We denote by 𝐶-cuts(𝑤) the set of all 𝐶-cuts of𝑤 .
We are now ready to define the notion of delay. Consider two

accepting runs 𝜌, 𝜌′ of an SST with the same input 𝑢 = in(𝜌) =

in(𝜌′) and the same output𝑤 = out(𝜌) = out(𝜌′), and define:

𝐶-delay(𝜌, 𝜌′) = max
𝑡≤ |𝑢 |,

𝑗 ∈𝐶-cuts(𝑤)

��weight𝑡𝑗 (𝜌) − weight𝑡𝑗 (𝜌
′)
��

that is, the maximum, over all prefixes of the runs and all 𝐶-cuts
of the output, of the absolute values of the differences of the corre-
sponding weights in 𝜌 and 𝜌′. Note that the delay is only defined
for accepting runs with same input and output. So whenever we
write𝐶-delay(𝜌, 𝜌′), we implicitly mean that 𝜌, 𝜌′ have same input
and same output.

Example 2.11. Let 𝑤 = 𝑎𝑏𝑐𝑐𝑐𝑏𝑏 be the output of runs 𝜌, 𝜌′ on
the same input of length 2. Assume 𝜌 produces 𝑎𝑏𝑐_ _𝑏𝑏 and then
𝑎𝑏𝑐𝑐𝑐𝑏𝑏, whereas 𝜌′ produces _ _ _𝑐_𝑏𝑏 and then 𝑎𝑏𝑐𝑐𝑐𝑏𝑏. For
𝐶 = 2, we obtain 2-cuts(𝑤) = {2, 5, 7}, i.e., 𝑤 is divided into
𝑎𝑏 |𝑐𝑐𝑐 |𝑏𝑏. To compute the 2-delay(𝜌, 𝜌′), we need to calculate

weights at cuts. For 𝑡 = 0, weight0
𝑗 (𝜌) = weight0𝑗 (𝜌′) = 0 for

all 𝑗 ∈ 2-cuts(𝑤) because nothing has been produced. For 𝑡 = 2,
weight2

𝑗 (𝜌) = weight2
𝑗 (𝜌′) = 𝑗 for all 𝑗 ∈ 2-cuts(𝑤) because the

whole output has been produced. Only the case 𝑡 = 1 has an im-
pact on the delay. We have weight12 (𝜌) = 2, weight15 (𝜌) = 3, and
weight1

7 (𝜌) = 5. Also, we have weight12 (𝜌′) = 0, weight1
5 (𝜌) = 1,

and weight1
7 (𝜌) = 3. Hence, we obtain 2-delay(𝜌, 𝜌′) = 2.

We recall below a few crucial results from [20]. A first result
shows that the relation of pairs of runs having bounded delay (for
a fixed bound) is automatic — for this to make sense, we view a run
of an SST as a finite word, with letters representing transitions, and
we recall that a relation is automatic if its convolution language is
regular.

Lemma 2.12 ([20, Theorem 5]). Given an SST and some numbers
𝐶, 𝐷 , the relation consisting of pairs of accepting runs (𝜌, 𝜌′) such
that 𝐶-delay(𝜌, 𝜌′) ≤ 𝐷 is automatic.

Proof. The statement in [20, Theorem 5] is not for runs of SSTs,
but for sequences of updates. One can easily build an automaton
that checks if two sequences of transitions, encoded by their con-
volution, form accepting runs 𝜌, 𝜌′ of the given SST on the same
input. The remaining condition 𝐶-delay(𝜌, 𝜌′) ≤ 𝐷 only depends
on the underlying sequences of updates determined by 𝜌 and 𝜌′,
and can be checked using [20, Theorem 5]. □

A second result shows that given two runs with large delay, one
can find a set of positions on the input (the cardinality of which
depends on how large the delay is) in such a way that any interval
starting just before any of these positions and ending just after
any other of these positions is a loop on both runs such that, when
pumped, produces different outputs. By this last result, large delay
intuitively means “potentially different outputs”.

Lemma 2.13 ([20, Lemma 6]). Given an SST, one can compute3

some numbers 𝐶, 𝐷 such that, for all 𝑚 ≥ 1 and all runs 𝜌, 𝜌′: if
𝐶𝑚-delay(𝜌, 𝜌′) > 𝐷𝑚2, then there exist 𝑚 positions 0 ≤ ℓ1 <

· · · < ℓ𝑚 ≤ |𝜌 | such that, for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, the interval
𝐿𝑖, 𝑗 = [ℓ𝑖 , ℓ𝑗] is a loop on both 𝜌 and 𝜌′ and satisfies

out(pump2
𝐿𝑖,𝑗

(𝜌)) ≠ out(pump2
𝐿𝑖,𝑗

(𝜌′)) .

To reason about finite valuedness we will often consider several
accepting runs on the same input that have pairwise large delays.
By Lemma 2.13, every two such runs can be pumped so as to witness
different outputs. The crux however is to show that these runs can
be pumped simultaneously so as to get pairwise different outputs.
This is indeed possible thanks to:

Lemma 2.14. Let𝐶, 𝐷 be computed as in Lemma 2.13, and 𝑘 be an
arbitrary number. Then one can compute a number𝑚 such that, for all
runs 𝜌0, . . . , 𝜌𝑘 on the same input and with

∧
0≤𝑖< 𝑗≤𝑘

(
out(𝜌𝑖) ≠

out(𝜌 𝑗) ∨ 𝐶𝑚-delay(𝜌𝑖 , 𝜌 𝑗) > 𝐷𝑚2) , there is a tuple 𝐿 =

3We remark that the notation and the actual bounds here differ from the original
presentation of [20], mainly due to the fact that here we manipulate runs with explicit
states and loops with idempotent skeletons. In particular, the parameters𝐶,𝐷,𝑚 here
correspond respectively to the values 𝑘𝐸2, ℓ𝐸4,𝐶𝐸2 with 𝑘, ℓ,𝐶 as in [20, Lemma 6],
and 𝐸 as in our Lemma 2.4.

Filiot et al.

(𝐿𝑖, 𝑗)0≤𝑖< 𝑗≤𝑘 of disjoint intervals that are loops on all runs 𝜌0, . . . , 𝜌𝑘 ,
and there is a tuple 𝑛 = (𝑛𝑖, 𝑗)0≤𝑖< 𝑗≤𝑘 of positive numbers such that

for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 , out(pump�̄�
�̄�
(𝜌𝑖)) ≠ out(pump�̄�

�̄�
(𝜌 𝑗)) .

Proof. We first define𝑚. Let 𝐸, 𝐻 be as in Lemma 2.4, and set
𝑚 :=𝑚0 + 1 for the sequence𝑚0, . . . ,𝑚𝑘−1 defined inductively by
𝑚𝑘−1 := 𝑘 (𝑘 + 1), and𝑚ℎ := 𝐸𝑚𝐻

ℎ+1.
We show how to pump the runs in such a way that all pairs of

indices 𝑖 < 𝑗 witnessing 𝐶𝑚-delay(𝜌𝑖 , 𝜌 𝑗) > 𝐷𝑚2 before pumping,
will witness different outputs after pumping. Consider one such
pair (𝑖, 𝑗), with 𝑖 < 𝑗 , such that 𝐶𝑚-delay(𝜌𝑖 , 𝜌 𝑗) > 𝐷𝑚2, so in
particular, out(𝜌𝑖) = out(𝜌 𝑗) (if there is no such pair, then all runs
have pairwise different outputs, and so we are already done). We
apply Lemma 2.13 and obtain a set 𝐼𝑖, 𝑗,0 of𝑚 = 𝑚0 + 1 positions
such that each interval 𝐿 = [ℓ, ℓ′] with ℓ, ℓ′ ∈ 𝐼𝑖, 𝑗,0 is a loop on both
𝜌𝑖 and 𝜌 𝑗 , and:

out(pump2
𝐿 (𝜌𝑖)) ≠ out(pump2

𝐿 (𝜌 𝑗)). (1)

Then, by repeatedly using Lemma 2.4, we derive the existence of
sets 𝐼𝑖, 𝑗,𝑘−1 ⊆ · · · ⊆ 𝐼𝑖, 𝑗,1 ⊆ 𝐼𝑖, 𝑗,0 with |𝐼𝑖, 𝑗,ℎ | = 𝑚ℎ + 1 such that
each interval 𝐿 = [ℓ, ℓ′] with ℓ, ℓ′ ∈ 𝐼𝑖, 𝑗,ℎ is a loop on 𝜌𝑖 , 𝜌 𝑗 , and ℎ
further runs from 𝜌0, . . . , 𝜌𝑘 (our definition of𝑚 from the beginning
of the proof is tailored to this repeated application of Lemma 2.4,
because |𝐼𝑖, 𝑗,ℎ | = 𝑚ℎ + 1 = 𝐸𝑚𝐻

ℎ+1 + 1). In particular, all intervals
with endpoints in 𝐼𝑖, 𝑗,𝑘−1 are loops on all the 𝜌0, . . . , 𝜌𝑘 .

In this way, for each pair 𝑖 < 𝑗 such that 𝜌𝑖 and 𝜌 𝑗 have large
delay, we obtain 𝑘 (𝑘 + 1) adjacent intervals that are loops on all
runs and that satisfy the pumping property (1) from above.

As there are at most 𝑘 (𝑘 + 1) pairs of runs, we can now choose
from the sets of intervals that we have prepared one interval 𝐿𝑖, 𝑗
for each pair 𝑖 < 𝑗 with 𝐶𝑚-delay(𝜌𝑖 , 𝜌 𝑗) > 𝐷𝑚2, in such a way
that all the chosen intervals are pairwise disjoint (for example, we
could do so by always picking among the remaining intervals the
one with the left-most right border, and then removing all intervals
that intersect this one). The selected intervals 𝐿𝑖, 𝑗 thus have the
following properties:

(1) 𝐿𝑖, 𝑗 is a loop on all runs 𝜌0, . . . , 𝜌𝑘 ,
(2) 𝐿𝑖, 𝑗 is disjoint from every other interval 𝐿𝑖′, 𝑗 ′ ,
(3) out(pump2

𝐿𝑖,𝑗
(𝜌𝑖)) ≠ out(pump2

𝐿𝑖,𝑗
(𝜌 𝑗)).

If a pair 𝑖 < 𝑗 of runs is such that out(𝜌𝑖) ≠ out(𝜌 𝑗), then we set
𝐿𝑖, 𝑗 as an empty loop.

