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Abstract This paper presents two MATLAB codes for
topology optimization of multi-material piezoelectric
actuators and energy harvesters. These codes provide
the extensions of the previously published 2D topol-
ogy optimization codes for piezoelectric actuators and
energy harvesters (Struct Multidisc Optim 63 (2), 983-
1014) with two major contributions: 1) extension to the
third dimension, 2) combination of piezoelectric (ac-
tive) and non-piezoelectric (passive) materials in the
design domain. The codes are written in the most flex-
ible form to be compatible with different optimization
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problems and practical case studies of piezoelectricity
that exist in the literature. The codes address unique
challenges that emerge by introducing the third dimen-
sion to non-isotropic piezoelectric materials including
the polarization direction and definition of electrodes.
The finite element discretization has been done with
two different types of 3D hexahedral elements: 1) 8 node
trilinear elements, 2) 20 node quadratic elements. The
users are free to choose between these element types
for the finite element model of the structure based on
having preferences for accuracy or computation time.
A new method of indexing the elements, nodes and de-
grees of freedom is introduced to facilitate the definition
of loads, boundary conditions, electrodes, etc. The in-
clusion of piezoelectric material and non-piezoelectric
material in the design domain is by default. In compar-
ison to previously published 2D codes, the codes in this
paper benefit from the latest advancements in optimiza-
tion algorithms, filtering methods and speedup tech-
niques. The codes are independent and hence can be
run without calling any external code. Different parts
of the codes are explained in detail to make them com-
prehensive for newcomers in the field of topology opti-
mization of piezoelectric structures.

Keywords Topology optimization · MATLAB code ·
Piezoelectric actuator · Piezoelectric energy harvester ·
Finite element model

1 Introduction

Topology Optimization (TO) provides the optimized
material distribution inside a design domain when there
is no prior knowledge of the final optimal layout of the
structure. TO can obtain optimized designs which are
impossible to obtain by intuitive or trial-error methods.
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As such, this algorithmic design methodology has rev-
olutionized conventional structural design approaches.
The current understanding of TO has been introduced
to the society of structural optimization by Bendsøe
and Kikuchi (1988) in which the homogenization ap-
proach was used. Later, several other approaches have
been proposed for implementation of TO, including
the Solid Isotropic Material with Penalization (SIMP)
(Bendsøe, 1989; Rozvany et al., 1992), Evolutionary
structural optimization (ESO) (Xie and Steven, 1993;
Xia et al., 2018), level set as reviewed in (van Dijk
et al., 2013; Andreasen et al., 2020) and Moving Mor-
phable Components (MMC) (Guo et al., 2014; Zhang
et al., 2017). A detailed review of these approaches has
been done by Sigmund and Maute (2013) and Deaton
and Grandhi (2014). Among the aforementioned ap-
proaches, the SIMP method is the most prominent and
well-developed approach due to its efficiency and ease
of implementation. SIMP is a density-based approach
in which the design domain is discretized by a finite
number of elements and continuous optimization vari-
ables are attributed to each of these elements. The opti-
mization variables are steered to their bounds through
iterations using the updating algorithms and penaliza-
tion of intermediate densities. In this manner, the de-
sign domain evolves to the optimized topology based on
the desired objective function and the given constraints.
The studies on TO with different approaches initially
have been done on the compliance problem of mechan-
ical structures (Bendsøe and Sigmund, 2003) or com-
pliant mechanisms (Sigmund, 1997). Due to the suc-
cess of the TO in these fields, it was later developed
to other physics including fluid dynamics (Alexander-
sen and Andreasen, 2020), heat transfer (Dbouk, 2017),
photonics (Christiansen and Sigmund, 2021), electro-
magnetics (Li et al., 2020), electrostatics (Homayouni-
Amlashi et al., 2024a) and piezoelectricity (Homayouni-
Amlashi et al., 2019, 2024b, 2023b,a; Yang et al., 2022).

Piezoelectric materials are very attractive in indus-
try and research environments due to their high band-
width, high resolution and high force density. Piezo-
electric materials have wide applications in industrial
actuators and sensors, microphones, nanopositioners in
atomic force microscopy, robotics, energy harvesting,
etc (Sekhar et al., 2021). There is no review paper on
the application of TO to piezoelectricity. Therefore, we
will do a brief review here to outline the current status
of the ongoing research. Primarily, the homogenization
approach is used for piezoelectric composites exhibiting
periodic structure where effective properties are evalu-
ated by homogenization (Gałka et al., 1992). Silva et al.
(1997) used the same approach to design optimal piezo-
electric microstructures and transducers (Silva, 1998;

Silva et al., 1999; Silva and Kikuchi, 1999). Du et al.
(2000) considered dynamic actuation with piezoelec-
tric stacks while using the variable element density ap-
proach to maximize the stroke. Sigmund et al. (1998)
used SIMP approach to design the cell structure of a
piezo-composite to increase the 31-mode efficiency. Car-
bonari et al. (2005) considered the piezoelectric and
passive materials inside the design domain simultane-
ously to design actuators that produce desired displace-
ment at different locations with different directions.
Kögl and Silva (2005) proposed an extension of the
SIMP method called PEMAP-P (piezoelectric material
with penalization and polarization) in which the polar-
ization direction of the piezoelectric material has been
optimized in addition to its layout. Similar work has
been done by Donoso and Bellido (2009) for topology
optimization of piezoelectric modal sensors/actuators
by optimization of polarization profile. Kang and Wang
(2010) did the topology optimization on the multi-layer
piezoelectric bending actuators where the distribution
of voltage is optimized simultaneously with the material
distribution. Rupp et al. (2009, 2008) for the first time
applied TO for piezoelectric energy harvesters (PEH)
while electrical circuit coupling is also considered in the
modeling. Zheng et al. (2009) performed static topol-
ogy optimization for PEH by performing detailed sen-
sitivity analysis and utilization of 3D FEM to model
the system. Noh and Yoon (2012) extended the work of
Zheng et al. (2009) to TO of PEH under dynamic load
and the effect of penalization factors and frequency of
excitation on the final results are investigated case by
case. Lin et al. (2011) optimized the PEH under the
application of a broadband random vibration while op-
timizing the place of a lumped mass. Wein et al. (2013)
considered constraint on von Mises stress in the prob-
lem formulation. Donoso and Sigmund (2016) consid-
ered the null polarity in the optimization of polariza-
tion direction where the width of the null polarization
is enforced. Salas et al. (2018) utilized the PEMAP-
P to optimize for the transient response in addition
to harmonic response. Although the consideration of
polarization in the optimization highly improved the
performance of the PEH by preventing the charge can-
cellation problem, the fabrication and realization of the
piezoelectric device are complicated. The reason is due
to emergence of islands in the optimized polarization
profiles. Therefore, Donoso and Guest (2019) proposed
an interesting method to address the connectivity issue
in the optimization of electrodes and to avoid the is-
land problem which simplifies the fabrication process.
Homayouni-Amlashi et al. (2020) extended the works
by Zheng et al. (2009), Noh and Yoon (2012) to de-
sign multidirectional single layer PEH that can harvest
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the energy from 2D planar forces coming from different
directions. Homayouni-Amlashi et al. (2019) continued
the work by considering two-layer piezoelectric plate to
design a multi directional PEH that can harvest the
energy coming from different directions in 3D space. In
these researches, the polarization profile of the PEHs
is optimized along their topology using the PEMAP-P
approach.

Knowing the fact that the best efficiency of a PEH
can be obtained when it is excited at its resonance
frequency, researchers considered the optimization of
eigenfrequencies and eigenmodes of the PEHs. Kim and
Shin (2013) did eigenfrequency optimization to increase
the electromechanical coupling coefficient of the design
and to match the resonance frequency and the excita-
tion frequency. Nakasone and Silva (2010) formulated
the optimization problem to optimize the eigenmodes
in addition to optimization of the eigenfrequencies of
the piezoelectric resonator. Wein et al. (2009) also did
dynamic TO for a piezoelectric actuator with multiple
frequency optimization. Wang et al. (2017) optimized
the shape of the eigenmodes by optimization of the elec-
tromechanical coupling coefficient through modal re-
sponses. Recently, Homayouni-Amlashi et al. (2023a)
considered frequency tuning in TO for the multi direc-
tional PEH by considering the mass of attachment as
an optimization variable.

Different forms of multi-material TO are also ap-
plied to piezoelectric devices. In the work by Sigmund
(2001b), Carbonari et al. (2005) and Molter et al. (2016)
three phases of material are considered inside the de-
sign domain based on the defined material interpolation
function: 1- Active (piezo), 2- Passive (non-piezo), 3-
Void. This form of multi-material TO lets the elements
in the design domain switch between the passive mate-
rial, active material or void during the sequence of op-
timization iterations. Using this form of multi-material
TO, Kang et al. (2011) considered the voltage profile
in the optimization problem to find an optimal lay-
out for the voltage application. In the other form of
multi-material TO, Gonçalves et al. (2018) considered
two phases of active and passive materials without the
void phase for the design domain. Cao et al. (2021) also
considered two phase material, by doing isogeometric
optimization on the functionally graded material while
considering different objective functions and deriving
the explicit formulation for the sensitivity analysis. The
other form of multi-material approach is proposed by
Kang and Tong (2008) and Kang et al. (2012) in which
the passive and active materials are optimized simul-
taneously. However, there was no switch between ac-
tive and passive materials. Indeed, the 3 phase multi-
material TO with switch between active and passive

materials is the most advanced and efficient format,
while realization and fabrication may be less feasible
due to complex geometry and electrode patterns.

The researches which have been mentioned so far
for the application of TO to piezoelectricity used the
density-based approach in particular the SIMP ap-
proach. However, other approaches are used as well.
For example, Chen et al. (2010) applied the level set
method in both 2D design domains as plates and 3D
design domains as cylindrical shapes. Townsend et al.
(2019) also used the level set method to optimize the
PEH for structural health monitoring. In this research,
a piezoelectric patch was attached to a passive layer and
the level set method was used to optimize the eigenfre-
quency and eigenmodes of the PEH. de Almeida et al.
(2019) employed the Bi-directional ESO (BESO) ap-
proach to optimize the topology of a cantilever PEH
in the direction of thickness. The major contribution of
this research was proposing a method for optimizing the
placement of the electrodes on the top and bottom of
the beam. Despite the utilization of other approaches,
the density-based approach has been more dominant in
the literature in terms of popularity.

TO is well established in the literature by pub-
lication of the implementation codes that helped re-
searchers and newcomers to understand the methodol-
ogy. In this case, Sigmund (2001a) published the first
implementation code of TO in MATLAB software. In
this paper, the SIMP approach was used to solve the
structural compliance problems. several successors to
this code were later published. For example, Andreassen
et al. (2011) published 88 lines of MATLAB code which
was faster than the 99 lines by Sigmund (2001a), thanks
to the vectorization and introduction of the connectiv-
ity matrix for assembly of elemental matrices. Liu and
Tovar (2014) published a 169 lines of code which was
an extension of the 88 lines code for 3D TO. In this
paper, the efficiency of the code is examined by solving
the compliance problems, compliant mechanisms and
heat transfer problems. Wang et al. (2021) did a review
of all the educational implementation codes for TO in
different physics and applications.

Inspired by the published implementation codes,
some of the authors of the present paper published the
first TO implementation codes for piezoelectric mate-
rials in 2D (Homayouni-Amlashi et al., 2021). In this
paper, two MATLAB implementation codes were devel-
oped for actuation and energy harvesting. Using these
codes, Yang et al. (2022) implemented their contribu-
tion on increasing the reliability of TO in application
to piezoelectric actuator with voltage uncertainty and
Schlinquer et al. (2020) optimized the topology and po-
larization profile of a single layer piezoelectric actuator
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working as a pusher. Since the employed finite element
model (FEM) was in 2D, no force or deflection is con-
sidered out-of-plane. Despite the efficiency of the codes
for in-plane applications, planar deformation and exci-
tation were huge restrictions based on the real applica-
tion of piezoelectric-based devices which usually work
in out-of-plane motion. This motivated the authors to
extend those published codes to 3D piezoelectric struc-
tures. Extension of TO from 2D to 3D in piezoelec-
tric materials is more challenging than the similar ex-
tension for passive materials in compliance problems.
Piezoelectric materials are not isotropic and the polar-
ization direction of these materials affects the mechan-
ical, coupling and dielectric tensor matrices. Moreover,
piezoelectric materials in 3D are in the layer-based form
where each layer is sandwiched between the electrodes.
Indeed, the definition of electrodes is a challenging pro-
cess that can affect the behavior of the multilayer piezo-
electric plates and the result of optimization. Another
challenge arises due to the fact that in many piezoelec-
tric actuators, sensors or energy harvesters a combina-
tion of piezo and non-piezo materials is considered.

In this paper, two codes are provided to apply TO
to multimaterial piezoelectric actuators and energy har-
vesters in a 3D design domain. The FEM is established
by utilization of two types of 3D hexahedral elements:
1) 8 node trilinear elements, 2) 20 nodes quadratic ele-
ments. Trilinear elements have less precision especially
in bending deformation while 20 nodes elements pro-
vide more precision at the expense of more computation
time. Users can choose the element type at the begin-
ning of the code. To provide proper criteria for choosing
the type of the element, a study is provided in which
the developed FEM in MATLAB is compared and ver-
ified by FEM simulations in COMSOL. Through this
analysis, users will know when they can use the trilin-
ear elements to reduce the computation time and when
they are obliged to use the quadratic elements.

The codes are written in the most flexible format to
have the capability of considering different case stud-
ies. By default, codes consider the existence of non-
piezoelectric material in addition to the piezoelectric
materials in the design domain. The optimization will
be done on both materials at the same time but there
will be no switch between the non-piezo and piezo ma-
terials. In this regard, the geometry of the non/piezo
and piezo materials can be defined independently and
the user is free to choose the desired resolution of the
discretization mesh. Users can freely choose the desired
materials for the piezo and non-piezo domains. In this
case, the constitutive matrices for non-isotropic piezo-
electric materials depend on the directions of polar-
ization that can be freely chosen by the user as well.

By default, three directions of polarization are consid-
ered in the code. However, with small modifications,
one can define any direction of polarization. Users are
free to consider any number of piezoelectric layers for
multi-layer piezoelectric material. In this regard, the
definition of electrodes can be done easily thanks to
the proposed indexing method. This indexing method
can easily index the elements, nodes and Degrees of
Freedom (DOFs) which also facilitates the definition of
forces and boundary conditions easier than what exists
in the published codes in the literature. The indexing
proposed here can also be integrated into other imple-
mentation codes that are already published in the lit-
erature. In addition to what is proposed in this paper,
the codes are benefiting from the recent developments
in terms of filtering, speed-up techniques and updating
algorithm. For the filtering method, the projection sug-
gested by Wang et al. (2011) is used beside the density
filter by using the codes developed by Ferrari and Sig-
mund (2020) and the results are satisfying. The speed-
up techniques which are also suggested by Ferrari and
Sigmund (2020) are used in the codes. These speed-
up techniques concern the assembly procedure. For the
updating algorithm (optimizer), the code developed by
Ferrari et al. (2021) is used as well. The performance
of this optimizer is satisfactory for the educational pur-
poses of this paper. Indeed, this updating algorithm lets
the two developed codes be run independently without
calling any external codes. However, as stated by Fer-
rari et al. (2021), it is not a fully stable optimizer and
hence the readers are advised to use more established
updating algorithms such as Method of Moving Asymp-
totes (MMA) (Svanberg, 1987, 2007) for more advanced
studies.

The developed codes are accompanied by five add-
on functions which will be used by both actuation and
energy harvesting codes. The first add-on function is
for the display of the result. This function is written
to visualize the results in 3D-rendered form and also in
2D layer-based form which shows the density and po-
larization layout in each layer separately. The second
add-on function is the updating algorithm developed
by Ferrari et al. (2021). The third add-on function is
for the calculation of the elemental stiffness matrices
which works for both piezo and non-piezo materials.
The fourth add-on function is for the rotation of the lo-
cal coordinate system based on the direction of polar-
ization which produces new tensor matrices. The last
add-on function visualizes the deformation of the 3D
structure with elemental representation based on the
displacement vector.

The paper is organized as follows: in section 2, the
FEM of the design domains consisting of piezo and
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non-piezo material is presented which includes rota-
tion of polarization direction calculation of elemen-
tal and global stiffness matrices, providing the equi-
librium equations, normalization and application of
boundary conditions. In section 3, the theoretical as-
pects of the SIMP topology optimization with its ex-
tension (PEMAP-P) are presented without repeating
what has been already presented in the previously pub-
lished codes by Homayouni-Amlashi et al. (2021) and
the addition of the non-piezo material is considered in
the analytical part. In section 4, each part of the im-
plementation codes is explained. The detailed explana-
tion in this section facilitates the comprehension of the
codes and their development for different case studies.
In section 5, several numerical examples are provided
to demonstrate the efficiency and flexibility of the de-
veloped codes in dealing with various case studies. The
last section provides the discussion and conclusion.

2 Finite element modeling

In this section, the goal is to provide a Finite Element
Model (FEM) for a design domain consisting of piezo-
electric and non-piezoelectric materials. The piezoelec-
tric material is defined as active and non-piezoelectric
material as passive in the rest of the paper. Without
loss of generality, several assumptions have been made
for the modeling of the piezoelectric material:

– the electromechanical system is linear,
– the thickness of the electrodes is negligible and they

are not modeled in the FEM,
– the electrodes are perfectly conductive,
– passive and active domains are set and fixed in FEM

modeling and before the optimization. As such, pas-
sive and active domains remain passive and active
respectively, in the sequence of optimization itera-
tions.

The last assumption states that there is no switch
between active and passive domains. In the upcoming
section, the FEM of piezoelectric materials will be pre-
sented and the inclusion of passive material inside the
design domain will be discussed.

2.1 Piezoelectric constitutive equation

Piezoelectricity is a phenomenon that couples the elec-
trical and mechanical states of some materials. This
phenomenon exists naturally in some materials as it
was discovered primarily by the Curie brothers or it
can be produced artificially in some other materials
(Motzki and Seelecke, 2022). The coupling phenomenon

means that the piezoelectric material exhibits a me-
chanical deformation due to electrical charges (direct
effect) and also produces electrical charges when it is
subjected to mechanical stimuli (inverse effect). This
coupling phenomenon is represented by the governing
constitutive equation. Considering a piezoelectric body
in 3D space that occupies the volume V , four different
forms of constitutive equations can be obtained (Mat-
tiat, 2013). Each of these four forms is obtained based
on the choice of the independent variables which are
electric field (Ē), charge density (D̄), mechanical stress
(T̄ ) and mechanical strain (S̄). For each of these four
forms, two of these variables are considered indepen-
dent and the rest are obtained accordingly through the
constitutive equations. One of these forms known as
"e form" or "stress-charge" is more convenient for the
study in this paper, is more popular and can be stated
as follows (Lerch, 1990),

T̄ = cES̄ − eĒ
D̄ = eT S̄ + εSĒ (1)

In (1), cE is the stiffness tensor in a constant electri-
cal field, e is the piezoelectric matrix and εS is the ma-
trix of permittivity in constant mechanical strain and
T represents the matrix transpose.

The derivation of the aforementioned constitutive
equations and the other 3 forms of these equations are
mentioned in (Meeker, 1996; Tiersten, 2013). The ele-
ments of tensor matrices in the constitutive equation (1)
depend on the type of the piezoelectric material (Mat-
tiat, 2013; Piefort, 2001). However, the type of piezo-
electric material will not affect the FEM procedure.
Therefore, the following general format of the piezo-
electric matrices will be considered

cE =



cE11 c
E
12 c

E
13 c

E
14 0 0

cE12 c
E
22 c

E
13 c

E
24 0 0

cE13 c
E
13 c

E
33 0 0 0

cE14 c
E
24 0 cE44 0 0

0 0 0 0 cE55 0

0 0 0 0 0 cE66


eT =

 0 0 0 0 e15 e16
e21 e22 e24 0 0

e31 e32 e33 0 0 0


εS =

 εS11 0 0

0 εS22 0

0 0 εS33

 (2)

The tensor matrices in (2), include PZT (lead zir-
conate titanate) materials with 4mm tetragonal crys-
tal class (Piefort, 2001), Lithium Niobate (LiNBO3)
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with trigonal crystal class (Weis and Gaylord, 1985),
Aluminum Nitride (AlN) as a ceramic material
and Polyvinylidene Fluoride (PVDF) as a polymer
(Kalimuldina et al., 2020). The corresponding coeffi-
cients of the tensor matrices for these materials are re-
ported in the appendix. By default, PZT-4 is chosen as
the piezoelectric material in the paper and any change
will be announced where it is necessary. The change in
the piezoelectric material will change the result of op-
timization in general. However, users can freely choose
any piezoelectric material even those whose tensor ma-
trices do not follow the ones in equation (2), without
the need to modify the implementation codes.

No matter the type of piezoelectric material, the po-
larization direction modifies the tensor matrices which
will be discussed next.

2.2 Rotation of polarization direction

The polarization direction is the direction in which the
dipoles inside the piezoelectric materials are aligned
through the polling process. In this process, a strong
electrical field will be applied to the piezoelectric mate-
rial in a particular direction which makes unidirectional
dipoles in the piezoelectric materials (Sekhar et al.,
2021). In general, the data sheets for piezoelectric ma-
terials provide the piezoelectric coefficients for the case
where the polarization direction is in the

→
z direction of

the coordinate axes. Here, we consider the cases where
the polarization direction is in other coordinate direc-
tions. By rotating the coordinate axes, the tensor ma-
trices which are mentioned in (2) should be modified.
This modification will be done through the rotation of
the local coordinates. The transformation of the tensor
matrices for general anisotropic material due to the ro-
tation of the local coordinates is addressed by Fahmy
and Adler (1975). The rotation of matrices can be done
using the Euler angles as illustrated in Fig. 1. The Eu-
ler angles are specified as α, β and γ. If the tensor
matrices of the piezoelectric material in the

→
x ,
→
y ,
→
z

coordinates are known, then the tensor matrices in the
new coordinate system for which the rotation is speci-
fied by Euler angles can be derived as follows (Fahmy
and Adler, 1975)

Cnew = ZcEZT

enew = LeZT

εnew = LεSLT (3)

In which, cE , e and εS are the piezoelectric tensor
matrices as they are introduced in equation (2) while
L and Z are the rotation matrices. The derivation of

Fig. 1 Euler angles

these rotation matrices is as follows (Fahmy and Adler,
1975)

L =

χ1 Θ1 Ψ1

χ2 Θ2 Ψ2

χ3 Θ3 Ψ3

 (4)

Z =

χ2
1 Θ2

1 Ψ2
1 2Θ1χ1 2γ1χ1 2α1β1

χ2
2 Θ2

2 Ψ2
2 2Θ2χ2 2γ2χ2 2α2β2

χ2
3 Θ2

3 Ψ2
3 2Θ3χ3 2γ3χ3 2α3β3

χ2χ3 Θ2Θ3 Ψ2Ψ3 Θ2Ψ3 +Θ3Ψ2 Ψ2χ3 + Ψ3χ2 χ2Θ3 + χ3Θ2

χ3χ1 Θ3Θ1 Ψ3Ψ1 Θ1Ψ3 +Θ3Ψ2 Ψ1χ3 + Ψ3χ2 χ1Θ3 + χ3Θ2

χ1χ2 Θ1Θ2 Ψ1Ψ2 Θ1Ψ2 +Θ2Ψ1 Ψ1χ2 + Ψ2χ1 χ1Θ2 + χ2Θ1


(5)

where the variables χ, Θ and Ψ can be derived based
on the Euler angles

χ1 = cos(γ)cos(α)− cos(β)sin(α)sin(γ)

χ2 = −sin(γ)cos(α)− cos(β)sin(α)cos(γ)

χ3 = sin(β)sin(α)

Θ1 = cos(γ)sin(α) + cos(β)cos(α)sin(γ)

Θ2 = −sin(γ)sin(α) + cos(β)cos(α)cos(γ)

Θ3 = −sin(β)cos(α)

Ψ1 = sin(γ)sin(β)

Ψ2 = cos(α)sin(β)

Ψ3 = cos(β) (6)

By knowing the necessary Euler angles, the rota-
tion matrices (L and Z) can be derived. Therefore, the
only remaining point is the definition of the rotation
for Euler angles to rotate the coordinates system. It
is known that three composed rotations of the axes are
enough to reach any target frame and there are different
conventions for the sequence of the axes to define the
Euler angles. The sequence of the axes which is used by
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Fig. 2 Multi-layer piezoelectric plate consisting active piezoelectric and passive material. a) Isometric view, b) Side view, c) Dis-
cretization of design domain to the finite number of elements, La = length of active material, Wa = width of active material, Ha =
element-wise thickness of active layer.

Fahmy and Adler (1975) to define the Euler angles are
→
z ,
→
x ,

→
z . This means the first rotation will be around

the
→
z axis which is shown by angle α. The second rota-

tion around the new
→
x axis will be shown as β and the

last rotation around the new
→
z axis is specified by γ.

By having these rotation angles and by using the equa-
tions (3)-(6), the new tensor matrices can be derived. In
this case, any polarization direction can be considered
in the formulation and the rotation from the coordi-
nates axis of the data sheet to the desired one can be
done through definitions of Euler angles and rotation
matrices.

2.3 3D finite element model of piezoelectric material

After establishing the constitutive equations, the next
step is to build the FEM of the piezoelectric material.
We can consider a design domain, consisting of active
and passive material as it has been shown in Fig. (2). In
this figure, a passive layer that is sandwiched between
two piezoelectric layers has been depicted. This is the
most common configuration of passive and active piezo-
electric material in the literature due to its effectiveness
and simplicity of fabrication. The proposed FEM, opti-
mization and codes are general enough to consider var-
ious configurations. However, the configuration in Fig.
(2) is chosen as a general candidate to demonstrate a
3D domain consisting of passive and active material.
Each piezoelectric layer in the design domain is sand-
wiched between two electrodes on top and bottom (Fig.
2-(b)). The electrodes are considered thin enough to be
neglected in the FEM. The polarization axis for the

piezoelectric materials is parallel to the
→
z axis of the

coordinate system while the direction will be later de-
fined by the optimization method. The FEM starts by
discretizing the design domain using a finite number
of 3D rectangular elements as shown in Fig. 2-(c). 3D
rectangular element is a particular form of hexahedral
elements (Hutton and Wu, 2004). Here, we consider two
types of hexahedral elements. The first type is the tri-
linear 8 nodes element which has been used by Zheng
et al. (2009), Noh and Yoon (2012) and Homayouni-
Amlashi et al. (2019) for 3D TO of piezoelectric energy
harvesters. This is the same type of element which has
been used by Liu and Tovar (2014) for developing the
3D topology optimization MATLAB codes for passive
materials. Although these elements are used for TO of
piezoelectric materials, they have a major defect known
as shear locking (Cook et al., 2007). As such, trilinear
elements can not exhibit pure bending due to existence
of a parasitic shear strain. As a second type, we consider
20 nodes quadratic elements which are more precise
than the trilinear 8 nodes elements and don’t exhibit
shear locking and parasitic shear strain. However, in
terms of computation time trilinear elements are more
economical. In the appendix, an analysis is performed
to investigate the accuracy of both elements in bend-
ing piezoelectric actuators. Based on this analysis, the
thickness to length ratio of each piezoelectric layer de-
termines whether we should use trilinear or quadratic
elements. For thickness to length ratio below 0.05, we
have to use the quadratic elements since the error in
trilinear elements is enormous. For higher thickness to
length ratios, utilization of trilinear elements is possible
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with recommendation of using at least two elements per
thickness of each layer. To have a better understanding
of the criteria for choosing the type of the element read-
ers are advised to study the appendix.

From now on, independent of the type of the ele-
ment, we call the elements that belong to active ma-
terial as active elements and the rest are considered
to be passive elements. By applying Hamilton’s varia-
tional principle to the piezoelectric constitutive equa-
tion which is explained in detail by Lerch (1990) and
Piefort (2001), the linear finite element differential
equation is derived for the design domain. This lin-
ear finite element equation for the actuation case in
which the static analysis is considered can be written
as (Homayouni-Amlashi et al., 2021),

KuuU +KuφΦ = F (7)

WhereKuu andKuφ are the global stiffness and cou-
pling matrices after the assembly of all active and pas-
sive elements. U and Φ are the global vectors of mechan-
ical displacements and potentials respectively. For the
energy harvesting case, the global FEM equation con-
sidering the harmonic excitation while neglecting the
damping effect can be found as (Homayouni-Amlashi
et al., 2021),

[
Kuu −MΩ2 Kuφ

Kφu −Kφφ

] [
U

Φ

]
=

[
F

0

]
(8)

where Kφφ is the global dielectric stiffness matrix and
Ω is the frequency of excitation. The detailed explana-
tion of the derivation of equations (7) and (8) has been
mentioned in (Homayouni-Amlashi et al., 2021). For the
assembly, active and passive elements are assembled in
a regular procedure taking into consideration that the
elemental coupling matrix (kuφ) and dielectric stiffness
matrix (kφφ) are null matrices for passive elements. The
assembly procedure of passive and active elements in-
side the design domain will be discussed in section 4.
After the assembly, to solve the FEM equations (7) and
(8), the mechanical boundary condition and equipoten-
tial condition should be applied. This will be explained
in detail in section 4.