Now, let 𝐿 = (𝐿𝑖, 𝑗)0≤𝑖< 𝑗≤𝑘 be the tuple of chosen intervals, and
consider the following system of word inequalities with formal
parameters (x𝑖, 𝑗)0≤𝑖< 𝑗≤𝑘 =: x̄:

for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 , out(pumpx̄
�̄�
(𝜌𝑖)) ≠ out(pumpx̄

�̄�
(𝜌 𝑗)) .

Here, the value of the formal parameter x𝑖, 𝑗 determines how often
the loop 𝐿𝑖, 𝑗 is pumped. By Corollary 2.6, this corresponds to a
word inequality in the parameters x𝑖, 𝑗 .

Note that there is one such inequality for each pair of runs 𝜌𝑖 , 𝜌 𝑗
with 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 . By the choice of the intervals in 𝐿, each of the
inequalities is satisfiable: indeed, the inequality for 𝜌𝑖 , 𝜌 𝑗 is satisfied
by letting x𝑖′, 𝑗 ′ = 1 if 𝑖′ ≠ 𝑖 or 𝑗 ′ ≠ 𝑗 , and x𝑖, 𝑗 = 2 otherwise.

By Corollary 2.9, the system of inequalities is also satisfiable with
a tuple 𝑛 = (𝑛𝑖, 𝑗)0≤𝑖< 𝑗≤𝑘 of numbers, as claimed in the lemma. □

3 THE DECOMPOSITION THEOREM
This section is devoted to the proof of the Decomposition Theorem:

Theorem 1.2. For all 𝑘 ∈ N, every 𝑘-valued SST can be decom-
posed into a union of 𝑘 single-valued (or even deterministic) SSTs. The
complexity of the construction is elementary.

Our proof relies on the notion of cover of an SST, which is rem-
iniscent of the so-called “lag-separation covering” construction
[17, 39]. Intuitively, given an SST 𝑇 and two integers 𝐶, 𝐷 ∈ N, we
construct an SST Cover𝐶,𝐷 (𝑇) that is equivalent to 𝑇 , yet for each
input 𝑢 it only admits pairs of accepting runs with different outputs
or 𝐶-delay larger than 𝐷 .

Proposition 3.1. Given an SST𝑇 and two numbers𝐶, 𝐷 , one can
compute an SST called Cover𝐶,𝐷 (𝑇) such that

(1) Cover𝐶,𝐷 (𝑇) is equivalent to 𝑇 ;
(2) for every two accepting runs 𝜌 ≠ 𝜌′ of Cover𝐶,𝐷 (𝑇)

having the same input, either out(𝜌) ≠ out(𝜌′) or
𝐶-delay(𝜌, 𝜌′) > 𝐷 ;

(3) every accepting run of Cover𝐶,𝐷 (𝑇) can be projected onto an
accepting run of 𝑇 .

Proof. We order the set of accepting runs of𝑇 lexicographically,
and we get rid of all the runs for which there exists a lexicographi-
cally smaller run with the same input, the same output, and small
delay. Since all these conditions are encoded by regular languages,
the remaining set of runs is also regular, and this can be used to
construct an SST Cover𝐶,𝐷 (𝑇) that satisfies the required properties.

We now give more details about this construction. Let 𝑅 denote
the set of all accepting runs of 𝑇 . Remark that 𝑅 is a language over
the alphabet consisting of transitions of 𝑇 , and it is recognised by
the underlying automaton of 𝑇 , so it is regular. Let

Sep𝐶,𝐷 (𝑅) =
{
𝜌 ∈ 𝑅

�� �𝜌′ ∈ 𝑅 . 𝜌′ <𝜌 ∧ 𝐶-delay(𝜌, 𝜌′) ≤ 𝐷
}
.

Recall that the delay is only defined for accepting runs with same
input and same output, so 𝐶-delay(𝜌, 𝜌′) ≤ 𝐷 implies that in(𝜌) =
in(𝜌′) and out(𝜌) = out(𝜌′). We show that

a) Sep𝐶,𝐷 (𝑅) is a regular subset of 𝑅;
b) {(in(𝜌), out(𝜌)) | 𝜌 ∈ Sep𝐶,𝐷 (𝑅)} = {(in(𝜌), out(𝜌)) |

𝜌 ∈ 𝑅};
c) for every pair of runs 𝜌, 𝜌′ ∈ Sep𝐶,𝐷 (𝑅) over the same

input, either out(𝜌) ≠ out(𝜌′) or 𝐶-delay(𝜌, 𝜌′) > 𝐷 .
Before proving these properties, let us show how to use them to
conclude the proof of the proposition:

We start with a DFA 𝐴 recognizing Sep𝐶,𝐷 (𝑅), whose existence
is guaranteed by Property a). Note that the transitions of 𝐴 are
of the form

(
𝑞, (𝑠, 𝑎, 𝛼, 𝑠′), 𝑞′

)
, where (𝑠, 𝑎, 𝛼, 𝑠′) is a transition of 𝑇 .

Without loss of generality, we assume that the source state 𝑞 of
an 𝐴-transition determines the source state 𝑠 of the corresponding
𝑇 -transition, and similarly for the target states 𝑞′ and 𝑠′. Thanks
to this, we can turn 𝐴 into the desired SST Cover𝐶,𝐷 (𝑇) by simply
projecting away the 𝑇 -states from the 𝑇 -transitions, namely, by
replacing every transition

(
𝑞, (𝑠, 𝑎, 𝛼, 𝑠′), 𝑞′

)
with (𝑞, 𝑎, 𝛼, 𝑞′). To

complete the construction, we observe that if the state 𝑞′ is final in
𝐴, then the corresponding state 𝑠′ is also final in 𝑇 (this is because
𝐴 recognizes only accepting runs of 𝑇). Accordingly, we can define
the final update of Cover𝐶,𝐷 (𝑇) so that it maps any final state 𝑞′

Finite-valued Streaming String Transducers

of 𝐴 to the final update Ω(𝑠′), as determined by the corresponding
final state 𝑠′ in 𝑇 . Finally, thanks to Properties b) and c), the SST
Cover𝐶,𝐷 (𝑇) constructed in this way clearly satisfies the properties
claimed in the proposition.

Let us now prove Properties a)–c).

Proof of Property a). Note that Sep𝐶,𝐷 (𝑅) is obtained
by combining the relations 𝑅, {(𝜌, 𝜌′) | 𝜌′ < 𝜌}, and
{(𝜌, 𝜌′) | 𝐶-delay(𝜌, 𝜌′) ≤ 𝐷} using the operations of inter-
section, projection, and complement. Also recall that 𝑅 can be
regarded a regular language, and that {(𝜌, 𝜌′) | 𝜌′ < 𝜌} and
{(𝜌, 𝜌′) | 𝐶-delay(𝜌, 𝜌′) ≤ 𝐷} are automatic relations (for the lat-
ter one uses Lemma 2.12). It is also a standard result (cf. [8, 27, 32])
that automatic relations are closed under intersection, projection,
and complement. From this it follows that Sep𝐶,𝐷 (𝑅) is a regular
language.

Proof of Property b). As Sep𝐶,𝐷 (𝑅) ⊆ 𝑅, the left-to-right in-
clusion is immediate. To prove the converse inclusion, consider
an input-output pair (𝑢, 𝑣) in the right hand-side of the equation,
namely, (𝑢, 𝑣) is a pair in the relation realised by 𝑇 . Let 𝜌 be the
lexicographically least accepting run of 𝑇 such that in(𝜌) = 𝑢 and
out(𝜌) = 𝑣 . By construction, 𝜌 ∈ Sep𝐶,𝐷 (𝑅) and hence (𝑢, 𝑣) also
belongs to the left hand-side of the equation.

Proof of Property c). This holds trivially by the definition of
Sep𝐶,𝐷 (𝑅). □

We can now present the missing ingredients of the decomposi-
tion result. Proposition 3.2 below shows that, for suitable choices
of 𝐶 and 𝐷 that depend on the valuedness of 𝑇 , Cover𝐶,𝐷 (𝑇) turns
out to be 𝑘-ambiguous.

This will enable the decomposition result via a classical technique
that decomposes any 𝑘-ambiguous automaton/transducer into a
union of 𝑘 unambiguous ones (see Proposition 3.3 further below).

Proposition 3.2. Let𝑇 be a 𝑘-valued SST and let𝐶, 𝐷,𝑚 be as in
Lemma 2.14 (note that𝑚 depends on 𝑘). The SST Cover𝐶𝑚,𝐷𝑚2 (𝑇)
is 𝑘-ambiguous.

Proof. We prove the contrapositive of the statement. Assume
that Cover𝐶𝑚,𝐷𝑚2 (𝑇) is not 𝑘-ambiguous, that is, it admits 𝑘 + 1
accepting runs 𝜌0, . . . , 𝜌𝑘 on the same input. Recall from Propo-
sition 3.1 that for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 , either out(𝜌𝑖) ≠ out(𝜌 𝑗)
or 𝐶𝑚-delay(𝜌𝑖 , 𝜌 𝑗) > 𝐷𝑚2. By Lemma 2.14 we can find pumped
versions of the runs 𝜌0, . . . , 𝜌𝑘 that have all the same input but have
pairwise different outputs, and thus 𝑇 is not 𝑘-valued. □

Proposition 3.3. For all 𝑘 ∈ N, every 𝑘-ambiguous SST can be
decomposed into a union of 𝑘 unambiguous SSTs.

Proof. The decomposition is done via a classical technique ap-
plicable to 𝑘-ambiguous NFA and, by extension, to all variants of
automata and transducers (see [31, 38]). More precisely, decompos-
ing a 𝑘-ambiguous NFA into a union of 𝑘 unambiguous NFA is done
by ordering runs lexicographically and by letting the 𝑖-th NFA in
the decomposition guess the 𝑖-th accepting run on a given input
(if it exists). Since the lexicographic order is a regular property of
pairs of runs, it is easy to track all smaller runs. □

Proof of Theorem 1.2. We now have all the ingredients to prove
Theorem 1.2, which directly follows from Propositions 3.2 and 3.3,
and the fact that unambiguous SSTs can be determinized [5].

As a consequence of Theorem 1.2, we can now prove the corre-
spondence between finite-valued SSTs and finite-valued two-way
transducers stated in the introduction as the following theorem:

Theorem 1.3. Let 𝑅 ⊆ Σ∗ × Σ∗ be a finite-valued relation. If 𝑅
can be realized by an SST, then an equivalent two-way transducer
can be effectively constructed, and vice-versa.

Proof. If 𝑅 is realized by an SST 𝑇 then we can apply Theo-
rem 1.2 in order to obtain 𝑘 unambiguous SSTs 𝑇𝑖 , such that 𝑇 and
the union of 𝑇1, . . . ,𝑇𝑘 are equivalent. From [2] we know that in
the functional case, SSTs and two-way transducers are equivalent.
Thus, every 𝑇𝑖 can be transformed effectively into an equivalent,
even deterministic, two-way transducer. From this we obtain an
equivalent 𝑘-ambiguous two-way transducer.