After deriving the global equilibrium finite element
equations, we have to formulate the elemental stifness
matrices. Depending on the type of element, the for-
mulation of the elemental stiffness matrices will be dif-
ferent. Therefore, calculation of trilinear elements and
quadratic elements will be given in the following two
separate subsections.

2.3.1 Trilinear 8 node elements

Trilinear hexahedral elements have 8 nodes and each
node has three mechanical DOFs as displacement and
one electrical DOF in the case of piezoelectric mate-
rial (Lerch, 1990). In Fig. 3, a schematic coarse dis-
cretization of the design domain is illustrated with the
numbering pattern of these elements, nodes and me-
chanical DOFs. The elements are numbered from top
to bottom and from back to front. The same number-
ing pattern is followed to number the nodes. To specify
the mechanical DOF for each node, it is enough to mul-
tiply the node number by three and consider the two
previous sequences of numbers. It is important to note
that, the internal numbering of nodes in each element
is different from the external numbering pattern. That
is why in panel (c) of Fig. 3, the internal numbering se-
quence of nodes does not follow the external numbering
of nodes in panel (b). For active elements, due to the
electromechanical coupling effect of the piezoelectricity,
there will be one electrical DOF as potential per node
while there is no electrical DOF for passive elements.
The 3D rectangular elements can have arbitrary length,
thickness and height. This will provide the flexibility in
definition of the dimensions of the design domain and
the definition of mesh resolution independently.

The procedure for calculating the elemental matri-
ces for 3D elements is similar to the procedure for 2D
elements (Homayouni-Amlashi et al., 2021) with some
modifications. Moreover, this procedure remains the
same for passive and active elements and the difference
will be announced where it is necessary. First of all,
the displacement of each point in the element based on
global coordinate can be expressed by the displacement
of the nodes as follows (Hutton and Wu, 2004)

x = n1x1 + n2x2 + n3x3 + n4x4 + n5x5+

n6x6 + n7x7 + n8x8

y = n1y1 + n2y2 + n3y3 + n4y4 + n5y5+

n6y6 + n7y7 + n8y8

z = n1z1 + n2z2 + n3z3 + n4z4 + n5z5+

n6z6 + n7z7 + n8z8 (9)

where xi, yi, zi are the global coordinates and ni are
the interpolation functions that are defined as

N =
(1 + ξξi)(1 + ηηi)(1 + µµi)

8
(10)

where ξ, η, µ are the natural coordinates as have been
shown in Fig. 3-(c) and ξi, ηi, µi are the coordinates of
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Fig. 3 Discretization of design domain with 3D trilinear hexahedral elements. a) Numbering pattern in global format, b) Numbering
pattern inside the element c) Parent element in natural coordinate.

the nodes in parent element as illustrated in Fig. 3-
(c). In this figure, for the node number (1) we have
ξi, ηi, µi = −1 and for node number (7) we have
ξi, ηi, µi = 1. The world "trilinear" is chosen since each
interpolation function contains the product of three lin-
ear functions (Cook et al., 2007). For each element, the
strain and the electrical field can be calculated based
on the mechanical displacement and electrical field,

S̄ = Buu, Ē = Bφφ (11)

where u is the vector of all the mechanical displace-
ments inside each element and φ is the potential vec-
tor containing the potential values of each node inside
the active element. The matrices Bu and Bφ are called
gradient interpolation matrices while the former is also

called the strain-displacement matrix that can be de-
fined as

Bu =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x
∂
∂y

∂
∂x 0


N (12)

where N is the matrix of interpolation functions

N =

n1 0 0 n2 0 0 · · · n8 0 0

0 n1 0 0 n2 0 · · · 0 n8 0

0 0 n1 0 0 n2 · · · 0 0 n8

 (13)
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Since the derivative of the interpolation functions
with respect to global coordinates is required, an indi-
rect approach through using the Jacobian matrix can be
used (Hutton and Wu, 2004). Since we have the deriva-
tive of the interpolation functions with respect to the
natural coordinates, we can write


∂ni
∂ξ
∂ni
∂η
∂ni
∂µ

 =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂µ

∂y
∂µ

∂z
∂µ




∂ni
∂x
∂ni
∂y
∂ni
∂z

 i = 1 : 8 (14)

where the Jacobian matrix can be identified as

J =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂µ

∂y
∂µ

∂z
∂µ

 (15)

and the derivative of the interpolation function with
respect to the global coordinates can be obtained by


∂ni
∂x
∂ni
∂y
∂ni
∂z

 = J−1


∂ni
∂ξ
∂ni
∂η
∂ni
∂µ

 (16)

Now, based on equation (12), the strain-
displacement matrix is

Bu = J−1



∂n1

∂ξ 0 0 ∂n2

∂ξ 0 0 · · · 0

0 ∂n1

∂η 0 0 ∂n2

∂η 0 · · · 0

0 0 ∂n1

∂µ 0 0 ∂n2

∂µ · · ·
∂n8

∂µ

0 ∂n1

∂µ
∂n1

∂η 0 ∂n2

∂µ
∂n2

∂η · · ·
∂n8

∂η
∂n1

∂µ 0 ∂n1

∂ξ
∂n2

∂µ 0 ∂n2

∂ξ · · ·
∂n8

∂ξ
∂n1

∂η
∂n1

∂ξ 0 ∂n2

∂η
∂n2

∂ξ 0 · · · 0


(17)

It is obvious that we have 3 defined displacements
for each node as mechanical DOF. For active elements
the gradient interpolation matrix (Bφ) which relates
the potential to the electrical field is obtained by

Bφ = J−1
[
∂N
∂x

∂N
∂y

∂N
∂z

]T
=Bφ,11 Bφ,12 Bφ,13 Bφ,14 Bφ,15 Bφ,16 Bφ,17 Bφ,18Bφ,21 Bφ,22 Bφ,23 Bφ,24 Bφ,25 Bφ,26 Bφ,27 Bφ,28

Bφ,31 Bφ,32 Bφ,33 Bφ,34 Bφ,35 Bφ,36 Bφ,37 Bφ,38


(18)

With the help of the Matrix Bφ it is possible to
rewrite the strain displacement matrix as follows,

Bu =



Bφ,11 0 0 Bφ,12 0 0 · · · 0

0 Bφ,21 0 0 Bφ,22 0 · · · 0

0 0 Bφ,31 0 0 Bφ,32 · · · Bφ,38
0 Bφ,31 Bφ,21 0 Bφ,32 Bφ,22 · · · Bφ,28

Bφ,31 0 Bφ,11 Bφ,32 0 Bφ,12 · · · Bφ,18
Bφ,21 0 Bφ,22 Bφ,12 0 · · · 0


(19)

Indeed, in the calculation of the strain displacement
matrix for passive materials, the calculation of matrix
Bφ was an intermediary step. However, for the piezo-
electric material that intermediary step gives us the po-
tential to electrical displacement matrix known as Bφ.
Finally, the elemental matrices can be calculated (Hut-
ton and Wu, 2004; Lerch, 1990)

kuu =

∫ +1

−1

∫ +1

−1

∫ +1

−1
BTu c

EBu|J |dξdηdµ

kuφ =

∫ +1

−1

∫ +1

−1

∫ +1

−1
BTu e

TBφ|J |dξdηdµ

kφφ =

∫ +1

−1

∫ +1

−1

∫ +1

−1
BTφ εBφ|J |dξdηdµ

m = ρ

∫ +1

−1

∫ +1

−1

∫ +1

−1
NTN |J |dξdηdµ (20)

After the calculation of the elemental matrices, the
global matrices can be assembled with the numbering
format which is illustrated in Fig. 3. Then, the global
FEM equation of motion can be written for actuation
and energy harvesting cases separately.

2.3.2 Quadratic 20 node elements

In Fig. 4, the coarse discretization of the design domain
with quadratic element is depicted. The numbering of
elements is following the same order as trilinear ele-
ments. For the numbering of the nodes, an ordering is
proposed in which the code can be flexible in terms of
switching between the types of elements. In this order-
ing format, first all the corner nodes are numbered in
a similar manner to trilinear elements. Therefore, the
numbering format in panel (a) is the same as trilin-
ear elements. After numbering the corner nodes, mid-
side nodes are numbered as illustrated in panels (b-d).
To better understand the numbering format, element
number (6) is chosen and all the node numbers are il-
lustrated in panel (e). The node numbering format in
the parent element is also demonstrated in panel (f).

The procedure for calculation of the elemental ma-
trices for quadratic elements is the same as trilinear ele-
ments. The difference lies in the existence of additional
nodes. For example, equation (9) should be modified as
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x = n1x1 + n2x2 + n3x3 + n4x4 + n5x5+

n6x6 + n7x7 + n8x8 + ...+ n20x20

y = n1y1 + n2y2 + n3y3 + n4y4 + n5y5+

n6y6 + n7y7 + n8y8 + ...+ n20y20

z = n1z1 + n2z2 + n3z3 + n4z4 + n5z5+

n6z6 + n7z7 + n8z8 + ...+ n20z20 (21)

The interpolation functions for quadratic elements
are mentioned in (Logan, 2007). These interpolation
functions can be expressed based on the coordinates
of the nodes. For the corner nodes where we we have
ξi, ηi, µi,= ±1, the interpolation function can be writ-
ten as

ni =

(1/8)(1 + ξξi)(1 + ηηi)(1 + µµi)(ξξi + ηηi + µµi − 2)

(22)

Equation (22) provides the interpolation functions
for the nodes at eighth corners. For the midside nodes
at ξi = 0, ηi = ±1, µi = ±1, the interpolation functions
are expressed as

ni = (1/4)(1− ξ2)(1 + ηηi)(1 + µµi) (23)

For the midside nodes at ξi = ±1, ηi = 0, µi = ±1,
the interpolation functions are

ni = (1/4)(1 + ξξi)(1− η2)(1 + µµi) (24)

and finally for the midside nodes at ξi = ±1, ηi =

±1, µi = 0, the interpolation functions are

ni = (1/4)(1 + ξξi)(1 + ηηi)(1− µ2) (25)

Equations (22)-(25) provide 20 interpolation func-
tions. Having these interpolation functions it is possible
to calculate the elemental matrices following the same
procedure for trilinear elements which is explained in
section 4.

So far, a 3D finite element model of a body consist-
ing of piezoelectric material and passive material has
been built by discretizing the design domain with 3D
hexahedral elements and derivation of the FEM equa-
tion. Now, it is possible to solve the FEM equation and
formulate the optimization problem. Beforehand, a nor-
malization of the governing equation will be presented
to avoid numerical instabilities due to scale differences
between piezoelectric tensor matrices.

2.4 Normalization

A normalization procedure for the global FEM equa-
tion for both actuation and energy harvesting was al-
ready established in (Homayouni-Amlashi et al., 2021).
Since the format of the global FEM equations for the 2D
and 3D FEM remains the same, the same normalization
procedure can be utilized. The normalization starts by
factorizing the highest value of each elemental matrix,

k̃uu = kuu/k0, k̃uφ = kuφ/α0

k̃φφ = kφφ/β0, m̃ = m/m0 (26)

where k0, α0, β0,m0 are the highest values of the cor-
responding matrices. Then, the new FEM equation for
the actuation (7), can be written as

K̃uuŨ + K̃uφΦ̃ = F̃ (27)

in which

F̃ = F/f0, Ũ = U/u0, Φ̃ = Φ/φ0

u0 = f0/k0, φ0 = f0/α0 (28)

and the new FEM equation for energy harvesting is
derived as[
K̃uu − M̃Ω̃2 K̃uφ

K̃φu −γK̃φφ

] [
Ũ

Φ̃

]
=

[
F̃

0

]
(29)

where

Ω̃2 = Ω2m0/k0, γ = k0β0/α
2
0 (30)

The proof of this normalization can be found in
(Homayouni-Amlashi et al., 2021). After solving the
FEM, we need to roll back the normalization and cal-
culate the real outputs of the system (i.e. φ and U). In
actuation mode, the input to the system is the poten-
tial and hence the value of Φ0 is selected by the user a
priory. As such, the real value of displacement can be
calculated by

U = U0Ũ = Φ0α0Ũ/k0 (31)

In the energy harvesting case, the force is the in-
put and the value of f0 is selected by the user a priory.
Therefore, the real value of the potential can be calcu-
lated by

Φ = Φ0Φ̃ = f0Φ/α0 (32)

After the normalization, to solve the global FEM
equation, the boundary condition should be applied
which will be discussed next.
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Fig. 4 Discretization of design domain with 3D quadratic hexahedral elements. a-d) Nodes numbering format, e) Numbering pattern
inside the element f) Parent element in natural coordinate.

2.5 Boundary Conditions

Equations (27) and (29) provide the main global equi-
librium equations for the actuation (in static mode) and

energy harvesting after normalization. To solve these
equations, mechanical and electrical boundary condi-
tions should be applied. The application of the me-
chanical boundary conditions is similar to the compli-
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ance problems and it will be discussed in section 4.
For the electrical boundary condition, different types
of nodes should be identified. To do so, consider piezo-
electric plates as they are illustrated in Fig. 5. We have
2 electrodes on top and bottom and the middle elec-
trodes that we may consider as grounded (null poten-
tial). There is an equipotential condition on the face of
the electrodes which are considered to be perfectly con-
ductive. This equipotential condition will be applied in
the following form (Homayouni-Amlashi et al., 2019)

Fig. 5 Identifying different types of nodes for electrical bound-
ary condition. en: equipotential nodes, a) 4-layer piezoelectric
plate discretized by linear elements, b) 2-layer piezoelectric plate
discretized by quadratic elements, c-d) Identification of different
types of nodes, 4-layer plate consisting of piezoelectric and pas-
sive materials discretized by linear elements, f) Identification of
different types of nodes

Φ = BVp (33)

in which Vp is the vector of voltages for electrodes. In
multi-layer piezoelectric plates, Boolean matrix B has
the dimension of Nn × NP where NP is the number
of potential electrodes and Nn is the number of nodes
connected to electrodes. In this case, we have NP =

2. In panel (a), there will be some nodes that are not
connected to any electrodes as can be seen in Fig. 5-
(c). These nodes are specified as free nodes (fn) while
the nodes that are connected to electrodes are specified

as equipotential nodes (en). For quadratic elements in
panel (b) of Fig. 5, even by considering one element per
thickness of each piezoelectric layer, the midside nodes
are not connected to any electrodes and are specified as
free nodes. Moreover, there are some nodes that belong
to passive elements as illustrated in panel Fig. 5-(e).
If the nodes of passive elements are not shared with
active elements, they are considered as passive nodes
(pn) with null potential as ground electrode.