For the converse we start with a 𝑘-valued two-way transducer
𝑇 and first observe that we can normalise 𝑇 in such a way that
the crossing sequences4 of accepting runs of 𝑇 are bounded by
a constant linear in the size of 𝑇 . Once we work with runs with
bounded crossing sequences we can construct an equivalent SST
in the same way as we do for deterministic two-way transducers.
The idea is that during the run of the SST the variables record the
outputs generated by the pieces of runs at the left of the current
input position (see e.g. [16, 33] for self-contained proofs). □

4 FINITE VALUEDNESS
We characterize finite valuedness of SSTs by excluding certain types
of substructures. Our characterization has strong analogies with
the characterization of finite valuedness for one-way transducers,
where the excluded substructures have the shape of a “W” and are
therefore calledW-patterns (cf. [17]).5

Definition 4.1. AW-pattern is a substructure of an SST consisting
of states 𝑞1, 𝑞2, 𝑟1, 𝑟2, 𝑟3, and some initial and final states, that are
connected by runs as in the diagram

𝑞1 𝑞2

𝑟1 𝑟2 𝑟3

initial
state

final
state

𝜌0 : 𝑢/𝛼 𝜌4 : 𝑤/𝜔

𝜌 ′1 :
𝑣 ′/𝛽 ′

𝜌 ′′1 : 𝑣′′/𝛽 ′′

𝜌 ′′′1
:
𝑣 ′′′/𝛽 ′′′

𝜌
′ 2
: 𝑣

′ /𝛾
′

𝜌 ′′2 : 𝑣′′/𝛾 ′′

𝜌 ′′′2
:
𝑣 ′′′/𝛾 ′′′ 𝜌

′ 3
: 𝑣

′ /𝜂
′

𝜌 ′′3 : 𝑣′′/𝜂′′

𝜌
′′′ 3

: 𝑣
′′′ /
𝜂
′′′

4A crossing sequence is a standard notion in the theory of finite-state two-way ma-
chines [42], and is defined as the sequence of states in which a given input position is
visited by a run of the machine
5In [17] there were also other substructures excluded, which however can be seen as
degenerate cases of W-patterns.

Filiot et al.

where a notation like 𝜌 : 𝑢′/𝜇 describes a run named 𝜌 that con-
sumes an input 𝑢′ and produces an update 𝜇. Moreover, the cyclic
runs 𝜌′′1 , 𝜌′′2 , 𝜌′′3 , 𝜌′1𝜌

′′
1 𝜌

′′′
1 , 𝜌′2𝜌

′′
2 𝜌

′′′
2 , and 𝜌′3𝜌

′′
3 𝜌

′′′
3 are required to

be loops, namely, their updates must have idempotent skeletons.

An important constraint of the above definition is that the small
loops at states 𝑟1, 𝑟2, 𝑟3 consume the same input, i.e. 𝑣 ′′, and, simi-
larly, the big loops at 𝑞1 and 𝑞2, as well as the runs from 𝑞1 to 𝑞2,
consume the same set of inputs, i.e. 𝑣 ′ (𝑣 ′′)∗ 𝑣 ′′′.

Given a W-pattern 𝑃 and a positive natural number 𝑥 , we con-
struct the following runs by composing together copies of the runs
of the diagram of Definition 4.1:

lft𝑥
𝑃 = 𝜌′1 (𝜌

′′
1)

𝑥 𝜌′′′1
mid𝑥𝑃 = 𝜌′2 (𝜌

′′
2)

𝑥 𝜌′′′2
rgt𝑥𝑃 = 𝜌′3 (𝜌

′′
3)

𝑥 𝜌′′′3 .

Similarly, given a sequence 𝑠 = (𝑥1, 𝑥2, . . . , 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛) of
positive numbers with exactly one element underlined (we call such
a sequence a marked sequence), we define the accepting run

run𝑃 (𝑠) =

𝜌0 lft𝑥1
𝑃

lft𝑥2
𝑃

. . . lft𝑥𝑖−1
𝑃︸ ︷︷ ︸

loops at 𝑞1

mid𝑥𝑖
𝑃

rgt𝑥𝑖+1
𝑃

rgt𝑥𝑖+2
𝑃

. . . rgt𝑥𝑛
𝑃︸ ︷︷ ︸

loops at 𝑞2

𝜌4 .

For each marked sequence 𝑠 = (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛),
run𝑃 (𝑠) consumes the input 𝑢 𝑣 ′ (𝑣 ′′)𝑥1𝑣 ′′′ . . . 𝑣 ′ (𝑣 ′′)𝑥𝑛𝑣 ′′′𝑤 and
produces an output of the form

out(run𝑃 (𝑠)) =
(
𝜄 𝛼 𝛽′ (𝛽′′)𝑥1𝛽′′′ . . . 𝛽′ (𝛽′′)𝑥𝑖−1𝛽′′′

𝛾 ′ (𝛾 ′′)𝑥𝑖𝛾 ′′′

𝜂′ (𝜂′′)𝑥𝑖+1𝜂′′′ . . . 𝜂′ (𝜂′′)𝑥𝑛𝜂′′′ 𝜔 𝜔 ′) (𝑋1)

where 𝜄 is the initial update and 𝜔 ′ is the final update determined
by the final state of run𝑃 (𝑠). Note that, differently from the output,
the input only depends on the unmarked sequence, and thus a W-
pattern can have accepting runs that consume the same input and
produce arbitrarily many different outputs. As an example, consider
a W-pattern as in Definition 4.1, where 𝛾 ′′ is the only update that
produces output symbols – say 𝛾 ′′ appends letter 𝑐 to the right of
the unique variable. Further suppose that 𝑢 = 𝑤 = 𝜀, 𝑣 ′ = 𝑣 ′′′ = 𝑎,
and 𝑣 ′′ = 𝑏. So, on input (𝑎𝑏𝑎) (𝑎𝑏2𝑎) . . . (𝑎𝑏𝑛𝑎), this W-pattern
produces 𝑛 different outputs: 𝑐 , 𝑐2, . . . , 𝑐𝑛 . The definition and the
lemma below generalize this example.

Definition 4.2. A W-pattern 𝑃 is called divergent if there exists a
5-tuple of numbers 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5 ∈ N+ for which the two runs
run𝑃 ((𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5)) and run𝑃 ((𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5)) produce dif-
ferent outputs (remark that the runs consume the same input). It is
called simply divergent if in addition 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5 ∈ {1, 2}.

Theorem 4.3. An SST is finite-valued iff it does not admit a simply
divergent W-pattern.

The two implications of the theorem are shown in Sections 4.2
and 4.3; effectiveness of the characterization is shown in the next
section.

4.1 Effectiveness of finite valuedness
We prove that the characterization of finite valuedness in terms of
absence of simply divergent W-patterns (Theorem 4.3) is effective,
and yields a PSpace decision procedure. We also prove that the
equivalence problem for deterministic SSTs, known to be in PSpace,
is polynomially reducible to the finite valuedness problem. Despite
recent efforts by the community to better understand the complexity
of the equivalence problem, it is unknown whether the PSpace
upper bound for equivalence (and hence for finite valuedness) can
be improved, as no non-trivial lower bound is known. On the other
hand, equivalence (as well as finite valuedness) turns out to be in
PTime when the number of variables is fixed [5].

The effectiveness procedure uses the following complexity result
on the composition of deterministic SSTs, which is of independent
interest. It is known that deterministic SSTs are closed under com-
position because of their equivalence to MSO transductions [2]. A
precise complexity analysis of this closure property can be found
in [6], but it is triply exponential. We show how to do composition
with a single exponential, using results from [15].

Proposition 4.4. Let𝑇1 and𝑇2 be two deterministic SSTs realizing
the functions 𝑓1 : Σ∗1 → Σ∗2 and 𝑓2 : Σ∗2 → Σ∗3. Let 𝑛𝑖 (resp.𝑚𝑖) be the
number of states (resp. variables) of 𝑇𝑖 , and𝑀 = 𝑛1 + 𝑛2 +𝑚1 +𝑚2
One can construct in time exponential in𝑀 and polynomial in |Σ1 | +
|Σ2 | + |Σ3 | a deterministic SST realizing 𝑓1 ◦ 𝑓2, with exponentially
many states and polynomially many variables in𝑀 .

Proof. Each 𝑇𝑖 can be converted in polynomial time into an
equivalent two-way transducer that is reversible, namely, both de-
terministic and co-deterministic [15]. Again by [15], reversible two-
way transducers can be composed in polynomial time, yielding a
reversible two-way transducer 𝑆 realizing 𝑓1 ◦ 𝑓2, and having poly-
nomially many states in𝑀 . Finally, it suffices to convert 𝑆 back to
a deterministic SST, which can be done in time exponential in the
number of states of 𝑆 and polynomial in the size of the alphabets.
This yields a deterministic SST with exponentially many states and
polynomially many variables in𝑀 (see e.g. [16, 33]). □

Theorem 1.5. Given any SST 𝑇 , we can decide in PSpace if 𝑇
is finite-valued, and in PTime if the number of variables is fixed.
Moreover, this problem is at least as hard as the equivalence problem
for deterministic SSTs.

Proof. We start with an overview of the proof. By Theorem 4.3,
it suffices to decide whether a given SST𝑇 admits a simply divergent
W-pattern. Let us fix some tuple 𝑥 = (𝑥1, . . . , 𝑥5) ∈ {1, 2}5. We
construct an SST𝑇𝑥 which is not single-valued iff𝑇 has aW-pattern
which is simply divergent for 𝑥 . Since checking single-valuedness
of SST is decidable [5], we can decide finite valuedness of 𝑇 by
solving single-valuedness problems for all SST 𝑇𝑥 , for all tuples
𝑥 ∈ {1, 2}5. Intuitively, we exhibit an encoding of W-patterns 𝑃
as words 𝑢𝑃 , and show that the set of such encodings forms a
regular language. The encoding 𝑢𝑃 informally consists of the runs
that form the W-pattern 𝑃 , and some of these runs are overlapped
to be able to check that they are on the same input. Accordingly,
the SST 𝑇𝑥 will take as input such an encoding 𝑢𝑃 and produce
as outputs the two words out(run𝑃 (𝑠)) and out(run𝑃 (𝑠′)), where
𝑠 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) and 𝑠′ = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5). To achieve this,

Finite-valued Streaming String Transducers

𝑇𝑥 can consume the input 𝑢𝑃 while iterating the encoded runs as
prescribed by 𝑠 or 𝑠′ and simulating the transitions to construct
the appropriate outputs. Finally, an analysis of the size of 𝑇𝑥 and
of the algorithm from [5] for checking single-valuedness gives the
PSpace upper bound.