The existence of free nodes in addition to poten-
tial nodes modifies the FEM modeling as reported in
(Becker et al., 2006; Moretti and Silva, 2019). The mod-
ification can be applied to normalized equation (29) as

 K̃uu − M̃Ω̃2 K̃uφfn K̃uφen

K̃φfnu −γK̃φfnφfn −γK̃φfrφen

K̃φenu −γK̃φenφfn −γK̃φprφen

 Ũ

Φ̃fn
Φ̃pn

 =

 F̃0
0


(34)

where φfn and φen are the potentials of free nodes and
equipotential nodes respectively. We eliminate the po-
tentials of passive and grounded nodes as by removing
the respective lines and columns in the FEM equation.
By applying the equipotential condition (33), equation
(34) is modified as

 K̃uu − M̃Ω̃2 K̃uφfn K̃uφenB

K̃φfnu −γK̃φfnφfn −γK̃φfnφenB

BT K̃φenu −γBT K̃φenφfn −γBT K̃φenφenB

 Ũ

Φ̃fn
Vp


=

 F̃0
0

 (35)

The FEM equation (35) is for the energy harvesting
case. This equation can be written in abbreviate form
as

[SEH ]

 Ũ

Φ̃fn
Vp

 =

 F̃0
0

 (36)

In which, [SEH ] is introduced for the brevity of later
usage. For actuation, the FEM equation can be written
as

[
K̃uu K̃uφfn

K̃φfnu −γK̃φfnφfn

] [
Ũ

Φ̃fn

]
=

[
F̃ − K̃uφen Φ̃en
γK̃φfnφen Φ̃en

]
(37)

For the actuation, since the prescribed voltages are
known a periory, it is not necessary to apply the equipo-
tential condition (33) since all the prescribed voltages
will have the same values.
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By having the final form of normalized FEM equa-
tions (35) and (37) for energy harvesting and actuation,
we can enter the optimization phase which will be dis-
cussed in the next section.

3 Topology Optimization

To formulate the topology optimization problem for
the piezoelectric actuator and energy harvester, the
density-based approach and in particular the SIMP
approach is employed in this paper. In this regard,
the main step is to provide the material interpolation
scheme for active and passive materials which will be
discussed next.

3.1 Material interpolation scheme

The material interpolation scheme for the piezoelectric
material is the extension of the SIMP approach known
as PEMAP-P proposed by Kögl and Silva (2005). This
interpolation scheme is implemented in (Homayouni-
Amlashi et al., 2021) as follows

k̃uu(x) = (Emin + xpuu(E0 − Emin)) k̃uu

k̃uφ(x, P ) = (emin + xpuφ(e0 − emin))(2P − 1)pP k̃uφ

k̃φφ(x) = (εmin + xpφφ(ε0 − εmin))k̃φφ

m̃(x) = xm̃ (38)

where Emin, emin and εmin are small numbers to de-
fine the minimum values for stiffness, coupling and di-
electric matrices while E0, e0 and ε0 are equal to one
to define the maximum values of the respective ma-
trices. x is the density variable of each element which
varies between zero and one. P is the polarization vari-
able which also varies between zero and one and deter-
mines the direction of polarization. puu, puφ, pφφ and
pP are penalization factors for the stiffness, coupling,
dielectric matrices and polarization value respectively.
The interpolation scheme for passive material can be
obtained from interpolation scheme (38) knowing that
k̃uφ(x, P ) = 0 and k̃φφ(x) = 0.

The rest of this section regarding the implementa-
tion of the SIMP approach will be divided into two
parts: (1) actuation and (2) energy harvesting.

3.2 Actuation

The optimization problem for actuation starts by defin-
ing the objective function. A simple objective function

for a compliant mechanism is to maximize the deflec-
tion in a desired direction while considering a volume
constraint on the total density variables

minimize Jact = −LT Ũ

Subject to V (x) =

NE∑
i=1

xivi ≤ V

0 < xi ≤ 1

0 ≤ Pi ≤ 1 (39)

where L is a Boolean vector with some values of one
that correspond to the output displacement node and
zero otherwise. V is the target volume as a fraction of
the overall volume of the design domain while vi is the
volume of each element and NE is the total number
of elements while i is the number of each element. It
should be noted that there are various objective func-
tions for compliant mechanisms which are reviewed by
Zhu et al. (2020). We chose a simple objective function
with a modeled spring to simulate the stiffness of the
target object. The sensitivity analysis regarding the de-
fined objective function with the help of adjoint method
can be expressed as

∂J

∂xi
=

∂

∂xi

(
−LT Ũ + λTi

(
K̃uuŨ + K̃uφfn Φ̃fn − F̃ + K̃uφenΦ̃en

)
+µTi

(
K̃φfnuŨ − γK̃φfnφfn Φ̃fn − γK̃φfnφenΦ̃en

))
(40)

where λi and µi are the elemental format of the global
adjoint vectors Λ and Υ . The global adjoint vectors are
computed by solving of the following adjoint equation,

[
K̃uu K̃uφfn

K̃φfnu −γK̃φfnφfn

] [
Λ

Υ

]
=

[
L

0

]
(41)

It should be noted that the sensitivity equation (40)
includes elemental stiffness matrices which can be dif-
ferent for the passive and active materials. Thus, the
sensitivity can be written as

∂J

∂xi
= λTi

∂k̃uu
∂xi

ũi + λTi
∂k̃uφ
∂xi

φ̃i

+µTi
∂k̃φu
∂xi

ũi − γµTi
∂k̃φφ
∂xi

φ̃i (42)

where the corresponding elemental matrices for active
and passive elements should be used and in this case
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kuφ{p} = 0. We will not repeat this fact for the rest
of the sensitivity analysis. The sensitivity analysis with
respect to polarization P is

∂J

∂Pi
= λTi

∂k̃uφ
∂pi

φ̃i + µTi
∂k̃φu
∂pi

ũi (43)

where λi and µi are already calculated in the adjoint
equation (40).

Based on equations (40) and (43), the derivative of
piezoelectric stiffness and coupling matrices with re-
spect to design variables are required, which can be
derived with the help of equation (38) as

∂k̃uu
∂xi

= puu(E0 − Emin)xpuu−1i k̃uu (44)

∂k̃uφ
∂xi

= puφ(e0 − emin)x
puφ−1
i (2Pi − 1)pP k̃uφ (45)

∂k̃uφ
∂Pi

= 2pP (e0 − emin)(2Pi − 1)pP−1x
puφ
i k̃uφ (46)

After obtaining the sensitivity analysis, we can use
gradient-based optimization solvers to update the opti-
mization variables. This will be discussed after formu-
lating the optimization problem for the energy harvest-
ing case.

3.3 Energy Harvesting

The objective function for energy harvesting can be
considered as electromechanical efficiency (electrical en-
ergy/mechanical energy) (Zheng et al., 2009; Noh and
Yoon, 2012). However, to have a more mechanically
stable topology and more smooth convergence to final
topology, the minimization of the weighted sum of the
mechanical and electrical energies is considered as ob-
jective function (Homayouni-Amlashi et al., 2019)

minimize JEH = wjΠ
S − (1− wj)ΠE

Subject to V (x) =

NE∑
i=1

xivi ≤ V

0 < xi ≤ 1

0 ≤ Pi ≤ 1 (47)

In which, wj is the weighing factor that has a value
between zero and one and can be determined by a trial-
error procedure. ΠS and ΠE are the mechanical and
electrical energies defined as

ΠS = (
1

2
)ŨT

[
K̃uu − M̃Ω̃2

]
Ũ ,

ΠE = (
1

2
)γΦ̃T K̃φφΦ̃ (48)

Based on the defined objective function for the en-
ergy harvesting mode, the sensitivity of the objective
function with respect to density can be calculated as
(Zheng et al., 2009; Homayouni-Amlashi et al., 2021),

∂ΠS

∂xi
= (

1

2
ũTi + λT1,i)

∂(k̃uu − m̃Ω̃2)

∂xi
ũi+

λT1,i
∂k̃uφ
∂xi

φ̃i + µT1,i
∂k̃φu
∂xi

ũi − µT1,i
γ∂k̃φφ
∂xi

φ̃i (49)

∂ΠE

∂xi
=

1

2
φ̃Ti

γ∂k̃φφ
∂xi

φ̃i − µT2,i
γ∂k̃φφ
∂xi

φ̃i+

λT2,i
∂(k̃uu − m̃Ω̃2)

∂xi
ui + λT2,i

∂k̃uφ
∂xi

φ̃i + µT2,i
∂k̃φu
∂xi

ũi (50)

in which µ and λ are the elemental adjoint vectors which
are calculated by the following global coupled system

[SEH ]

 Λ1

Υ1,fn
Υ1,en

 =

−
(
K̃uu − M̃Ω̃2

)
Ũ

0

0


[SEH ]

 Λ2

Υ2,fn
Υ2,en

 =

 0

−γK̃φfnφfn Φ̃fn − γK̃φfnφenBVp
−γBT K̃φenφfn Φ̃fn − γBT K̃φenφenBVp


(51)

where Λ and Υ , are the global adjoint vectors and [SEH ]

is already defined in equation (36). The sensitivities
with respect to polarization (P ) are calculated as well
(Homayouni-Amlashi et al., 2020, 2021)

∂ΠS

∂Pi
= λT1,i

∂k̃uφ
∂Pi

φ̃i + µT1,i
∂k̃φu
∂Pi

ũi

∂ΠE

∂Pi
= λT2,i

∂k̃uφ
∂Pi

φ̃i + µT2,i
∂k̃φu
∂Pi

ũi (52)

Based on sensitivity equations (50) and (60), the
derivatives of all piezoelectric matrices with respect to
the design variables are required. The derivative of stiff-
ness and coupling matrices are found in equations (45)
and (46). Here, the derivative of the dielectric matrix
and mass matrix is also required which are
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∂k̃φφ
∂xi

= pφφ(ε0 − εmin)x
pφφ−1
i k̃φφ

∂m̃

∂xi
= m̃i (53)

In addition to the derivative of piezoelectric matri-
ces with respect to density, derivation of the piezoelec-
tric coupling matrix with respect to polarization vari-
able is also required

∂k̃uφ
∂Pi

= 2pP (2Pi − 1)pP−1x
puφ
i k̃uφ (54)

We remind here once again that in the sensitivity
analysis, the corresponding elemental stiffness matrices
for the passive and active elements should be used. This
will be discussed in section 4 as well. After the calcu-
lation of sensitivities, the optimization variables can be
updated in each iteration of optimization with the help
of the optimization algorithm which is the subject of
the next section.

3.4 Optimization algorithm

There are different algorithms for updating the opti-
mization variables in each iteration of topology opti-
mization. The most used ones are the optimality criteria
(OC) (Venkayya, 1989; Bendsøe and Sigmund, 2003) or
the Method of Moving Asymptotes (MMA) developed
by Svanberg (1987, 2007). Aforementioned algorithms
are used in the previously published codes by authors
(Homayouni-Amlashi et al., 2021). In this paper, we
used the routine recently developed by Ferrari et al.
(2021) which is a sequential approximation approach,
using monotonic MMA-like approximations and an OC-
like scheme. By using this routine, the implementation
codes in the appendix can be run solely without calling
any external codes.

After providing the theoretical background for the
application of TO to piezoelectric actuators and energy
harvesters in the previous sections, it is now possible
to present the implementation MATLAB codes in the
next section.

4 MATLAB Implementation Codes

In this section, the MATLAB implementation codes
which are provided in the appendix will be explained
in detail part by part. Two main codes are provided
in the appendix: one for actuation which is called

3DTOPIEZO_ACTUATION and the other for the en-
ergy harvesting which is called 3DTOPIEZO_ENERGY-
HARVESTING. The explanations of each part of the
code will be followed by the corresponding lines of code
with the attached numbers where it is necessary. In this
case, the color of the number for each line shows that
the line belongs to actuation code or energy harvesting
code. These two main codes need five add-on functions
which are provided in the appendix as well. It should
be noted that by adding these add-on functions to the
main codes, these codes can be run without calling any
other external functions or codes. These two main codes
and the add-on functions are provided as supplemen-
tary materials for this paper.

4.1 Actuation

The default actuation code, which is provided in the
appendix, is developed for a bi-morph bending actuator
in Fig. 10. Other examples and case studies are provided
as separate codes as supplementary materials to this
paper.

4.1.1 General Definition

The first part of the code is GENERAL DEFINITIONS.
The geometry of the active and passive domains (piezo
and non-piezo) are defined separately. La, Wa are the
length and width of all the piezoelectric layers while Ha
is the thickness of the element-wise layer of piezoelec-
tric layer. Lp, Wp, Hp are the geometry dimensions of
passive material and Hp is the element-wise thickness.
As it was illustrated in Fig. 2, we define the height
of one element in the direction of thickness while the
length and width will be defined for whole of the layer.
The length and width of the active and passive domains
should be equal for now and just the height (thickness)
can be defined differently. The resolution of the mesh
for the total design domain is defined by nelx, nelz,
nely. penalKuu, penalKup, penalPol, are the
penalization factors which defines the puu, puφ, pφφ re-
spectively. For choosing these penalization factors, the
same criteria which were provided by Kim et al. (2010)
and mentioned in (Homayouni-Amlashi et al., 2021) are
used here. EL_T specifies the element type which ac-
cepts two values of 1 and 2 to choose the trilinear and
quadratic elements respectively.

There are other parameters that are common be-
tween the Matlab codes i.e. volfrac, Max_loop
which specify the volume fraction and maximum itera-
tion loops respectively. It has been explained in the pre-
vious educational paper by Homayouni-Amlashi et al.
(2021) that two stopping criteria can be defined for
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the codes. The classical criteria is the negligible den-
sity change between the two last successive iterations
and the other criteria is the maximum number of itera-
tions. However, we experienced that the density change
will not stop the optimization generally or it needs
high number of iterations while there are no signifi-
cant changes in the objective function’s value. For this
reason, the definition of the maximum allowed iteration
loop is essential.

pol_dir is a new variable in comparison to previ-
ous published codes (Homayouni-Amlashi et al., 2021).
This variable defines the direction of the polarization
which by default accepts the values of ’x’,’y’,’z’.
As explained before, in the data sheets for the piezo-
electric materials, the

→
z axis is usually the polarization

direction.
rmin, eta, beta are parameters that are re-

lated to the filtering that stand for filter radius,
threshold and sharpness factor. ftBC is the boundary
condition for the built-in MATLAB code imfilter
which accepts ’N’ for zero-Neumann or ’D’ for zero-
Dirichlet. The explanation about these parameters and
their values can be found in the works by Ferrari and
Sigmund (2020) and Wang et al. (2011).

In this paper, the continuation scheme will be ap-
plied to the penalties and sharpness factor. To do
so, penalCnt, betaCnt are defined similar to what
have been defined by Ferrari and Sigmund (2020).
These parameters accept four values as [istart,
maxPar, isteps, deltaPar], which means the
continuation starts at iteration = istart and will be
increased by deltaPar in each isteps and reaching
to maximum value maxPar.