Detailed reduction. We now explain in detail the reduction to
the single-valuedness problem. We will then show how to derive
the PSpace upper bound by inspecting the decidability proof for
single-valuedness.

Let 𝑇 = (Σ,X, 𝑄,𝑄init, 𝑄final,Ω,Δ) be the given SST and let
P be the set of all W-patterns of 𝑇 . We first show that P is a
regular set, modulo some well-chosen encodings of W-patterns
as words. Recall that a W-pattern consists of a tuple of runs
𝑃 = (𝜌0, 𝜌′1, 𝜌

′′
1 , 𝜌

′′′
1 , 𝜌′2, 𝜌

′′
2 , 𝜌

′′′
2 , 𝜌′3, 𝜌

′′
3 , 𝜌

′′′
3 , 𝜌4), connected as in

the diagram of Definition 4.1. Note that some of those runs share
a common input (e.g. 𝜌′′1 , 𝜌

′′
2 , 𝜌

′′
3 share the input 𝑣 ′′). Therefore,

we cannot simply encode 𝑃 as a the sequence of runs 𝜌0, 𝜌′1, . . . ,
as otherwise regularity would be lost. Instead, in the encoding we
overlap groups of runs over the same input, precisely, the group
{𝜌′1, 𝜌

′
2, 𝜌

′
3} on input 𝑣 ′, the group {𝜌′′1 , 𝜌

′′
2 , 𝜌

′′
3 } on input 𝑣 ′′, and

the group {𝜌′′′1 , 𝜌′′′2 , 𝜌′′′3 } on input 𝑣 ′′′. Formally, this is done by
taking the convolution of the runs in each group, which results in a
word over the alphabet Δ3. Accordingly, 𝑃 is encoded as the word

𝑢𝑃 = 𝜌0 # (𝜌′1 ⊗ 𝜌′2 ⊗ 𝜌′3) # (𝜌′′1 ⊗ 𝜌′′2 ⊗ 𝜌′′3) # (𝜌′′′1 ⊗ 𝜌′′′2 ⊗ 𝜌′′′3) # 𝜌4

where # is a fresh separator. The language 𝐿P = {𝑢𝑃 | 𝑃 ∈ P},
consisting of all encodings of W-patterns, is easily seen to be regu-
lar, recognizable by some automaton 𝐴P which checks that runs
forming each convolution share the same input and verify skeleton
idempotency (recall that skeletons form a finite monoid). The num-
ber of states of the automaton 𝐴P turns out to be polynomial in
the number of states of 𝑇 and in the size of the skeleton monoid,
which in turn is exponential in the number of variables.

Next, we construct the SST 𝑇𝑥 as the disjoint union of two de-
terministic SSTs 𝑇𝑠 and 𝑇𝑠′ , where 𝑠 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) and 𝑠′ =
(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5). We only describe 𝑇𝑠 , as the construction of 𝑇𝑠′ is
similar. The SST𝑇𝑠 is obtained as a suitable restriction of the compo-
sition of two deterministic SSTs 𝑇 𝑠

iter and 𝑇exec, which respectively
iterate the runs as prescribed by 𝑠 and execute the transitions read
as input. When fed with the encoding𝑢𝑃 of a W-pattern,𝑇 𝑠

iter needs
to output run𝑃 (𝑠) ∈ Δ∗. More precisely, it takes as input a word of
the form 𝜌0 # (𝜌′1 ⊗𝜌′2 ⊗𝜌′3) # (𝜌′′1 ⊗𝜌′′2 ⊗𝜌′′3) # (𝜌′′′1 ⊗𝜌′′′2 ⊗𝜌′′′3) #𝜌4
and produces as output

𝜌0 𝜌′1 (𝜌
′′
1)

𝑥1 𝜌′′′1 𝜌′1 (𝜌
′′
1)

𝑥2 𝜌′′′1 𝜌′1 (𝜌
′′
1)

𝑥3 𝜌′′′1
𝜌′2 (𝜌

′′
2)

𝑥4 𝜌′′′2
𝜌′3 (𝜌

′′
3)

𝑥5 𝜌′′′3 𝜌4 .

The SST𝑇 𝑠
iter uses one variable for each non-iterated run (e.g. for

𝜌0 and 𝜌′1), 𝑥1 + 𝑥2 + 𝑥3 variables to store copies of 𝜌′′1 , 𝑥4 variables
to store copies of 𝜌′′2 , and 𝑥5 variables to store copies of 𝜌′′3 , and
eventually outputs the concatenation of all these variables to obtain
run𝑃 (𝑠). Note that 𝑇 𝑠

iter does not need to check that the input is a
well-formed encoding (this is done later when constructing 𝑇𝑠), so
the number of its states and variables is bounded by a constant; on
the other hand, the input alphabet, consisting of transitions of 𝑇 , is
polynomial in the size of 𝑇 .

The construction of 𝑇exec is straightforward: it just executes the
transitions it reads along the input, thus simulating a run of 𝑇 .
Hence 𝑇exec has a single state and the same number of variables as
𝑇 . Its alphabet is linear in the size of 𝑇 .

Now,𝑇𝑠 is obtained from the composition𝑇exec ◦𝑇 𝑠
iter by restrict-

ing the input domain to P. It is well-known that deterministic SST
are closed under composition and regular domain restriction [2].
By the above constructions, we have

𝑇𝑥 (𝑢𝑃) = 𝑇𝑠 (𝑢𝑃) ∪ 𝑇𝑠′ (𝑢𝑃) = {out(run𝑃 (𝑠)) ∪ {out(run𝑃 (𝑠′))}
and hence 𝑇 contains a W-pattern that is simply divergent for 𝑥
iff 𝑇𝑥 is not single-valued. This already implies the decidability of
the existence of a simply divergent W-pattern in 𝑇 , and hence by
Theorem 4.3, of finite valuedness.

Complexity analysis. Let us now analyse the complexity in detail.
This requires first estimating the size of 𝑇𝑥 . Let 𝑛𝑇 resp. 𝑚𝑇 be
the number of states of 𝑇 , resp. its number of variables. From the
previous bounds on the sizes of 𝑇exec and 𝑇 𝑠

iter and Proposition 4.4,
we derive that the number of states and variables of 𝑇exec ◦ 𝑇 𝑠

iter
is polynomial in both 𝑛𝑇 and𝑚𝑇 . Further, restricting the domain
to P is done via a product with the automaton 𝐴P , whose size is
polynomial in 𝑛𝑇 and exponential in𝑚𝑇 . Summing up, the number
of states of𝑇𝑠 is exponential in𝑚𝑇 , and polynomial in𝑛𝑇 . Its number
of variables is polynomial in both 𝑛𝑇 and𝑚𝑇 . And so do𝑇𝑠′ and𝑇𝑥 .

As explained in [5], checking single-valuedness of SST reduces
to checking non-emptiness of a 1-reversal 2-counter machine of
size exponential in the number of variables and polynomial in the
number of states. This is fortunate, since it allows us to conclude
that checking single-valuedness of 𝑇𝑥 reduces to checking non-
emptiness of a 1-reversal 2-counter machine of size just exponential
in the number of variables of 𝑇 . The PSpace upper bound (and the
PTime upper bound for a fixed number of variables) now follow
by recalling that non-emptiness of counter machines with fixed
numbers of reversals and counters is in NLogSpace [25].

Lower bound. For the lower bound, consider two deterministic
SST 𝑇1,𝑇2 over some alphabet Σ with same domain 𝐷 . Domain
equivalence can be tested in PTime because𝑇1,𝑇2 are deterministic.
Consider a fresh symbol # ∉ Σ, and the relation

𝑅 =

{(
𝑢1# . . . #𝑢𝑛, 𝑇𝑖1 (𝑢1)# . . . #𝑇𝑖𝑛 (𝑢𝑛)

) ��� 𝑢𝑖 ∈𝐷, 𝑛∈N,
𝑖1,...,𝑖𝑛∈{1,2}

}
It is easily seen that 𝑅 is realizable by a (non-deterministic) SST.
We claim that 𝑅 is finite-valued iff it is single-valued, iff 𝑇1 and 𝑇2
are equivalent. If 𝑇1 and 𝑇2 are equivalent, then 𝑇1 (𝑢 𝑗) = 𝑇2 (𝑢 𝑗)
for all 1 ≤ 𝑗 ≤ 𝑛, hence 𝑅 is single-valued, and so finite-valued.
Conversely, if 𝑇1 and 𝑇2 are not equivalent, then 𝑇1 (𝑢) ≠ 𝑇2 (𝑢) for
some𝑢 ∈ 𝐷 , and the family of inputs (𝑢#)𝑛 𝑢, with 𝑛 ∈ N, witnesses
the fact that 𝑅 is not finite-valued. □

As a corollary, we obtain an alternative proof of the following
known result that was recalled in the introduction:

Corollary 1.6 ([46]). Finite-valuedness of two-way transducers
is decidable in PSpace.

Proof. Observe that a necessary condition for a two-way trans-
ducer to be finite-valued is that crossing sequences are bounded.
More precisely, if a crossing sequence has a loop then the output

Filiot et al.

of the loop must be empty, otherwise the transducer is not finite
valued. Given a bound on the length of crossing sequences the
standard conversion into an equivalent SST applies, see e.g. [16, 33].
This yields an SST with an exponential number of states and a linear
number of variables, both in the number of states of the initial two-
way transducer. Finally, we apply the algorithm of Theorem 1.5, and
we observe that it amounts to checking emptiness of a 1-reversal
2-counter machine whose number of states is exponential in the
number of states of the initial two-way transducer. We again con-
clude by using the NLogSpace algorithm for checking emptiness
of such counter machines [25]. □

4.2 A necessary condition for finite valuedness
Here we prove the contrapositive of the left-to-right implication
of Theorem 4.3: we show that in a divergent W-pattern there exist
arbitrarily many outputs produced by the same input.

Lemma 4.5. Every SST that contains some divergent W-pattern is
not finite-valued.

Proof. Let us fix an SST with a divergent W-pattern 𝑃 . In order
to prove that the SST is not finite-valued, we show that we can
construct arbitrary numbers of accepting runs of 𝑃 that consume
the same input and produce pairwise different outputs. To do this
we will consider for some suitable 𝑀 ∈ N inequalities in the for-
mal parameters s1, . . . , s𝑀 (where 1 ≤ 𝑖 < 𝑗 ≤ 𝑀), and look for
arbitrary large, satisfiable, subsets of such inequalities:

𝑒𝑀,𝑖,𝑗 [s1, s2, . . . , s𝑀] :

out(run𝑃 (s1, s2, . . . , s𝑖−1, s𝑖 , s𝑖+1, . . . , s𝑀))
≠

out(run𝑃 (s1, s2, . . . , s𝑗−1, s𝑗 , s𝑗+1, . . . , s𝑀)) .

Recall that, according to the diagram of Definition 4.1, the number
of variable occurrences before (resp. after) the underlined param-
eter represents the number of loops at state 𝑞1 (resp. 𝑞2) in a run
of the W-pattern. Moreover, each variable s𝑖 before (resp. after)
the underlined parameter represents the number of repetitions of
the loop at 𝑟1 (resp. 𝑟3) within occurrences of bigger loops at 𝑞1
(resp. 𝑞2); similarly, the underlined variable represents the number
of repetitions of the loop at 𝑟2 within the run that connects 𝑞1 to
𝑞2. In view of this, by Corollary 2.6, the outputs of the runs consid-
ered in the above inequality have the format required for a word
inequality with repetitions parametrized by s1, . . . , s𝑀 .

The fact that the W-pattern 𝑃 is divergent allows to find sets
of satisfiable inequalities 𝑒𝑀,𝑖,𝑗 of arbitrary large cardinality. This
in turn will yield together with our word combinatorics results,
arbitrary numbers of accepting runs over the same input and with
pairwise different outputs.

Claim. For every 𝑚 ∈ N, there exist 𝑀 ∈ N and a set 𝐼 ⊆
{1, 2, . . . , 𝑀} of cardinality𝑚 + 1 such that, for all 𝑖 < 𝑗 ∈ 𝐼 , 𝑒𝑀,𝑖,𝑗 is
satisfiable.

Proof of the claim. Since 𝑃 is a divergent W-pattern, there
exist 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5 ∈ N+ such that

out(run𝑃 (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5)) ≠ out(run𝑃 (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5)).

We fix such numbers 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5 ∈ N+. Consider now the
following inequality over the formal parameters x, y, z:

𝑒 [x, y, z] :
out(run𝑃 (

x times︷ ︸︸ ︷
𝑛1, 𝑛1, . . . , 𝑛1, 𝑛2,

y times︷ ︸︸ ︷
𝑛3, . . . , 𝑛3, 𝑛4,

z times︷ ︸︸ ︷
𝑛5, . . . , 𝑛5))

≠

out(run𝑃 (𝑛1, 𝑛1, . . . , 𝑛1︸ ︷︷ ︸
x times

, 𝑛2, 𝑛3, . . . , 𝑛3︸ ︷︷ ︸
y times

, 𝑛4, 𝑛5, . . . , 𝑛5︸ ︷︷ ︸
z times

)) .

Note that every instance of 𝑒 [x, y, z] with concrete values 𝑥,𝑦, 𝑧
is also an instance of 𝑒𝑀,𝑖,𝑗 , where 𝑀 = 𝑥 + 𝑦 + 𝑧 + 2, 𝑖 = 𝑥 + 1,
𝑗 = 𝑥 + 𝑦 + 2, and all parameters s1, . . . , s𝑀 are instantiated with
values from {𝑛1, . . . , 𝑛5}. Moreover, as the parameters in 𝑒 [x, y, z]
determine the number of repetitions of 𝑛1, 𝑛3, 𝑛5, which in their
turn correspond to pumping loops at 𝑞1 and 𝑞2, by Corollary 2.6,
the outputs of the considered runs have the format required for a
word inequality with repetitions parametrized by x, y, z.

Since 𝑒 [x, y, z] is satisfiable (e.g. with x = y = z = 1), Corol-
lary 2.10 implies that

∃ℓy ∀ℎy ∃ℓx ∀ℎx ∃ℓz ∀ℎz
[ℓx, ℎx]︸ ︷︷ ︸

values for x

× [ℓy, ℎy]︸ ︷︷ ︸
values for y

× [ℓz, ℎz]︸ ︷︷ ︸
values for z

⊆ Sols(𝑒) .

Note that we start by quantifying over ℓ𝑦 and not ℓ𝑥 (Corollary 2.10
is invariant with respect to the parameter order)6. This particu-
lar order ensures that for every𝑚 ∈ N there exist three integers
ℓ𝑦, ℓ𝑥 , ℓ𝑧 > 0 such that

[ℓx, ℓx + 2𝑚ℓy] × [ℓy, 2𝑚ℓy] × [ℓz, ℓz + 2𝑚ℓy] ⊆ Sols(𝑒). (2)

Further note that ℎ𝑦 = 2𝑚ℓ𝑦 depends only on ℓ𝑦 , while ℎ𝑥 =

ℓ𝑥 + 2𝑚ℓ𝑦 depends on both ℓ𝑥 and ℓ𝑦 .
We can now prove the claim by letting 𝑀 = ℓx + 2𝑚ℓy + ℓz + 1

and 𝐼 = {ℓx + 2𝜆ℓy + 1 | 0 ≤ 𝜆 ≤ 𝑚}. Indeed, the gap between two
consecutive values of 𝐼 equals 2ℓ𝑦 , and for every 𝑖 < 𝑗 ∈ 𝐼 we get

𝑖 − 1 ∈ [ℓx, ℓx + 2(𝑚 − 1)ℓy] ⊆ [ℓx, ℓx + 2𝑚ℓy]
𝑗 − 𝑖 − 1 ∈ [2ℓy − 1, 2𝑚ℓy − 1] ⊆ [ℓy, 2𝑚ℓy]
𝑀 − 𝑗 ∈ [ℓz, ℓz + 2(𝑚 − 1)ℓy] ⊆ [ℓz, ℓz + 2𝑚ℓy] .

Thus, by Equation (2), (𝑖−1, 𝑗 −𝑖−1, 𝑀− 𝑗) ∈ Sols(𝑒). This solution
of 𝑒 corresponds to the instance of 𝑒𝑀,𝑖,𝑗 with the values for the
formal parameters s1, . . . , s𝑀 defined by

sℎ =


𝑛1 for every 1 ≤ ℎ ≤ 𝑖 − 1,
𝑛2 for ℎ = 𝑖,

𝑛3 for every 𝑖 + 1 ≤ ℎ ≤ 𝑗 − 1,
𝑛4 for ℎ = 𝑗,

𝑛5 for every 𝑗 + 1 ≤ 𝑀.

Hence, 𝑒𝑀,𝑖,𝑗 is satisfiable for all 𝑖 < 𝑗 ∈ 𝐼 , as claimed. □

We can now conclude the proof of the lemma using the above
claim: Corollary 2.9 tells us that any system of word inequali-
ties is satisfiable when every word inequality in it is so. Using
this and the above claim, we derive that for every 𝑚 there exist
𝑡1, 𝑡2, . . . , 𝑡𝑀 ∈ N+ such that, for all 𝑖 < 𝑗 ∈ 𝐼 (with 𝐼 as in the claim),
𝑒𝑀,𝑖,𝑗 [𝑡1, 𝑡2, . . . , 𝑡𝑀] holds. For every ℎ ∈ 𝐼 , let

𝜌ℎ = run𝑃 (𝑡1, 𝑡2, . . . , 𝑡ℎ−1, 𝑡ℎ, 𝑡ℎ+1, . . . , 𝑡𝑀) .
6The reader may compare this with the example given before Def. 4.2.

Finite-valued Streaming String Transducers

Note that all runs 𝜌ℎ , for ℎ ∈ 𝐼 , consume the same input, since
they all correspond to the same unmarked sequence (𝑡1, 𝑡2, . . . , 𝑡𝑀).
However, they produce pairwise different outputs, because for every
𝑖 < 𝑗 ∈ 𝐼 , the tuple (𝑡1, 𝑡2, . . . , 𝑡𝑀) is a solution of 𝑒𝑀,𝑖,𝑗 . Since
|𝐼 | = 𝑚 can be chosen arbitrarily, the transducer is not finitely
valued. □

4.3 A sufficient condition for finite valuedness
We finally prove that an SST with no simply divergent W-pattern
is finite-valued. The proof relies on two crucial results.

The first result is a characterizastion of finite ambiguity for
SSTs, which is easily derived from a prior characterization of finite
ambiguity for finite state automata [29, 34, 45]:

Definition 4.6. A dumbbell is a substructure of an SST consisting
of states 𝑞1, 𝑞2 connected by runs as in the diagram

𝑞1 𝑞2

initial
state

final
state

𝜌0 : 𝑢/𝛼 𝜌4 : 𝑤/𝜔

𝜌1 : 𝑣/𝛽
𝜌2 : 𝑣/𝛾

𝜌3 : 𝑣/𝜂

where the runs 𝜌1 and 𝜌3 are loops (in particular, they produce
updates with idempotent skeletons) and at least two among the
runs 𝜌1, 𝜌2, 𝜌3 that consume the same input 𝑣 are distinct.

Lemma 4.7. An SST is finitely ambiguous iff it does not contain
any dumbbell.

Proof. Let 𝑇 = (Σ,X, 𝑄,𝑄init, 𝑄final,Ω,Δ) be an SST. By pro-
jecting away the updates on the transitions we obtain from 𝑇 a
multiset finite state automaton 𝐴. Formally, 𝐴 = (Σ, 𝑄init, 𝑄final,Δ

′),
where Δ′ is the multiset containing one occurrence of a triple
(𝑞, 𝑎, 𝑞′) for each transition of the form (𝑞, 𝑎, 𝛼, 𝑞′) in Δ. Note that
a multiset automaton can admit several occurrences of the same
(accepting) run. Accordingly, the notion of finite ambiguity for 𝐴
requires the existence of a uniform bound to the number of occur-
rences of accepting runs of𝐴 on the same input. We also remark that
multiset automata are essentially the same as weighted automata
over the semiring of natural numbers (the weight of a transition
being its number of occurrences), with only a difference in termi-
nology where finite ambiguity in multiset automata corresponds to
finite valuedness in weighted automata.

Given the above construction of 𝐴 from 𝑇 , one can verify by
induction on |𝑢 | that the number of occurrences of accepting runs
of 𝐴 on 𝑢 coincides with the number of accepting runs of 𝑇 on 𝑢.
This means that 𝐴 is finitely ambiguous iff 𝑇 is finitely ambiguous.