Finally, there are parameters related to actuation
mode as a form of compliant mechanism. Dir defines
the desired direction of movement for the actuation and
Ks is the stiffness of the spring attached at the desired
points which simulates the reaction force by the work-
piece.

4.1.2 Material Properties

In this part of the code, the material properties of
the piezoelectric and passive materials are defined. The
properties include density, piezoelectric tensor matri-
ces, Poisson ratio and Young’s modulus of elasticity for
passive material. The default material for PZT is con-
sidered to be PZT 4. Changing the material properties
for the piezoelectric or passive material affects the final
results.

4.1.3 Prepare finite element analysis

In this part of the code, first, the new piezoelectric ten-
sor matrices will be obtained by the rotation of coor-
dinate system through calling the add-on function Ma-
trix_Rotation as follows,

42 [C_p_1,e_1,Ep_1] = Matrix_Rotation(C_p,e,
Ep,pol_dir); % New tensor matrices
after Rotation of coordinate system

where C_p,e,Ep are the piezoelectric mechanical, cou-
pling and permittivity matrices. Here, it is assumed
that the passive material is isotropic. As such, the rota-
tion of the coordinate system is not necessary for pas-
sive material. However, if the passive material is non-
isotropic then its matrices should be rotated as well.

By updating the tensor matrices, the finite element
matrices will be calculated by calling the add-on func-
tion FEM.

43 [kuu,kup,kpp,~,ndofPZT,EL_NN,TOPNODS,
BOTNODS,FRNODS,BAKNODS,LEFNODS,RTNODS]
= FEM(La,Wa,Ha,nelz,nelx,nely,C_p_1,e_1
,Ep_1,0,EL_T); % Piezoelectric
elemental matrices

44 [ks,~,~,~,~,~,~,~,~,~,~,~] = FEM(Lp,Wp,Hp,
max(1,nelz−2),nelx,nely,C_s,zeros(3,6)
,zeros(3,3),0,EL_T); % Passive material

elemental matrices

This function produces the finite element matri-
ces based on the geometry of piezoelectric and pas-
sive material and based on the resolution of the
defined mesh. Other outputs are ndofPZT which
is the total number of nodes and total number
of electrical DOFs, EL_NN is the total number of
nodes for one element which is 8 for linear elements
and 20 for quadratic elements. TOPNODS, BOTN-
ODS,FRNODS,BAKNODS,LEFNODS,RTNODS are the
internal node numbers for the 8 faces of an element
based on Fig. 6. For example, for linear elements, based
on Fig . 3-(c), the node numbers for the top face of the
element which is specified by TOPNODS are [3,4,7,8].

Fig. 6 Element face indexing.

After calculation of the elemental matrices, normal-
ization is applied based on equation (26) similar to the
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previously published codes (Homayouni-Amlashi et al.,
2021). The normalization factors are saved for the recre-
ation of matrices and obtaining the real response values.

45 k0 = max(abs(kuu(:)));beta0 = max(kpp(:));
alpha0 = max(kup(:)); % Normalization
Factors

46 kuu = kuu/k0;ks = ks/k0;kup = kup/alpha0;
kpp = kpp/beta0;gamma = (k0∗beta0)/(
alpha0^2); % Application of
normalization

To speed up the assembly procedure and decrease
memory usage, the procedure which, was recently in-
troduced by Ferrari and Sigmund (2020), is used to
build the lower triangular stiffness matrices. To do so,
first, the vectors of lower triangular stiffness matrices
are built excluding the coupling matrix which is not a
square matrix. These vectors will be used later for the
assembly procedure to build the global matrices.

47 kuu_LT = kuu(tril(true(size(kuu)))); %
Vector of lower triangular matrix

48 kpp_LT = kpp(tril(true(size(kpp)))); %
Vector of lower triangular element of
piezoelectric dielectric stifness
matrix

49 ks_LT = ks(tril(true(size(ks)))); % Vector
of lower triangular matrix

ndof, nele are the total number of mechanical
DOFs and total number of elements respectively. The
indexing matrix ( ElNum ) is defined in this paper to
index all the elements in the design domain based on
the numbering format which has been illustrated in Fig.
3.

This 3-dimensional indexing matrix helps specify
the elements in the design domain using three inputs
as follows,

ElNum (z elements, x elements, y elements) (55)

The first input specifies the
→
z coordinate of the el-

ement, and the second and third inputs specify the
→
x

and
→
y coordinate of the element in the design domain.

For example, for the coarse mesh in Fig. 3, the elements
of the ElNum can be obtained by,

ElNum (:, :, 1) =

[
1 3 5 7

2 4 6 8

]
(56)

ElNum (:, :, 2) =

[
9 11 13 15

10 12 14 16

]
(57)

These matrices correspond to the element number-
ing in Fig. 3. For example, to specify the element num-
ber 6 in the design domain, it is enough to write El-
Num(2,3,1) which produces 6 as output. Since ele-
ment 6 lies in the second row in the

→
z direction, the

third row in the
→
x direction and the first row in the

→
y direction. The indexing matrix ElNum will be used
many times later to facilitate the specifications of nodes
and DOFs in different parts of the codes.

The mechanical connectivity matrix named as ed-
ofMat is for indexing the mechanical DOFs and it is
defined for trilinear elements in the code published by
Liu and Tovar (2014) while it was originally proposed
by Andreassen et al. (2011) for 2D quadrilateral ele-
ments. In this paper, we proposed our flexible mechan-
ical connectivity matrix. Indeed, depending on the el-
ement node numbers (EL_NN) the procedure to build
the mechanical connectivity matrix is flexible to switch
from trilinear to quadratic elements. Each row of this
matrix belongs to one element and the columns show
the mechanical DOFs related to that element,

Mechnical DOFs

edofMat =

element 1 −→
element 2 −→

...
element Ne −→

︷ ︸︸ ︷
[] [] · · · []
[] [] · · · []
...
...
. . .

...
[] [] · · · []

 (58)

For piezoelectric materials, in addition to mechan-
ical DOFs, we have electrical DOFs. As it has been
shown in panel (b) of Fig. 3, each node has one electri-
cal DOF and the numbering of electrical DOFs and the
numbering of the nodes are the same. Therefore, the
electrical connectivity matrix known as edofMatPZT
is a matrix in which each row belongs to one element
while the columns are the node numbers related to that
element.

Node Numbers

edofMatPZT =

element 1 −→
element 2 −→

...
element Ne −→

︷ ︸︸ ︷
[] [] · · · []
[] [] · · · []
...
...
. . .

...
[] [] · · · []


(59)

To assemble the global stiffness matrix for passive
material Ferrari and Sigmund (2020) proposed an as-
sembly indexing matrix Iar which takes advantage of
the symmetry of the stiffness matrix. Here, by introduc-
ing EL_NN, we make it flexible for considering trilinear
or quadratic elements.

75 [ sI, sII ] = deal( [ ] );
76 for j = 1 : 3∗EL_NN
77 sI = cat( 2, sI, j : 3∗EL_NN );
78 sII = cat( 2, sII, repmat( j, 1, 3∗EL_NN −

j + 1 ) );
79 end
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80 [ iK , jK ] = deal( edofMat( :, sI )’,
edofMat( :, sII )’ );

81 Iar = sort( [ iK( : ), jK( : ) ], 2, ’
descend’ ); clear iK jK % Assembly
indexing (stiffness matrix)

To adapt the same procedure for building the piezo-
electric coupling matrix, the related indexing matrix
should be built by considering the fact that we have
electrical DOFs equal to number of nodes while mechan-
ical DOFs are three times more. As such the routine
to build the assembly indexing matrix for piezoelectric
coupling (Iar_up) matrix is as follows,

82 [ sI, sII ] = deal( [ ] );
83 for j = 1 : EL_NN
84 sI = cat( 2, sI, 1 : 3∗EL_NN );
85 sII = cat( 2, sII, repmat( j, 1, 3∗EL_NN )

);
86 end
87 [ iKup , jKup ] = deal( edofMat( :, sI )

’, edofMatPZT( :, sII )’ );
88 Iar_up = [ iKup( : ), jKup( : ) ] ; clear

iKup jKup; % Assembly indexing for
piezoelectric coupling matrix

Indexing matrix for piezoelectric permittivity ma-
trix is defined by Iar_p considering electrical DOFs,

89 [ sI, sII ] = deal( [ ] );
90 for j = 1:EL_NN
91 sI = cat(2,sI,j:EL_NN);
92 sII = cat(2,sII,repmat(j,1,EL_NN−j+1));
93 end
94 [iKp,jKp] = deal(edofMatPZT(:,sI)’,

edofMatPZT(:,sII)’);
95 Iar_p = sort([iKp(:),jKp(:)],2,’descend’);

clear iKp jKp % Assembly indexing for
piezoelectric dielectric stiffness
matrix

4.1.4 New indexing method for nodes and DOFs

In the provided codes of this paper, an efficient and
compact method for indexing the elements, nodes and
mechanical DOFs is proposed which facilitates the def-
inition of boundary conditions, applied forces, elec-
trodes, etc. This indexing method uses the indexing ma-
trices ElNum, edofMat and edofMatPZT. To better
understand this indexing method, we have to inspect
once again the edofMat, edofMatPZT. Let’s con-
sider the element number 12 in the coarse discretiza-
tion of Fig. 3 with trilinear elements. The edofMat-
PZT(12,:) will show all the columns in the row num-
ber 12 of the edofMatPZT as follows

edofMatPZT (12, :) =

1 2 3 4 5 6 7 8

[21 24 23 20 36 39 38 35]

← Element Internal Numbers

← Element External Numbers

The numbers of nodes are placed in the matrix
edofMatPZT(12,:) based on the elemental internal
numbers. Here, we remind again that the elemental in-
ternal numbering and external numbering are different
based on Fig. 3, panels (b) and (c). For example, based
on panel (c) of Fig. 3, The internal node number 1 cor-
responds to node number 21 based on the external num-
bering of the nodes in panel (b). This means that the ex-
ternal node numbers are placed in the columns based on

the sequence of internal numbers. The same sequence is
true for placement of mechanical DOFs in the columns
of edofMat(12,:). To obtain the sequence for me-
chanical DOFs, it is enough to multiply the node num-
bers in edofMatPZT by 3 and consider the last two
previous sequences. In this regard, the 3 mechanical
DOFs corresponding to node number 21 are 61, 62 and
63. The same goes for other node numbers.

edofMat (12, :) =

{1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24}
[61 62 63 70 71 72 67 68 69 58 59 60 106 107 108 115 116 117 112 113 114 103 104 106]

← Element Internal Numbers

← Element External Numbers

The aforementioned examples were for trilinear ele-
ments. For quadratic elements, the node numbers con-
tinue until 20 and the mechanical DOFs correspond to
those in Fig. 4-(e). After understanding how the in-
dexing matrices edofMat, edofMatPZT are built, we
can introduce our indexing method with the help of ele-
mental indexing matrix ElNum. We follow a sequence of
steps to determine the electrical and mechanical DOFs:
1) specifying the elements, 2) specifying the nodes and
3) specifying the mechanical DOFs. This will be ex-
plained in the next sections and readers are advised to
check the indexing method in each part on the coarse

discretization of Figs. 3 and 4 to better understand the
method.

4.1.5 Active and passive domains

In this section, the goal is to define the active and pas-
sive domains which specify the piezoelectric and non-
piezoelectric domains respectively. To do so, we just
need to specify the elements that belong to each of these
two domains using the ElNum.
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97 Passive_el = ElNum([] ,:,:); Passive_el =
Passive_el(:); % Definition of passive
elements

98 Active_el = setdiff(1:nele,Passive_el);
Active_el = Active_el(:);% Definition
of active elements

In the lines above, we determined the elements that
belong to passive domain using the (Passive_el).
Then, the rest of elements will belong to the active do-
mains.

4.1.6 Boundary condition

In this section of the code, the goal is to define the
mechanical boundary condition using the proposed in-
dexing method. Let’s suppose that the coarse design
domain of Fig. 3 is clamped on the left side and we
want to specify all the fixed mechanical DOFs attached
to the clamped side. First, we have to specify the de-
sired elements.

100 DE = ElNum(:,1,:); DE=DE(:); % Desired
elements for left clamped side

ElNum(:,1,:) specifies all the elements in the
→
z

direction and all the elements in the
→
y direction for

the first row of elements in the
→
x direction. For the de-

sign domain in Fig. 3, it will produce element numbers
[1,2,9,10] which are the elements that are attached to
the left clamped side. The next step toward the def-
inition of mechanical DOFs is the specification of the
nodes. We previously noted that the placement of node
numbers and the corresponding mechanical DOFs in
the edofMatPZT, edofMat are based on the internal
node numbering sequence. Therefore, we specify the in-
ternal node numbers that belong to the left side of the
element,

101 DNN = LEFNODS; % Desired node numbers (
elemental left nodes)

Now, to specify the mechanical DOFs, we use the
edofMat matrix,

102 fixeddof = edofMat(DE,[3∗DNN,3∗DNN−1,3∗DNN
−2]); fixeddof = unique(fixeddof(:));
% Fix mechanical DOFs

Indeed, from the rows of edofMat, we chose those
rows that we previously defined as the desired ele-
ments which are attached to the clamped side. From the
columns, we multiply the node numbers by three and
consider the two previous consecutive numbers. This
will successfully determine the fixed mechanical DOFs.
By having the fixed mechanical DOFs, the free mechan-
ical DOfs can be obtained by excluding the fixed DOFs
from all DOFs (NDOF).

4.1.7 Definition of electrodes

In this section, we have to define the equipotential
nodes (en) and free nodes as it was illustrated in Fig.
5. To do so, we consider a two-layer (bi-morph) piezo-
electric plate of Fig. 10-(a). In this case, we have 3 elec-
trodes in total that we recognize as top, bottom and
middle electrodes.

To apply the equipotential boundary conditions, the
nodes which are connected to these electrodes should be
specified. In this regard, the first step is to specify the
elements connected to each electrode

105 DE = ElNum(1,:,:); DE = DE(:); % Desired
elements for top electrode

106 DE2 = ElNum(nelz,:,:); DE2 = DE2(:); %
Desired elements for bottom electrode

107 DE3 = ElNum(ceil(nelz/2),:,:); DE3 = DE3
(:); % Desired elements for Middle
electrode

After specifying the element, the corresponding
nodes that are connected to each electrode should be
specified,

108 TE = edofMatPZT(DE,TOPNODS); TE = unique(
TE(:)); % Top electrode

109 BE = edofMatPZT(DE2,BOTNODS); BE = unique(
BE(:)); % Bottom electrode

110 ME = edofMatPZT(DE3,BOTNODS); ME = unique(
ME(:)); % Mid electrode

By edofMatPZT(DE,TOPNODS), we chose the el-
ements that are attached to top electrodes and in those
element we chose the nodes on the top surface of the
element by edofMatPZT(DE,TOPNODS) and for the
bottom elements, the internal nodes of the bottom face
are chosen by BOTNODS. The same procedure is done
for the middle and bottom electrode. However, in ad-
dition to nodes that are connected to electrodes, there
are nodes that are not connected to any electrodes and
there are nodes which belong to passive materials as
they are illustrated in Fig. 5.

111 en = [TE;BE;ME]; en = unique(en(:)); %
Equipotential nodes

112 pn = edofMatPZT(Passive_el,:); pn = unique
(setdiff(pn(:),en(:))); % Nodes of
passive elements

113 fn = setdiff(1:ndofPZT,[en;pn]); fn =
unique(fn(:)); % FreeNodes

(en) contains the equipotential nodes that are con-
nected to electrodes, (pn) contains the nodes belongs
to passive material which will have zero potential and
(fn) are the free nodes in the piezoelectric material not
connecting to any electrodes.

In the actuation example of Fig. 10-(a), we apply the
voltage to the top and bottom electrodes and impose
the ground condition on the middle electrode,
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115 Up([TE;BE],1) = 1; % Actuation voltage

where (Up) is the vector of the electric potentials.

4.1.8 Output displacement definition

This section explains how to define the desired displace-
ment in the specific point of the design. Based on the de-
fault actuation code which is provided in the appendix,
the goal is to have a deflection in the

→
z direction at the

tip of the piezoelectric bi-morph in the middle as shown
in Fig. 10-(a). In this case, we have to specify the desired
mechanical DOfs. For choosing the elements, nodes and
DOFs, following lines of codes are written,

117 DE = ElNum(ceil(nelz/2),nelx,ceil(nely/2))
; % Desired element

118 DNN = 6;% Desired node numbers
119 DMDOF = edofMat(DE,3∗DNN−Dir); DMDOF=

unique(sort(DMDOF(:))); % Desired
mechanical degree of freedom

120 L = sparse(ndof,1); L(DMDOF,1) = −1;

This means that we chose the middle element in the
→
y direction at the tip of the beam in the

→
x direction and

at the center with respect to the
→
z direction. To choose

the desired node, we chose the internal node number
6 based on the element’s internal node numbering Fig.
3-(c).

(Dir) is the direction of the desired displacement
which is defined in the part (General definitions)
that can accept the values of 0, 1 and 2 corresponding
the displacement in the

→
x ,
→
y and

→
z directions. DMDOF

finally gives us the desired mechanical DOFs for dis-
placement and we can define the vector L in the objec-
tive function (39).

4.1.9 Solid and void domains

Similar to classical codes for compliance problems (An-
dreassen et al., 2011; Sigmund, 2001a; Liu and Tovar,
2014), there are areas inside the design domain that
can be considered solid or void domains. The elements
in these areas will not be updated in the optimization
iterations. To specify the elements which will be up-
dated by the optimization algorithm, we defined NVS
as a vector of all non-void and non-solid elements.

4.1.10 Filter Initialization

The filtering parts of the codes are using the same lines
of codes developed by Ferrari and Sigmund (2020) for
compliance problems and readers are referred to the
work by Wang et al. (2011) to deeply understand the
theoretical concepts.

4.1.11 Initialize iteration

Before starting the optimization iterations, some pa-
rameters are defined in this part. For example, initial
values for the densities (x) and polarization (pol).

Since we are using a continuation scheme, the
penalty for stiffness matrix (penalKuu) will increase
during the optimization. On the other hand, to re-
spect the criteria for the penalization factors which have
been mentioned in the previously published codes for
piezoelectrics in 2D (Homayouni-Amlashi et al., 2021),
we defined the variables penalratio_up, penal-
ratio_pp to keep the ratio between different penal-
ization factors constant during the optimization,

144 penalratio_up = penalKup/penalKuu;
penalratio_pp = penalKpp/penalKuu; %
Penalty ratios for continuation scheme

4.1.12 Optimization iterations

This is the main part of the code where the optimiza-
tion variables converge to their optimized values and
the optimized topology will be obtained in a sequence
of iterations. This part starts with the computation of
the physical density field (and eta if projection is cho-
sen i.e. ft=2 or 3) which is written by Ferrari and Sig-
mund (2020). The next part is the finite element analy-
sis which builds the global stiffness matrices and obtains
the response of the system. To build the global stiffness
matrices, the following lines of codes are written,

163 sK = ones(length(kuu_LT( : )),1).∗(Emin+
xPhys(:)’.^penalKuu∗(E0−Emin));

164 sK(:,Active_el) = kuu_LT( : ).∗ sK(:,
Active_el);

165 sK(:,Passive_el) = ks_LT( : ).∗ sK(:,
Passive_el);

The matrix sK is firstly defined in the codes pub-
lished by Andreassen et al. (2011) in which the number
of rows is equal to the length of the vectorized elemen-
tal stiffness matrix and the number of columns is equal
to the number of total elements in the design domain.
This matrix applies the material interpolation function
which is introduced in equation (38) using the updated
density (xPhys) and polarization (pol). However, a
modification is made to this matrix to include the ac-
tive and passive material. Those columns of matrix sK
which belong to the active domain are multiplied by the
piezoelectric elemental stiffness matrix (kuu_LT) and
those which belong to the passive material are multi-
plied by the passive elemental stiffness matrix (ks_LT).

The same strategy is used to build the sKup and
sKpp which are used to build the global coupling and
permittivity matrices.
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166 sKup = ones(length(kup(:)),1).∗(eMin+xPhys
(:)’.^penalKup∗(e0−eMin).∗((2∗pol(:)
−1)’.^penalPol));

167 sKup(:,Active_el) = kup(:).∗ sKup(:,
Active_el);

168 sKup(:,Passive_el) = 0;
169 sKpp = ones(length(kpp_LT(:)),1)∗(epsMin+

xPhys(:)’.^penalKpp∗(eps0−epsMin));
170 sKpp(:,Active_el)= kpp_LT(:).∗ sKpp(:,

Active_el);
171 sKpp(:,Passive_el)= 0;

However, the columns of sKup and sKpp which be-
long to the passive material are considered to be zero
since there is no coupling between the mechanical and
electrical part. In the next step, by using the indexing
matrices Iar, Iar_up and Iar_p which are explained
before, the global matrices are built.

172 Kuu = sparse(Iar( :, 1 ),Iar( :, 2 ),sK(:)
); Kuu = Kuu+Kuu’−diag(diag(Kuu)); %
Global stifness matrix

173 for i=1: length(DMDOF);Kuu(DMDOF(i,1),
DMDOF(i,1)) = Kuu(DMDOF(i,1),DMDOF(i,1)
)+Ks; end % Assembling the stifness of
the modeled spring

174 Kup = sparse(Iar_up(:,1),Iar_up(:,2),sKup
(:)); % Global piezoelectric coupling
matrix

175 Kpp = sparse(Iar_p(:,1),Iar_p(:,2),sKpp(:)
); Kpp = Kpp+Kpp’−diag(diag(Kpp)); %
Global piezoelectric permittivity
matrix

The stiffness of the modeled spring which imitates
the stiffness of the workpiece is augmented to the global
stiffness matrix in the defined mechanical DOFs using
the DMDOF as it was defined in the section "output dis-
placement definition".

After the creation of stiffness matrices, it is possi-
ble to obtain the response from solving the system of
equations (37),

176 Ktot = [Kuu(freedofs,freedofs),Kup(
freedofs,fn);Kup(freedofs,fn)’,−gamma∗
Kpp(fn,fn)];

177 U = Ktot \ [−Kup(freedofs,en)∗Up(en,:);
gamma∗Kpp(fn,en)∗Up(en,:)]; % Response
of the system

178 Uu(freedofs) = U(1:length(freedofs)); Up(
fn) = U(length(freedofs)+1:end);

The vector U, contains full system response which
is separated to mechanical Uu and electrical responses
Up.

4.1.13 Sensitivity analysis

After obtaining the response of the system by solving
the linear equilibrium equation, it is possible to calcu-
late the objective function and perform the sensitivity

analysis. For the actuation, the objective function is
calculated based on equation (39). To perform the sen-
sitivity analysis, first, the global adjoint equation (41)
should be solved and

182 ADJ = Ktot \[L(freedofs,1);0∗fn];

After calculation of the adjoint vector, the elemental
sensitivities can be computed

184 DCKuuE(Active_el) = sum((lambda(edofMat(
Active_el,:))∗kuu).∗Uu(edofMat(
Active_el,:)),2);

185 DCKuuE(Passive_el) = sum((lambda(edofMat(
Passive_el,:))∗ks).∗Uu(edofMat(
Passive_el,:)),2);

186 DCKupE(Active_el) = sum((lambda(edofMat(
Active_el,:))∗kup).∗Up(edofMatPZT(
Active_el,:)),2);

187 DCKupE(Passive_el) = 0;
188 DCKpuE(Active_el) = sum((Uu(edofMat(

Active_el,:))∗kup).∗mu(edofMatPZT(
Active_el,:)),2);

189 DCKpuE(Passive_el) = 0;
190 DCKppE(Active_el) = −gamma∗sum((mu(

edofMatPZT(Active_el,:))∗kpp).∗Up(
edofMatPZT(Active_el,:)),2);

191 DCKppE(Passive_el) = 0;

In the calculation of elemental sensitivity analysis
from equation (40), the elemental stiffness matrix for
the active and passive material should be multiplied
accordingly. This is considered in the code by using the
edofMat and Active_el, Passive_el. Moreover,
the elemental coupling matrix for the passive material
is considered to be zero and the respective sensitivity
will be zero as well.

At last, the sensitivities with respect to density (dc)
and with respect to polarization (dp) are calculated.
Then, the built-in function imfilter from MATLAB
is used to filter the sensitivities as it was proposed by
Ferrari and Sigmund (2020).

195 dc = penalKuu∗(E0−Emin)∗xPhys.^(penalKuu
−1).∗DCKuu+ penalKup∗(E0−Emin)∗((2∗pol
−1).^(penalPol)).∗xPhys.^(penalKup−1)
.∗DCKup+penalKpp∗(eps0−epsMin)∗xPhys.^(
penalKpp−1).∗DCKpp; % Sensitivity with

respect to x
196 dp = 2∗penalPol∗((2∗pol−1).^(penalPol−1)).∗

xPhys.^(penalKup).∗DCKup; % Sensitivity
with respect to p

4.1.14 Updating optimization variables

To update the optimization variables using the sensitiv-
ity analysis, the ocUpdate routine written and devel-
oped by Ferrari et al. (2021) is employed. We employe
this updating routine since it lets the provided codes
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be compiled solely and independently from calling ex-
ternal codes. In the author’s previously published codes
(Homayouni-Amlashi et al., 2021), the MMA algorithm
was necessary to compile the energy harvesting code
and users had to request the author of the MMA paper
(Svanberg, 1987) to obtain the Matlab implementation
code. This problem is solved in the current paper by
using the updating routine from the code published by
Ferrari et al. (2021). However, as stressed by the au-
thors of the latter, the ocUpdate algorithm, due to its
compactness, does not have the robustness and stability
of the MMA algorithm. Therefore, it is recommended
here to use the globally convergent MMA algorithm
(Svanberg, 2007) by requesting the code from the au-
thor instead of using the ocUpdate if possible.

4.1.15 Continuation scheme on penalization and
sharpness factor

The continuation scheme is applied to penalty and
sharpness factors. To do so, the incremental increase
is applied to the sharpness factor (beta) and penaliza-
tion factor for the stiffness matrix.

207 [penalKuu ,beta] = deal(cnt(penalKuu ,
penalCnt,loop),cnt(beta,betaCnt,loop));

However, to keep the relations between penaliza-
tion factors as they have been mentioned in previously
published codes (Homayouni-Amlashi et al., 2021) , the
ratios between penalization factors (penalratio_up
and penalratio_pp ) which were defined before are
utilized.

208 penalKup=penalKuu∗penalratio_up; penalKpp=
penalKuu∗penalratio_pp;

4.1.16 Presentation of results

The optimization result for each iteration are presented
numerically and displayed graphically. For the graphical
representation, the Display add-on function is used.
As can be seen in Fig. 7, the results of the optimiza-
tion are presented in a 3D-rendered version and the
2D layout version. In 3D-rendered result, the obtained
topology rendered by the iso-surfaces and 3D polar-
ization profile are demonstrated. The passive and ac-
tive materials are shown with different colors. The 2D
part demonstrates the topology and polarization pro-
file layer by layer. In this case, one can see the result
of optimization for each layer. However, based on the
developed code, the 2D result will be shown only if the
number of layers in the

→
z direction is less than 6 lay-

ers. For more number of layers, the 2D representation

of the result will be eliminated due to the complexity
of showing the results for a high number of layers and
the polarization profile will be shown using the cloud
of points as can be seen in Fig. 8.

Fig. 7 Graphical representation of results by the proposed "Dis-
play" add-on function for layer based results (less than 6 layers
in the thickness direction).

Fig. 8 Graphical representation of results by the proposed "Dis-
play" add-on function for 3D results.

4.1.17 Deformation plot

This part of the codes is provided to show the de-
formed topology under the application of external volt-
age or external force by calling the Deformation add-
on function. In the actuation code, the response of the
system under the application of voltage is recalculated
by eliminating the attached spring. To do so, the global
stiffness matrix is recreated by removing the stiffness of
the spring. Then, the developed Deformation code as
an add-on function is used to show the deformation of
the structure.
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214 Kuu = sparse(Iar( :, 1 ),Iar( :, 2 ),sK(:)
); % Global stifness matrix

215 Kuu = Kuu+Kuu’−diag(diag(Kuu));
216 Ktot = [Kuu(freedofs,freedofs),Kup(

freedofs,fn);Kup(freedofs,fn)’,−gamma∗
Kpp(fn,fn)];

217 U = Ktot \ [−Kup(freedofs,en)∗Up(en,:);
gamma∗Kpp(fn,en)∗Up(en,:)]; %
Mechanical displacement

218 Uu(freedofs)=U(1:length(freedofs));
219 Deformation(Uu,xPhys,nelz,nelx,nely,

edofMat,ElNum)

4.2 Energy Harvesting

The default energy harvesting code in appendix is writ-
ten for the case study of Fig. 15 which contains active
and passive material and is excited at the base. The
general structure of the energy harvesting code is sim-
ilar to actuation. As such, here the non-similar parts
will be explained.

In the part GENERAL DEFINITIONS, the particu-
lar variables are wj which is the weighting function in
the objective function (47),omega which is the excita-
tion frequency and Mass which is the overall mass of at-
tachment. In the part of PREPARE FINITE ELEMENT
ANALYSIS, the mass matrices (m_p,m_s) for active
and passive materials are exported from the (FEM) add-
on function to perform a dynamic analysis.