Finally, we recall the characterizations of finite ambiguity from
[29, 34, 45] (see in particular Theorem 1.1 and Lemma 2.6 from [34]).
For short, their results directly imply that a multiset automaton is
finitely ambiguous iff it does not contain a plain dumbbell, namely,

a substructure of the form

𝑞1 𝑞2

initial
state

final
state

𝜌′0 : 𝑢 𝜌′4 : 𝑤

𝜌′1 : 𝑣
𝜌′2 : 𝑣

𝜌′3 : 𝑣

where at least two among 𝜌′1, 𝜌
′
2, 𝜌

′
3 are distinct runs.

This almost concludes the proof of the lemma, since any dumb-
bell of 𝑇 can be projected into a plain dumbbell of 𝐴. The converse
implication, however, is not completely straightforward. The reason
is that the cyclic runs of a plain dumbbell in 𝐴 do not necessarily
correspond to loops in the SST 𝑇 , as the runs need not produce
updates with idempotent skeletons. Nonetheless, we can reason as
follows. Suppose that𝐴 contains a plain dumbbell, with occurrences
of runs 𝜌′0, 𝜌

′
1, 𝜌

′
2, 𝜌

′
3, 𝜌

′
4 as depicted above. Let 𝜌0, 𝜌1, 𝜌2, 𝜌3, 𝜌4 be

the corresponding runs in𝑇 , and let 𝛼, 𝛽,𝛾, 𝜂, 𝜔 be their induced up-
dates. Further let 𝑛 be a large enough number such that 𝛽𝑛 and 𝜂𝑛
have idempotent skeletons (such an 𝑛 always exists since the skele-
ton monoid is finite). Now consider the substructure in 𝑇 given
by the runs 𝜌0 = 𝜌′0, 𝜌1 = (𝜌′1)

𝑛 , 𝜌2 = (𝜌′1)
𝑛−1 𝜌′2, 𝜌3 = (𝜌′3)

𝑛 ,
and 𝜌4 = 𝜌′4. This substructure satisfies precisely the definition of
dumbbell for the SST 𝑇 . □

The second ingredient for the proof of the right-to-left implica-
tion of Theorem 4.3 uses oncemore the cover construction described
in Proposition 3.1. More precisely, in Lemma 4.8 below we show
that if an SST 𝑇 has no simply divergent W-pattern, then, for some
well chosen values 𝐶 , 𝐷 ,𝑚, the SST Cover𝐶𝑚,𝐷𝑚2 (𝑇) contains no
dumbbell. Before proving the lemma, let us show how it can be
used to establish the right-to-left implication of Theorem 4.3.

Proof of Theorem 4.3. By Lemma 4.7, if Cover𝐶𝑚,𝐷𝑚2 (𝑇) has no
dumbbell, then it is finitely ambiguous, and hence it associates with
each input a uniformly bounded number of outputs. In particular,
Cover𝐶𝑚,𝐷𝑚2 (𝑇) is finite-valued, and since it is also equivalent to
𝑇 , then 𝑇 is finite-valued too. □

Lemma 4.8. Given an SST 𝑇 , one can compute three numbers 𝐶 ,
𝐷 , and𝑚 such that if Cover𝐶𝑚,𝐷𝑚2 (𝑇) contains a dumbbell, then 𝑇
contains a simply divergent W-pattern.

Proof. Intuitively, we will show that if Cover𝐶𝑚,𝐷𝑚2 (𝑇) con-
tains a dumbbell, then this dumbbell must admit two distinct runs
𝜋, 𝜋 ′ that either produce different outputs or have large delay. In
both cases we will be able to transform the dumbbell into a simply
divergent W-pattern. For example, in the case of a large delay, we
will rely on Lemmas 2.13 and 2.4 to identify certain loops in 𝜋 and
𝜋 ′ that lie entirely inside occurrences of the runs 𝜌0, . . . , 𝜌4 of the
dumbbell, and such that, when pumped, produce different outputs.
From there, we will be able to expose a simply divergent W-pattern
in Cover𝐶𝑚,𝐷𝑚2 (𝑇), and hence in 𝑇 as well.

Formally, let 𝑇 be an SST, let 𝐶, 𝐷 be defined as in Lemma 2.13,
and let𝑚 = 7𝐸𝐻

2+𝐻+1 + 1, where 𝐸, 𝐻 are defined as in Lemma 2.4.
Next, suppose that Cover𝐶𝑚,𝐷𝑚2 (𝑇) contains a dumbbell like the
one of Definition 4.6, with runs 𝜌0, 𝜌1, 𝜌2, 𝜌3, 𝜌4 that produce re-
spectively the updates 𝛼, 𝛽,𝛾, 𝜂, 𝜔 .

Filiot et al.

Consider the following accepting runs, which are obtained by
composing the copies of the original runs of the dumbbell, and that
are different because two of 𝜌1, 𝜌2, 𝜌3 have to be different:

𝜋 = 𝜌0 𝜌1 𝜌2 𝜌3 𝜌3 𝜌3 𝜌4

𝜋 ′ = 𝜌0 𝜌1 𝜌1 𝜌1 𝜌2 𝜌3 𝜌4 .
(3)

By the properties of Cover𝐶𝑚,𝐷𝑚2 (𝑇), since 𝜋 and 𝜋 ′ consume the
same input, they either produce different outputs or have𝐶𝑚-delay
larger than 𝐷𝑚2.

We first consider the case where the outputs are different. In this
case, we can immediately witness a simply divergent W-pattern 𝑃

by adding empty runs to the dumbbell; formally, for every 𝑖 = 1, 2, 3,
we let 𝜌′

𝑖
= 𝜌𝑖 and 𝜌′′𝑖 = 𝜌′′′

𝑖
= 𝜀, so as to form a W-pattern like the

one in the diagram of Definition 4.1, but now with 𝑟1 = 𝑞1 and 𝑟2 =

𝑟3 = 𝑞2. Using the notation introduced at the beginning of Section
4, we observe that 𝜋 = run𝑃 (1, 1, 1, 1, 1) and 𝜋 ′ = run𝑃 (1, 1, 1, 1, 1)
— recall that the underlined number represents how many times
the small loop at 𝑟2, which is empty here, is repeated along the
run from 𝑞1 to 𝑞2, and the other numbers represent how many
times the small loops at 𝑟1 and 𝑟3, which are also empty here, are
repeated within the occurrences of big loops at 𝑞1 and 𝑞2. Since,
by assumption, the runs 𝜋 and 𝜋 ′ produce different outputs, the
W-pattern 𝑃 is simply divergent, as required.

We now consider the case where 𝜋 and 𝜋 ′ have large delay,
namely, 𝐶𝑚-delay(𝜋, 𝜋 ′) > 𝐷𝑚2. In this case Lemma 2.13 guaran-
tees the existence of a set 𝐼 ⊆ {0, 1, . . . , |𝜋 |} containing𝑚 positions
in between the input letters such that, for all pairs 𝑖 < 𝑗 in 𝐼 , the
interval [𝑖, 𝑗] is a loop on both 𝜋 and 𝜋 ′ and satisfies

out(pump2
[𝑖, 𝑗] (𝜋)) ≠ out(pump2

[𝑖, 𝑗] (𝜋
′)) . (4)

Next, recall from Equation (3) that 𝜋 , and similarly 𝜋 ′, consists of
seven parts, representing copies of the original runs of the dumbbell
and consuming the inputs 𝑢, 𝑣, 𝑣, 𝑣, 𝑣, 𝑣,𝑤 . We identify these parts
with the numbers 1, . . . , 7. Since we defined 𝑚 as 7𝐸𝐻

2+𝐻+1 + 1,
there is one of these parts in which at least 𝐸𝐻

2+𝐻+1 + 1 of the
aforementioned positions of 𝐼 occur. Let 𝑝 ∈ {1, 2, . . . , 7} denote the
number of this part, and let 𝐼𝑝 be a set of 𝐸𝐻

2+𝐻+1+1 positions from
𝐼 that occur entirely inside the 𝑝-th part. We conclude the proof
by a further case distinction, depending on whether 𝑝 ∈ {1, 7} or
𝑝 ∈ {2, . . . , 6}.

Parts 1 and 7. Let us suppose that 𝑝 ∈ {1, 7}, and let 𝑖 and 𝑗 be
two distinct positions in 𝐼𝑝 . We let 𝑃 be the W-pattern obtained by
transforming the dumbbell as follows:

(1) First, we pump either 𝜌0 or 𝜌4 depending on 𝑝:
• If 𝑝 = 1, we set 𝜌′0 = pump2

[𝑖, 𝑗] (𝜌0) and 𝜌′4 = 𝜌4.
• If 𝑝 = 7, we set 𝜌′4 = pump2

[𝑖−|𝑢 𝑣5 |, 𝑗−|𝑢 𝑣5 |] (𝜌4) and
𝜌′0 = 𝜌0.

(2) Then, we add empty runs to 𝜌1, 𝜌2, and 𝜌3; formally, for
each ℎ ∈ {1, 2, 3}, we set 𝜌′

ℎ
= 𝜌ℎ and 𝜌′′

ℎ
= 𝜌′′′

ℎ
= 𝜀.

Now that we identified a W-pattern 𝑃 in Cover𝐶,𝐷 (𝑇), we note that
pump2

[𝑖, 𝑗] (𝜋) = run𝑃 (1, 1, 1, 1, 1)

pump2
[𝑖, 𝑗] (𝜋

′) = run𝑃 (1, 1, 1, 1, 1) .

We also recall Equation 4, which states that these runs produce dif-
ferent outputs. This means that theW-pattern 𝑃 is simply divergent.

Finally, since the runs of Cover𝐶,𝐷 (𝑇) can be projected into runs
of 𝑇 , we conclude that 𝑇 contains a simply divergent W-pattern.