4.2.1 Force definition

In the energy harvesting code, the procedure to define
the externally applied force is generally similar to defin-
ing the desired displacement in the actuation code. The
difference is that the energy harvesting code can con-
sider several load cases by default. In this case, nf de-
fines the total number of load cases. F is the mechanical
force vector which has the equal number of columns as
the number of load cases (nf). For each load case, the
sequence of defining the number of elements, nodes and
mechanical DOFs will be followed. This possibility of
having one or more load cases will be discussed in the
numerical examples. To build the global FEM equation
(29), the total force vector (F) contains the externally
induced charge which will be considered as zeros that
is augmented to the mechanical force vector.

4.2.2 Definition of attachment mass

In the energy harvesting code, the possibility of hav-
ing an attachment mass is considered by default in the
code. The chosen strategy to model the attached mass

Fig. 9 Definition of attachment mass by considering heavy ele-
ments

is to consider some elements in the design domain heav-
ier than the rest of the elements. This strategy can be
seen in Fig. 9. With this strategy, the attached mass
will be considered as a lumped mass and the geometry
of the attachment will not be considered.

The attachment mass is then augmented to the
global mass matrix. To do so, with the same method
of building the global mass matrix, we build a matrix
with equal size with nonzero elements in place of the
heavy elements.

130 %% DEFINITION OF ATTACHMENT MASS
131 sMass=zeros(nele,1);
132 sMass(ElNum([2:nelz−1],nelx,ceil(0.4∗nely)

:ceil(0.6∗nely)))=1; % Distribution of
mass

133 le = Lp/nelx; we = Wp/nely; he = Ha; %
Dimension of each element

134 ro_M = Mass∗1e−3/(le∗we∗he)/length(find(
sMass)); % Density of heavy elements

135 sMMass = (ro_M/ro_p)∗mp_LT(:).∗sMass’;
136 sMMass = reshape( sMMass, length( mp_LT

(:) ) ∗ nele, 1 );
137 M_Att = sparse(Iar( :, 1 ),Iar( :, 2 ),

sMMass(:)); % Mass matrix containing
only the attachement mass

The matrix sMass is having rows equal to the
number of elements. Among them, we chose the
heavy elements that we want to consider as the
attachment mass. we want to distribute this mass
equally to all the selected elements. The whole
procedure will be done by sMass(ElNum([2:nelz-
1],nelx,ceil(0.4*nely):ceil(0.6*nely)))=1.
Then, the global mass matrix (M_Att) containing only
heavy elements will be built by using the indexing
vectors (Iar).

In the optimization part of energy harvesting code,
the mass matrix is built as well. The creation of the
mass matrix is similar to the stiffness matrix following
the interpolation function in equation (38).

180 sM = ones(length(mp_LT( : )),1).∗xPhys(:)’;
181 sM(:,Active_el)= mp_LT( : ).∗ sM(:,

Active_el);
182 sM(:,Passive_el)= ms_LT( : ).∗ sM(:,

Passive_el);
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183 sM = reshape( sM, length( mp_LT(:) ) ∗
nele, 1 );

194 M= sparse(Iar( : , 1 ),Iar( : , 2 ),sM); %
Global Mass matrix

It should be noted that the attachment mass is aug-
mented to the global mass matrix after multiplication
by the excitation frequency and together they form the
dynamic stiffness matrix,

196 Kuu = Kuu−(M+M_Att)∗omega;Kuu = Kuu+Kuu’−
diag(diag(Kuu)); % Global dynamic
stiffness matrix

The response of the system is derived using the equi-
librium equation (35) and the application of equipoten-
tial condition in equation (33),

199 Ktot = [Kuu(freedofs,freedofs),Kup(
freedofs,fn),Kup(freedofs,en)∗B(en,:);

200 Kup(freedofs,fn)’,−gamma∗Kpp(fn,fn),−gamma
∗Kpp(fn,en)∗B(en,:);

201 B(en,:)’∗Kup(freedofs,en)’,−gamma∗B(en,:)’∗
Kpp(fn,en)’,−gamma∗B(en,:)’∗Kpp(en,en)∗
B(en,:)];

202 U = ( Ktot \ Ftot); % Response of the
system

203 Up(fn,:) = U(lf+1:lf+length(fn),:); Up(en
,:) = B(en,:)∗U(lf+length(fn)+1:end,:);

4.2.3 Objective function and sensitivity analysis

The sensitivity analysis for energy harvesting starts by
calculating the adjoint vectors using the equation (51).

205 lambda1 = zeros (ndof,nf);lambda2 = zeros
(ndof,nf);mu1 = zeros (ndofPZT,nf);mu2
= zeros (ndofPZT,nf);

206 ADJ1 = Ktot\[−Kuu(freedofs,freedofs)∗U(1:
lf,:);zeros(length(fn),nf);zeros(Nelec,
nf)]; % First adjoint vector

207 lambda1(freedofs,:) = ADJ1(1:lf,:); mu1(fn
,:) = ADJ1(lf+1:lf+length(fn),:);mu1(en
,:) = B(en,:)∗ADJ1(lf+length(fn)+1:end
,:);

208 ADJ2 = Ktot\[zeros(lf,nf);−gamma∗Kpp(fn,
fn)∗Up(fn,:)−gamma∗Kpp(fn,en)∗Up(en,:)
;−gamma∗B(en,:)’∗Kpp(en,en)∗Up(en,:)−
gamma∗B(en,:)’∗Kpp(en,fn)∗Up(fn,:)]; %
Second adjoint vector

209 lambda2(freedofs,:) = ADJ2(1:lf,:); mu2(fn
,:) = ADJ2(lf+1:lf+length(fn),:);mu2(en
,:) = B(en,:)∗ADJ2(lf+length(fn)+1:end
,:);

The response to each adjoint equation is divided into
two vectors (lambda1,lambda2,mu1,mu2) to sepa-
rate the mechanical (λ) and the electrical part (µ) from
each other. To calculate the sensitivities, the energy
harvesting code considers several load cases (force) by
default. Therefore, a numerator i is considered for each

force that varies from 1 to the total number of forces
(nf).

The objective function for the energy harvesting
case includes mechanical and electrical energies which
are calculated in the code and saved in the Wm and We
variables. The procedure to calculate the elemental sen-
sitivities in the energy harvesting code follows the equa-
tions (50, 60). In the written codes, the sensitivities for
active and passive elements are calculated accordingly.

4.2.4 Plot deformation

In the section of Plot deformation, there is no
modeled spring and therefore it is not needed to build
the stifness matrix. Howevere, for the particular case
study of the provided code, since the excitation is at
base, the mechanical deformation of every nodes in the
design domain should be calculated based on the me-
chanical displacement of the base. This is done by fol-
lowing line of code

253 Deformation(Uu,xPhys,nelz,nelx,nely,
edofMat,ElNum) % Plot the deformation

In other case studies where there is no base excita-
tion, the aforementioned line of code can be eliminated.

After explaining different parts of the energy har-
vesting code which are different from the actuation
code, the add-on functions which will be used by both
codes will be explained in the next section.

4.3 Add-on functions

There are five add-on functions that are used by both
codes. These five add-on functions can be added to the
end of each code to make it solely independent from
calling external functions to compile. The ingredients of
each add-on function will be explained in the upcoming
sections.

4.3.1 Deformation

This function produces the elemental discretization of
the optimized topology with and without deformation
based on the vector of displacement. Since the struc-
tural deformation is small according to the dimension
of the structure, the displacement vector is normalized
by factor AMP which amplifies the deformation. This
amplification factor can be modified for a better demon-
stration of the result.
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4.3.2 Matrix Rotation

This function produces the new tensor matrices based
on the polarization direction and rotation of the local
coordinates. The implementation code is based on equa-
tions (3)-(6). Three polarization directions are consid-
ered by default in the directions of the coordinates sys-
tem. It is possible to consider other directions as well
by re-calculating the Euler angles.

4.3.3 Display

The display function plots the results in 2D and 3D for-
mats. In the 3D representation of the result, two differ-
ent colors are considered for active and passive material.
In addition, a transparent box with highlighted edges
shows the borders of the design domain. If the number
of elements in the

→
y direction is less than 6, then there

will be a 2D representation of the result as well. In the
2D part, the topology layout and polarization profile of
each layer are illustrated.

4.3.4 Finite element matrices (FEM)

The FEM add-on function builds the finite element ma-
trices. This function gets the number of elements in
each direction, the geometrical dimension of the design
domain and the tensor matrices. With the geometrical
dimension of the design domain and the resolution of
the mesh, the geometrical dimensions of the element
can be obtained (le,we,he). After defining the di-
mensions of the elements, the function is separated to
two parts based on the elements type (EL_T).

In the trilinear element section, the two point Gauss
quadrature method is used to solve the integration in
equation (20), the Gauss points are stored in (GP). By
using the 8-node rectangular element which is a par-
ticular form of the hexahedron element, there will be
a simplification in the Jacobean matrix (J) and its de-
terminant (detJ). The natural coordinates ξ, η and µ
are defined in the code as s, t and u respectively. The
matrix DN is the derivation of the interpolation func-
tions with respect to the natural coordinates. Based on
equations (17) and (18), we build the matrix Bφ and
then the matrix Bu can be obtained from the elements
of matrix Bφ. Finally, all the elemental FEM matrices
(kuu, kup, kpp, m) are built by following lines of
code

25 kuu = kuu + transpose(Bu)∗C∗Bu∗detJ; %
Stiffness matrix

26 kup = kup + Bu’∗e’∗Bphi∗detJ; %
Piezoelectric coupling matrix

27 kpp = kpp + Bphi’∗Ep∗Bphi∗detJ; %
Dielectric stiffness matrix

28 m = m+detJ∗ro∗(N’∗N); % mass matrix

To build the quadratic element matrices, the gen-
eral procedure is similar to the trilinear elements. How-
ever, the three point Gauss quadrature method is used
to solve the integration in equation (20) and the in-
terpolation functions are derived using the equations
(22)-(25).

Based on the chosen type of element, the FEM
function produces outputs containing the number
of nodes in each element EL_NN, total number of
nodes in the design domain which is equivalent to the
total number of electrical DOFs ndofPZT and finally
internal node numbers of 6 faces of element TOPN-
ODS,BOTNODS,FRNODS,BAKNODS,LEFNODS,RTNODS.

4.3.5 OC update algorithm

The ocUpdate algorithm is a routine to update the
optimization variables written by Ferrari et al. (2021).
The same lines of codes are used here and for the sake
of brevity, readers are referred to aforementioned paper
to understand the developed code.

In this section, different parts of the code are ex-
plained in detail. In the upcoming section, we will ex-
plain how the codes can deal with different case studies
similar to ones that exist in the literature.

5 Numerical Examples

In this section, the goal is to investigate the perfor-
mances of the developed codes in different case studies
of actuation and energy harvesting. Each case study
can be implemented by few modifications to the origi-
nal codes provided in the appendix. For the sake of sim-
plicity, we provided separate codes for each case study
as supplementary material to this paper.

5.1 Actuation

5.1.1 Bi-morph actuator

In this part, we start with the bi-morph piezoelectric ac-
tuator which is shown in Fig. 10-(a). The general goal
of the bi-morph actuator is to push a working object in
a specified direction. In the first case study, the idea is
to have a bi-morph piezoelectric bending actuator with
the desired direction of displacement as can be seen
in Fig. 10-(a). As it was mentioned before, a mechani-
cal spring with stiffness Ks is modeled to simulate the
stiffness of the working object. The Matlab code for ac-
tuation which is provided in the appendix is written for
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this example. In this code, quadratic element is chosen
by default (i.e. EL_T=2).

The result of optimization can be seen in panel (b) of
Fig. 10 in 3D-rendered format. The deformation of the
structure due to the application of the voltage is demon-
strated in panel (c). Panel (e), demonstrates the density
and polarization profiles for each layer. The value of the
objective function in each iteration is shown in panel
(d). We stopped the iterations after 200 iterations since
there was no change in the obtained layout. It should
be noted that the user can change the stiffness of the
modeled spring to obtain other optimized topologies.
The optimized polarization profile is uniform with the
same sign of polarity. However, this similarity of polar-
ization sign is not equivalent to similar contraction or
expansion of both layers. Since the middle electrode is
grounded, the same polarity sign means one layer will
expand and the other layer will contract which results
in bending out-of-plane (transverse direction).

In appendix, it is demonstrated that trilinear ele-
ments cannot be used for low thickness to length ratio.
We investigated the result produced by the two types
of elements for the first case study of the piezo bending
actuator. The result can bee seen in Fig. 11 for different
thickness. For linear element, we also considered four el-
ements in direction of thickness (2 element per layer).
As can bee seen in Fig. 11, just for very low thickness
of the piezoelectric plate the results from linear element
will be different to quadratic element. This is in corre-
spondence to conclusion made in the validation of the
FEM in appendix where for very low thickness layer,
the error of linear elements are significant due to "shear
lock" phenomenon Cook et al. (2007).

The next case study, is a bi-morph piezoelectric
gripper as illustrated in Fig. 12. The MATLAB code
CASE2.m is provided as supplementary material to this
paper for the implementation of this case study. This
case study, has been investigated in the authors previ-
ous published codes as well (Homayouni-Amlashi et al.,
2021). In this case study, the goal is to grip an object in
the desired space. This case study is defined by consid-
ering half of the design domain using the symmetry and
defining the roller boundary condition in the symmetry
line as illustrated in the mechanical interpretation of
the problem in Fig. 12. The optimized result in ren-
dered form and the produced deformation is illustrated
in panels (b) and (c) of the figure. Panels (e-h) show the
2D layouts and the optimized polarity. The polarization
profile demonstrates how the algorithm uses the com-
bination of expansion and contraction to produce the
gripping task.

5.1.2 3D Piezoelectric actuator (combination of active
and passive material)

In case studies 3 and 4, the goal is to consider 3D piezo-
electric actuators that consist of active and passive do-
mains. To start with, we can consider the geometrical
sketch of the desired 3D actuator as in Fig. 13-(a). In
this figure, a rectangular domain of passive material is
sandwiched between two piezoelectric plates. The de-
sired direction of the displacement demonstrates that
the target is designing a pusher. The implementation
MATLAB codes (CASE3.m and CASE4.m) are pro-
vided as supplementary materials.

The results of the optimization and the deforma-
tion of the structure due to voltage application are il-
lustrated in Fig. 13-(b) and (c) respectively. As it is
obvious from these figures, the bending deformation of
the top and bottom piezoelectric plates will result in
the deformation of the desired point in the

→
x direction.

The optimization problem in panel (d) is very sim-
ilar to the previous case study but with four patches
of piezoelectric plates mounted by pairs at the top and
bottom of a cuboid passive material.

The case study number (5) as illustrated in Fig. 14 is
similar to case studies (3) and (4). The difference is that
the design domain consists off the active material. The
optimization method is applied on a 3D piezoelectric
block which is sandwiched between two electrodes on
top and bottom.