Parts 2 − 6. Let us suppose that 𝑝 ∈ {2, . . . , 6}. Note that, in this
case, the elements of 𝐼𝑝 denote positions inside the 𝑝-th factor of
the input 𝑢 𝑣 𝑣 𝑣 𝑣 𝑣 𝑤 , which is a 𝑣 . To refer directly to the positions
of 𝑣 , we define 𝐼 ′𝑝 as the set obtained by subtracting |𝑢 𝑣𝑝−1 | from
each element of 𝐼𝑝 . Since the set |𝐼 ′𝑝 | has cardinality 𝐸𝐻

2+𝐻+1 + 1,
we claim that we can find an interval with endpoints from 𝐼 ′𝑝 that
is a loop of 𝜌1, 𝜌2, and 𝜌3, at the same time. Specifically, we can do
so via three consecutive applications of Lemma 2.4:

(1) As |𝐼 ′𝑝 | = 𝐸𝐻
2+𝐻+1 + 1 = 𝐸 · (𝐸𝐻+1)𝐻 + 1, there exists a set

𝐼 ′′𝑝 ⊆ 𝐼 ′𝑝 of cardinality 𝐸𝐻+1 + 1 such that for every pair
𝑖 < 𝑗 in 𝐼 ′′𝑝 , the interval [𝑖, 𝑗] is a loop of 𝜌1;

(2) As |𝐼 ′′𝑝 | = 𝐸𝐻+1 + 1 = 𝐸 · 𝐸𝐻 + 1, there exists 𝐼 ′′′𝑝 ⊆ 𝐼 ′′𝑝 of
cardinality 𝐸 + 1 s.t. for every pair 𝑖 < 𝑗 in 𝐼 ′′′𝑝 , the interval
[𝑖, 𝑗] is a loop of 𝜌2 (and also of 𝜌1, since 𝑖, 𝑗 ∈ 𝐼 ′′′𝑝 ⊆ 𝐼 ′′𝑝);

(3) As |𝐼 ′′′𝑝 | = 𝐸 + 1 = 𝐸 · 1𝐻 + 1, there are two positions 𝑖 < 𝑗

in 𝐼 ′′′𝑝 such that the interval [𝑖, 𝑗] is a loop of 𝜌3 (and also
of 𝜌1 and 𝜌2 since 𝑖, 𝑗 ∈ 𝐼 ′′′𝑝 ⊆ 𝐼 ′′𝑝).

The diagram below summarizes the current situation: we have just
managed to find an interval [𝑖, 𝑗] that is a loop on all 𝑣-labelled runs
𝜌1, 𝜌2, 𝜌3 of the dumbbell (the occurrences of this interval inside
𝜌1, 𝜌2, 𝜌3 are highlighted by thick segments):

initial
state

𝑞1 𝑞2

final
state

𝜌0 : 𝑢/𝛼 𝜌4 : 𝑤/𝜔

𝜌1 : 𝑣/𝛽 𝜌3 : 𝑣/𝜂
𝜌2 : 𝑣/𝛾

We can now expose aW-pattern 𝑃 by merging the positions 𝑖 and
𝑗 inside each 𝑣-labelled run 𝜌1, 𝜌2, and 𝜌3 of the dumbbell. Formally,
we let 𝜌′0 = 𝜌0, 𝜌′4 = 𝜌4, and for every ℎ ∈ {1, 2, 3}, we define 𝜌′

ℎ
,

𝜌′′
ℎ
, and 𝜌′′′

ℎ
, respectively, as the intervals [0, 𝑖], [𝑖, 𝑗], and [𝑗, |𝑣 |] of

𝜌ℎ . Now that we have identified a W-pattern 𝑃 inside Cover𝐶,𝐷 (𝑇),
we remark that 𝜋 = run𝑃 (1, 1, 1, 1, 1) and 𝜋 ′ = run𝑃 (1, 1, 1, 1, 1).
Additionally, if we transpose 𝑖 and 𝑗 from 𝐼 ′𝑝 back to 𝐼 , that is, if
we set 𝑖′ = 𝑖 + |𝑢 𝑣𝑝−1 | and 𝑗 ′ = 𝑗 + |𝑢 𝑣𝑝−1 |, since both 𝑖′ and 𝑗 ′

occur in the 𝑝-th part of 𝜋 and 𝜋 ′, pumping the interval [𝑖′, 𝑗 ′] in 𝜋
(resp. 𝜋 ′) amounts to incrementing the (𝑝 − 1)-th parameter in the
notation run𝑃 (1, 1, 1, 1, 1) (resp. run𝑃 (1, 1, 1, 1, 1)). More precisely:

pump2
[𝑖′, 𝑗 ′] (𝜋) = run𝑃 (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5)

pump2
[𝑖′, 𝑗 ′] (𝜋

′) = run𝑃 (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5)

where each 𝑛𝑝′ is either 2 or 1 depending on whether 𝑝′ = 𝑝 − 1 or
not. Since Equation 4 states that these two runs produce different
outputs, the W-pattern 𝑃 is simply divergent. Finally, since the runs
of Cover𝐶,𝐷 (𝑇) can be projected into runs of 𝑇 , we conclude that,
also in this case, 𝑇 contains a simply divergent W-pattern. □

Finite-valued Streaming String Transducers

5 CONCLUSION
We have drawn a rather complete picture of finite-valued SSTs
and answered several open questions of [5]. Regarding expres-
siveness, they can be decomposed as unions of deterministic SST
(Theorem 1.2), and they are equivalent to finite-valued two-way
transducers (Theorem 1.3), and to finite-valued non-deterministic
MSO transductions (see Section 1). On the algorithmic side, their
equivalence problem is decidable in elementary time (Theorem 1.4)
and finite valuedness of SSTs is decidable in PSpace (PTime for
a fixed number of variables), see Theorem 1.5. As an alternative
proof to the result of [46], our results imply the PSpace decidabil-
ity of finite valuedness for two-way transducers (Corollary 1.6).
Because of the effective expressiveness equivalence between SSTs
and non-deterministic MSO transductions, our result also entails
decidability of finite valuedness for the latter class.

Further questions. A first interesting question is how big the
valuedness of an SST can be. In the classical case of one-way trans-
ducers the valuedness has been shown to be at most exponential
(if finite at all) [43]. We can obtain a bound from Lemma 4.8, but
the value is likely to be sub-optimal.

Our equivalence procedure relies on the decomposition of a 𝑘-
valued SST into a union of 𝑘 deterministic SSTs each of elementary
size. Our construction is likely to be sub-optimal again, and so is
our complexity for checking equivalence. On the other hand, only
a PSpace lower bound is known [35]. A better understanding of the
complexity of the equivalence problem for (sub)classes of SSTs is a
challenging question. Already for deterministic SSTs, equivalence
is only known to be between NLogSpace and PSpace [3].

However, beyond the finite-valued setting there is little hope
to find a natural restriction on valuedness which would preserve
the decidability of the equivalence problem. Already for one-way
transducers of linear valuedness (i.e. where the number of outputs
is linear in the input length), equivalence is undecidable, as shown
through a small modification of the proof of [28].

Deterministic SSTs have been extended, while preserving de-
cidability of the equivalence problem, in several ways: to copyful
SSTs [9, 21], which allow to copy the content of variables several
times, to infinite strings [7], and to trees [4]. Generalizations of
these results to the finite-valued setting yield interesting questions.
On trees, similar questions (effective finite valuedness, decomposi-
tion and equivalence) have been answered positively for bottom-up
tree transducers [41].

Finally, SSTs have linear input-to-output growth (in the length of
the strings). There is a recent trend in extending transducer models
to allow polynomial growth [10–12, 18], and finite valuedness has
not yet been studied in this context.

REFERENCES
[1] M.H. Albert and J. Lawrence. 1985. A proof of Ehrenfeucht’s conjecture. Theor.

Comput. Sci. 41, 1 (1985), 121–123.
[2] Rajeev Alur and Pavol Cerný. 2010. Expressiveness of streaming string trans-

ducers. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai, India
(LIPIcs, Vol. 8), Kamal Lodaya and Meena Mahajan (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 1–12. https://doi.org/10.4230/LIPICS.FSTTCS.
2010.1

[3] Rajeev Alur and Pavol Cerný. 2011. Streaming transducers for algorithmic
verification of single-pass list-processing programs. In Proceedings of the 38th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2011, Austin, TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv
(Eds.). ACM, 599–610. https://doi.org/10.1145/1926385.1926454

[4] Rajeev Alur and Loris D’Antoni. 2017. Streaming Tree Transducers. J. ACM 64,
5 (2017), 31:1–31:55. https://doi.org/10.1145/3092842

[5] Rajeev Alur and Jyotirmoy V. Deshmukh. 2011. Nondeterministic Streaming
String Transducers. InAutomata, Languages and Programming - 38th International
Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II
(Lecture Notes in Computer Science, Vol. 6756), Luca Aceto, Monika Henzinger,
and Jirí Sgall (Eds.). Springer, 1–20. https://doi.org/10.1007/978-3-642-22012-8_1

[6] Rajeev Alur, Taylor Dohmen, and Ashutosh Trivedi. 2022. Composing Copyless
Streaming String Transducers. CoRR abs/2209.05448 (2022), 1–21. https://doi.
org/10.48550/ARXIV.2209.05448 arXiv:2209.05448

[7] Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. 2012. Regular Transforma-
tions of Infinite Strings. In Proceedings of the 27th Annual IEEE Symposium on
Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. IEEE
Computer Society, 65–74. https://doi.org/10.1109/LICS.2012.18

[8] Achim Blumensath and Erich Grädel. 2000. Automatic Structures. In Proceed-
ings of the 15th IEEE Symposium on Logic in Computer Science, LICS 2000. IEEE
Computer Society Press, 51–62.

[9] Mikolaj Bojanczyk. 2019. The Hilbert method for transducer equivalence. ACM
SIGLOG News 6, 1 (2019), 5–17. https://doi.org/10.1145/3313909.3313911

[10] Mikolaj Bojanczyk. 2022. Transducers of polynomial growth. In LICS ’22: 37th
Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August
2 - 5, 2022, Christel Baier and Dana Fisman (Eds.). ACM, 1:1–1:27. https://doi.
org/10.1145/3531130.3533326

[11] Mikolaj Bojanczyk, Sandra Kiefer, and Nathan Lhote. 2019. String-to-String
Interpretations With Polynomial-Size Output. In 46th International Colloquium
on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras,
Greece (LIPIcs, Vol. 132), Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
106:1–106:14. https://doi.org/10.4230/LIPICS.ICALP.2019.106

[12] Mikołaj Bojańczyk. 2023. On the Growth Rates of Polyregular Functions. In 2023
38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 1–13.
https://doi.org/10.1109/LICS56636.2023.10175808

[13] Bruno Courcelle and Joost Engelfriet. 2012. Graph Structure and Monadic Second-
Order Logic - A Language-Theoretic Approach. Encyclopedia of mathematics and
its applications, Vol. 138. Cambridge University Press.

[14] Karel Culik II and Juhani Karhumäki. 1986. The equivalence of finite valued
transducers (on HDT0L languages) is decidable. Theor. Comput. Sci. 47 (1986),
71–84.

[15] Luc Dartois, Paulin Fournier, Ismaël Jecker, and Nathan Lhote. 2017. On Re-
versible Transducers. In 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland (LIPIcs, Vol. 80),
Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl (Eds.).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 113:1–113:12.

[16] Luc Dartois, Ismaël Jecker, and Pierre-Alain Reynier. 2018. Aperiodic String
Transducers. Int. J. Found. Comput. Sci. 29, 5 (2018), 801–824. https://doi.org/10.
1142/S0129054118420054

[17] Rodrigo De Souza. 2008. Etude structurelle des transducteurs de norme bornée.
Ph. D. Dissertation. LTCI - Laboratoire Traitement et Communication de
l’Information, Paris-Saclay. http://www.theses.fr/2008ENST0023/document

[18] Gaëtan Douéneau-Tabot. 2023. Optimization of string transducers. Ph. D. Disser-
tation. Université Paris Cité, Paris, France. https://gdoueneau.github.io/pages/
DOUENEAU-TABOT_Optimization-transducers_v2.pdf

[19] Joost Engelfriet and Hendrik Jan Hoogeboom. 2001. MSO definable string trans-
ductions and two-way finite-state transducers. ACM Trans. Comput. Log. 2, 2
(2001), 216–254.

[20] Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter. 2023. A
Regular and Complete Notion of Delay for Streaming String Transducers. In
40th International Symposium on Theoretical Aspects of Computer Science, STACS
2023, March 7-9, 2023, Hamburg, Germany (LIPIcs, Vol. 254), Petra Berenbrink,
Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 32:1–32:16. https://doi.org/10.4230/
LIPIcs.STACS.2023.32

[21] Emmanuel Filiot and Pierre-Alain Reynier. 2021. Copyful Streaming String
Transducers. Fundam. Informaticae 178, 1-2 (2021), 59–76. https://doi.org/10.
3233/FI-2021-1998

[22] Patrick C. Fischer and Arnold L. Rosenberg. 1968. Multi-tape one-way nonwriting
automata. J. Comput. and System Sci. 2 (1968), 88–101.

[23] Victor S. Guba. 1986. Equivalence of infinite systems of equations in free groups
and semigroups to finite subsystems. Mat. Zametki 40, 3 (1986), 688—690.

[24] Eitan M. Gurari and Oscar H. Ibarra. 1981. The Complexity of Decision Problems
for Finite-Turn Multicounter Machines. J. Comput. Syst. Sci. 22, 2 (1981), 220–229.
https://doi.org/10.1016/0022-0000(81)90028-3

[25] Eitan M. Gurari and Oscar H. Ibarra. 1981. The Complexity of Decision Problems
for Finite-Turn Multicounter Machines. In Automata, Languages and Program-
ming, 8th Colloquium, Acre (Akko), Israel, July 13-17, 1981, Proceedings (Lecture
Notes in Computer Science, Vol. 115), Shimon Even and Oded Kariv (Eds.). Springer,

https://doi.org/10.4230/LIPICS.FSTTCS.2010.1
https://doi.org/10.4230/LIPICS.FSTTCS.2010.1
https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/3092842
https://doi.org/10.1007/978-3-642-22012-8_1
https://doi.org/10.48550/ARXIV.2209.05448
https://doi.org/10.48550/ARXIV.2209.05448
https://arxiv.org/abs/2209.05448
https://doi.org/10.1109/LICS.2012.18
https://doi.org/10.1145/3313909.3313911
https://doi.org/10.1145/3531130.3533326
https://doi.org/10.1145/3531130.3533326
https://doi.org/10.4230/LIPICS.ICALP.2019.106
https://doi.org/10.1109/LICS56636.2023.10175808
https://doi.org/10.1142/S0129054118420054
https://doi.org/10.1142/S0129054118420054
http://www.theses.fr/2008ENST0023/document
https://gdoueneau.github.io/pages/DOUENEAU-TABOT_Optimization-transducers_v2.pdf
https://gdoueneau.github.io/pages/DOUENEAU-TABOT_Optimization-transducers_v2.pdf
https://doi.org/10.4230/LIPIcs.STACS.2023.32
https://doi.org/10.4230/LIPIcs.STACS.2023.32
https://doi.org/10.3233/FI-2021-1998
https://doi.org/10.3233/FI-2021-1998
https://doi.org/10.1016/0022-0000(81)90028-3

Filiot et al.

495–505.
[26] Eitan M. Gurari and Oscar H. Ibarra. 1983. A note on finite-valued and finitely

ambiguous transducers. Math. Syst. Theory 16, 1 (1983), 61–66.
[27] Bernard R. Hodgson. 1983. Décidabilité par automate fini. Ann. Sci. Math. Québec

7, 3 (1983), 39–57.
[28] Oscar H. Ibarra. 1978. The unsolvability of the equivalence problem for e-free

NGSM’s with unary input (output) alphabet and applications. SIAM J. of Comput.
7, 4 (1978), 524–532.

[29] Gérard Jacob. 1977. Un algorithme calculant le cardinal, fini ou infini, des demi-
groupes de matrices. Theoretical Computer Science 5, 2 (1977), 183–204.

[30] Ismaël Jecker. 2021. A Ramsey Theorem for Finite Monoids. In 38th International
Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-
19, 2021, Saarbrücken, Germany (Virtual Conference) (LIPIcs, Vol. 187), Markus
Bläser and Benjamin Monmege (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 44:1–44:13. https://doi.org/10.4230/LIPICS.STACS.2021.44

[31] J. Howard Johnson. 1985. Do Rational Equivalence Relations have Regular Cross-
Sections?. In Automata, Languages and Programming, 12th Colloquium, Nafplion,
Greece, July 15-19, 1985, Proceedings (Lecture Notes in Computer Science, Vol. 194),
Wilfried Brauer (Ed.). Springer, 300–309. https://doi.org/10.1007/BFB0015755

[32] Bakhadyr Khoussainov and Anil Nerode. 1995. Automatic Presentations of
Structures. In Logical and Computational Complexity. Selected Papers. Logic and
Computational Complexity, International Workshop LCC ’94, Indianapolis, Indiana,
USA, 13-16 October 1994 (Lecture Notes in Computer Science, Vol. 960). Springer,
367–392.

[33] Jérémy Ledent. 2013. Streaming string transducers (internship report). https:
//perso.ens-lyon.fr/jeremy.ledent/internship_report_L3.pdf.

[34] Arnaldo Mandel and Imre Simon. 1977. On finite semigroups of matrices. Theo-
retical Computer Science 5, 2 (1977), 101–111.

[35] Anca Muscholl and Gabriele Puppis. 2019. Equivalence of Finite-Valued Stream-
ing String Transducers Is Decidable. In 46th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece
(LIPIcs, Vol. 132), Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and
Stefano Leonardi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
122:1–122:15. https://doi.org/10.4230/LIPIcs.ICALP.2019.122

[36] Brigitte Rozoy. 1986. Outils et résultats pour les transducteurs boustrophédons.
RAIRO-Theoretical Informatics and Applications 20, 3 (1986), 221–250.

[37] Aleksi Saarela. 2015. Systems of word equations, polynomials and linear algebra:
A new approach. Eur. J. Comb. 47 (2015), 1–14. https://doi.org/10.1016/j.ejc.2015.
01.005

[38] Jacques Sakarovitch. 1998. A Construction on Finite Automata that has Remained
Hidden. Theor. Comput. Sci. 204, 1-2 (1998), 205–231. https://doi.org/10.1016/
S0304-3975(98)00040-1

[39] Jacques Sakarovitch and Rodrigo de Souza. 2008. On the Decidability of Bounded
Valuedness for Transducers. In Mathematical Foundations of Computer Science
2008, 33rd International Symposium, MFCS 2008, Torun, Poland, August 25-29, 2008,
Proceedings (Lecture Notes in Computer Science, Vol. 5162), Edward Ochmanski
and Jerzy Tyszkiewicz (Eds.). Springer, 588–600.

[40] Jacques Sakarovitch and Rodrigo de Souza. 2008. On the decomposition of k-
valued rational relations. In STACS 2008, 25th Annual Symposium on Theoretical
Aspects of Computer Science, Bordeaux, France, February 21-23, 2008, Proceedings
(LIPIcs, Vol. 1), Susanne Albers and Pascal Weil (Eds.). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, Germany, 621–632. https://doi.org/10.4230/LIPICS.
STACS.2008.1324

[41] Helmut Seidl. 1994. Equivalence of Finite-Valued Tree Transducers Is Decidable.
Math. Syst. Theory 27, 4 (1994), 285–346. https://doi.org/10.1007/BF01192143

[42] John C. Shepherdson. 1959. The Reduction of Two-Way Automata to One-Way
Automata. IBM J. Res. Dev. 3, 2 (1959), 198–200. https://doi.org/10.1147/RD.32.
0198

[43] Andreas Weber. 1993. Decomposing Finite-Valued Transducers and Deciding
Their Equivalence. SIAM J. Comput. 22, 1 (1993), 175–202. https://doi.org/10.
1137/0222014

[44] Andreas Weber. 1996. Decomposing A k-Valued Transducer into k Unambiguous
Ones. RAIRO-ITA 30, 5 (1996), 379–413.

[45] Andreas Weber and Helmut Seidl. 1991. On the Degree of Ambiguity of Finite
Automata. Theor. Comput. Sci. 88, 2 (1991), 325–349. https://doi.org/10.1016/0304-
3975(91)90381-B

[46] Di-De Yen and Hsu-Chun Yen. 2022. On the decidability of the valuedness
problem for two-way finite transducers. Inf. Comput. 285, Part (2022), 104870.
https://doi.org/10.1016/J.IC.2022.104870

https://doi.org/10.4230/LIPICS.STACS.2021.44
https://doi.org/10.1007/BFB0015755
https://perso.ens-lyon.fr/jeremy.ledent/internship_report_L3.pdf
https://perso.ens-lyon.fr/jeremy.ledent/internship_report_L3.pdf
https://doi.org/10.4230/LIPIcs.ICALP.2019.122
https://doi.org/10.1016/j.ejc.2015.01.005
https://doi.org/10.1016/j.ejc.2015.01.005
https://doi.org/10.1016/S0304-3975(98)00040-1
https://doi.org/10.1016/S0304-3975(98)00040-1
https://doi.org/10.4230/LIPICS.STACS.2008.1324
https://doi.org/10.4230/LIPICS.STACS.2008.1324
https://doi.org/10.1007/BF01192143
https://doi.org/10.1147/RD.32.0198
https://doi.org/10.1147/RD.32.0198
https://doi.org/10.1137/0222014
https://doi.org/10.1137/0222014
https://doi.org/10.1016/0304-3975(91)90381-B
https://doi.org/10.1016/0304-3975(91)90381-B
https://doi.org/10.1016/J.IC.2022.104870

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Pumping and word combinatorics
	2.2 Delay between accepting runs

	3 The Decomposition Theorem
	4 Finite valuedness
	4.1 Effectiveness of finite valuedness
	4.2 A necessary condition for finite valuedness
	4.3 A sufficient condition for finite valuedness

	5 Conclusion
	References