The rendered optimization result, polarization pro-
file and produced deformation are illustrated in panels
(b-c) of Fig. 14. By inspecting the polarization profile,
we can observe that a combination of expansion and
contraction produces the desired deformation.

5.2 Energy harvesting

5.2.1 Multi-morph energy harvester with tip
attachment

The next case study is the energy harvesting with multi-
layer piezoelectric cantilever beam with tip attachment
which will be excited at the base. This case study is the
most widespread one in the literature for piezoelectric
energy harvesting. The base code for energy harvesting
in the appendix is written for this case study and its
geometrical sketch can be seen in Fig. 15-(a). Based on
the code, it is obvious that the total number of layers
in the

→
z direction is considered to be four in which the

top and bottom layers are considered to be piezoelectric
materials and the two middle layers are considered to
be passive material. Aluminum is chosen as the passive
material and PZT-4 as the piezoelectric material. In the
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Fig. 10 Topology optimization of a piezoelectric bending actuator. Case 1: a) Geometrical sketch with mechanical interpretation.
b) 3D-rendered optimized topology. c) Deformation plot using the discretization elements, d) Objective function, e) 2D layouts and
polarization profiles

optimization, both the passive and active material will
be optimized. The rendered result and the respective
deformation are plotted in panels (b) and (c). In this
case study, we also consider other piezoelectric materi-
als to inspect the changes in the result. To do so, three
other piezoelectric materials including Aluminum Ni-
tride (ALN), Lithium Niobate (L-NIO) and PVDF are
considered and the results of optimization have been
shown in panels (d-f). The numerical results regarding
mechanical and electrical energies are also reported in
panels (g-h).

As illustrated in Fig. 15, It is obvious that by chang-
ing the piezoelectric material the optimized topology
will be different. This difference can mostly be seen in
the optimized passive material. Hence, for each result,
the optimized passive material is shown separately as
well. Moreover, from the plots of Fig. 15-(g-h), it seems
that PZT-4 has a high electrical to mechanical energy
ratio. This is expected since the electromechanical cou-
pling coefficient for PZT are higher than others.

In the case study (7) as illustrated in Fig. 16, we con-
sider a case in which a piezoelectric block is sandwiched
between two layers of passive material and the polar-
ization axes is in the

→
x direction. Indeed, in this case,

the piezoelectric energy harvester will work in shear-
mode benefiting the high e15 coupling coefficient. This
is the same scenario which is studied in the paper of
Malakooti and Sodano (2015). The e15 coupling coef-
ficient is higher than the other coupling coefficients in
most of the piezoelectric materials of the 4mm crys-

tal class. The illustrated result in Fig. 16 -(b-c) is for
one wj. Obtaining more efficient result by changing the
optimization parameters is up to the readers.

5.2.2 3D energy harvester

In the next case study (8), we consider a 3D design do-
main for the energy harvester under the application of
two harmonic load cases as has been shown in Fig. 17-
(a). Indeed, this design domain is inspired by the pro-
posed 3D structure in (Fattahi and Mirdamadi, 2020,
2019).

In Fig. 17, four different topologies of the 3D energy
harvester are shown for 4 different values of weighting
factor wj. As can be seen in this figure, by reducing
the weighting factor, the algorithm tries to reduce the
stiffness of the passive material to increase the electri-
cal output energy. However, too much reduction of the
wj will result in divergence of the results where the me-
chanical and electrical energies will start to increase as
can be seen in plots in panels (h and i) of the figure.
This is due to no weight on the mechanical performance
of the structure. This case study is provided to demon-
strate the ability of the provided code to deal with 3D
structural domains as well as the effects of the weight-
ing factor wj.
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Fig. 11 Topology optimization results of piezoelectric bending actuator for different thickness of the piezoelectric layer and different
element types.

6 Discussion

The case studies provided in the numerical sections
demonstrate the capabilities, flexibility and efficiency
of the provided codes to deal with different scenarios.
It is worth mentioning here that the goal in the numeri-
cal section was not to provide the best result. It is left to
the readers to find the best parameters of optimization.

The provided codes in the appendix are geometry
based. In fact, this contrasts to most of the published
codes in the literature, which are normalized based on
the geometry and physical properties. In this paper,
users should carefully choose the geometry of the design
domain and resolution of mesh independently. Inappro-
priate choice of geometry of active and passive material
and mesh resolution may lead to meaningless results.

Fabrication and realization of piezoelectric materi-
als are very challenging which limits the production of
complicated geometries of these materials. This limita-

tion is not considered in this paper and augmentation of
manufacturing constraint can be considered as a future
target.

7 Conclusion

Two MATLAB implementation codes are proposed for
the application of SIMP topology optimization to the
piezoelectric actuators and energy harvesters using the
3D finite elements. A detailed finite element modeling
with providing two types of linear and quadratic ele-
ments has been presented for the design domain which
contains a combination of passive and active materi-
als. The SIMP topology optimization is extended by
using the PEMAP-P strategy to optimize the topology
and polarization profile at the same time. The imple-
mentation codes are written in the most flexible and
user-friendly format. A new indexing method is pro-
posed for numbering the elements, nodes and mechan-



30 Abbas Homayouni-Amlashi 1 et al.

Fig. 12 Topology optimization of a piezoelectric gripper. Case 2: a) Geometrical sketch with mechanical interpretation. b) 3D-rendered
optimized topology. c) Deformation plot using the discretization elements, d) Objective function, e) 2D layouts and polarization profiles

Fig. 13 Topology optimization of 3D Piezoelectric actuators. Case 4: a) Geometrical sketch with mechanical interpretation. b) 3D-
rendered optimized topology. c) Deformation plot using the discretization elements, Case 5: d) Geometrical sketch. e) 3D-rendered
optimized topology. f) Deformation plot using the

ical DOFs which facilitates the definition of boundary conditions, electrodes, etc. Different parts of the imple-
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Fig. 14 Topology optimization of 3D piezoelectric pusher. Case 5: a) Geometrical sketch. b) 3D-rendered optimized topology. c)
Polarization profile, d) Deformation plot using the discretization elements

Fig. 15 Topology optimization of a multi-layer piezoelectric energy harvester with tip attachment for different piezoelectric materials.
Case 6: a) Geometrical sketch with mechanical interpretation. b) 3D-rendered optimized topology (PZT-4). c) Deformation plot using
the discretization elements, Case 5: d),e),f) Rendered results for different piezoelectric materials. g) Mechanical energy plots, h)
Electrical energy plots.

mentation codes are explained in detail to be compre-
hensive for newcomers in the field. Several case studies
are provided to demonstrate the efficiency of the codes
in solving practical optimization problems in actuation
and energy harvesting modes. Future work would con-
sider the fully multi-material optimization considering

random distribution of piezo and non-piezo materials
as well as consideration of manufacturing constraints.
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Fig. 16 Topology optimization of a multi material piezoelectric energy harvester working in shear-mode under application of a
harmonic load. Case 7: a) Geometrical sketch, b) 3D-rendered optimized topology, c) Polarization profile

Fig. 17 Topology optimization of a 3D piezoelectric energy harvester under application of two load cases. Case 7: a) Geometrical
sketch, b),c),e),f) 3D-rendered optimized topology for different weighting factors, h) Mechanical energy plots, i) Electrical energy plots
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8 Appendix

8.1 Validation of the finite element method with
COMSOL Multiphysics

In this section, we try to investigate the accuracy of the
FEM part of the paper in modeling a piezoelectric plate
actuator by comparing the results with with COMSOL
Multiphysics software. In the developed FEM of the
paper, we considered two types of elements: trilinear
elements and quadratic elements.

Fig. 18 Modeling and square two layer piezoelectric plate in a)
COMSOL and b) MATLAB

It is already known in the literature that trilinear
elements have a deficiency called ”shear locking”. This
term corresponds to a parasitic shear strain which is
explained by Cook et al. (2007). Due to this deficiency,
trilinear elements cannot exhibit bending. To solve the
problem of shear locking we have two solutions: 1- We
can use the B-Bar method suggested by Bower (2009)
which modifies the strain displacement matrix, 2-We
can use the quadratic elements. In this paper, we chose
the latter for their generally higher precision. Moreover,
it will be interesting to investigate the accuracy of the
developed FEM with trilinear and quadratic elements
and to see when we are obliged to use quadratic ele-
ments and when it is possible to use the trilinear el-
ement and save the computation time. In this regard,
we considered a square two-layer piezoelectric plate as
shown in Fig. 18, which will be actuated by applying
potentials on the electrodes to produce a bending de-
formation in the

→
z direction. For this configuration, the

FEM responses from developed MATLAB codes of lin-

ear and quadratic elements are compared with the re-
sult of COMSOL. To do so, the displacement of a target
point at the tip of the piezoelectric plate as shown in
Fig. 18 is calculated and compared between different
platforms.

In COMSOL, the two-layer piezoelectric plate with
the same geometrical dimension is modeled. To dis-
cretize the design domain the built-in tetrahedral el-
ements are employed. To define the resolution of mesh,
the “fine” option has been chosen where COMSOL auto-
matically choose the proper dimension of the element.
We didn’t use the fixed dimensions for different case
studies since by changing the thickness of the piezoelec-
tric plate, small size of elements makes the computation
time huge. Moreover, by few inspections with consider-
ing finer mesh, the change in the result was negligible.

The numerical investigation of the displacement of
the target point is provided in Fig. 19. In panel (a),
it has been shown that the thickness of the piezoelec-
tric plate is changed while the resolution of the mesh
remains constant. One element per each piezoelectric
layer is considered and the thickness is changed to see
the accuracy of FEM model using different elements. As
can be seen in panel (b), the response of the MATLAB
FEM with quadratic elements are in fine agreement
with the results of COMSOL. However, the response
from MATLAB FEM with trilinear elements lacks the
accuracy specially in low thickness piezoelectric layers.
Independent from the thickness of the piezoelectric lay-
ers, the error of the quadratic elements are below one
percent as illustrated in panel (c).

The error of the trilinear element start from enor-
mous value of 40 percent for 0.2mm thickness and then
reach to 6 percent for 2 mm of thickness which is equiv-
alent to 0.033 thickness to length ratio for each piezo-
electric layer. Since the results of quadratic elements are
quite satisfactory, in the next panels of Figure (3), we
just investigate the conditions to improve the results for
trilinear elements. In panel (d), for the 0.2 mm thick-
ness, we increased number of elements in the direction
of thickness (i.e. nelz). It can be seen in panels (e) and
(f) that increasing nelz can not increase the accuracy
significantly. In panel (g), the same effect of increasing
nelz is investigated with H=6 mm. As can be seen the
error is much less than H=0.2, However, still the effect
of increasing nelz is not significant. Just increasing the
nelz from 2 to 4, decrease the error from 6 to 2 percent.
In panel (j-o), we investigated the increase of number of
elements in the

→
x and

→
y direction (i.e. nelx and nely).

As it can be seen in panels (k) and (l), increasing the
resolution of the mesh in the

→
x and

→
y direction can

significantly increase the accuracy. It can be concluded
that for low thickness layers, high resolution of mesh
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Fig. 19 Validation of FEM modeling with COMSOL multiphysics software

is necessary. However, the error percentage will not be
less than 10 percent, which is still enormous. For thick
piezoelectric plate in panel (n) and (o) it is obvious
that increasing the resolution of mesh in the

→
x and

→
y

direction will not improve the accuracy.
The overall conclusion of the aforementioned inves-

tigation is that, quadratic elements are quite accurate
even in coarse discretization mesh. On the other hand,
trilinear elements are very weak in terms of capturing
the bending of thin piezoelectric plate i.e. thickness to
length ratio less than 1/30 = 0.033. However, for larger
values of thickness to length ratio, a reasonable defini-
tion of mesh resolution and definition of two elements
per each layer can bring the error in the scale of two
percent.

To check the generality of FEM accuracy, we change
the geometry of the plate by decreasing the length of
the piezoelectric plate (L) to 1cm. Then, we performed
the same analysis of figure (3) but with different val-
ues of thickness. By inspecting the plats in figure (4),
it can be seen that the same behavior for the thickness
to length ratio of the plate can be seen in the accu-
racy of different elements. In panel (b) and (c), it can

bee seen that by increasing the thickness of the of the
piezoelectric layers the accuracy of the linear elements,
increases. For 0.5 (mm) of thickness which is 0.05 thick-
ness to length ratio the error converges to 6.2 percent.
Then, by increasing the number of nelz to two for each
piezoelectric layer, the error decreases to 2 percent. This
is the similar result for thickness to length ratio that we
had in figure (3). In fact, the plots in figure (4) are al-
most similar to plots in figure (3) and same analysis can
be provided by both. It should be noted that the accu-
racy of quadratic elements are quite satisfactory again
for all thickness to length ratios.

As a conclusion, when the total thickness to length
of the beam structure is less than 0.05, the quadratic
elements must be used to discretize the design domain.
For higher thickness to length ratio, trilinear elements
can be used by considering 2 elements in the direction
of thickness.

8.2 Piezoelectric Material Properties

Material properties for the piezoelectric materials which
are used in this paper are mentioned in Table 1. All
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Fig. 20 Validation of FEM modeling with COMSOL multiphysics software

the material properties in this paper are extracted
from COMSOL multiphysics software version 6.1. The
reported piezoelectric coefficients are in stress-charge
form. However, sometimes in data sheets of piezoelec-
tric materials, the coefficients are reported in the strain
charge form. In this regards, the calculation of the
stress-charge coefficients from the strain-charge coeffi-
cients are as follows

cE = (SE)−1, e = d(SE)−1, εS = εT − d(SE)−1dT

(60)

where SE is the strain tensor in constant electrical field,
d is the coupling matrix in strain-charge format and εT

is the permittivity in constant stress.
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Table 1 Piezoelectric material properties

Coefficicents of Elasticity Matrix (×10+11)
cE11 cE12 cE13 cE14 cE22 cE33 cE24 cE44 cE55 cE66 Density (kg/m3)

ALN 4.1 1.49 0.99 0 4.1 3.89 0 1.25 1.25 1.305 3300
LiNbO3 2.02 5.29 7.49 8.99 2.02 2.43 -8.99 5.99 5.99 7.48 4700
PVDF 0.038 0.019 0.09 0 0.038 0.012 0 0.009 0.009 0.007 1780
PZT - 2 1.34 0.678 0.680 0 1.34 1.13 0 0.222 0.222 0.334 7600
PZT - 4 1.39 0.778 0.742 0 1.39 1.15 0 0.25 0.25 0.30 7500
PZT - 5H 1.27 0.802 0.846 0 1.27 1.17 0 0.229 0.229 0.234 7500
PZT - 7A 1.577 0.876 0.812 0 1.577 1.256 0 0.294 0.294 0.349 7700
PZT - 8 1.468 0.810 0.810 0 1.468 1.317 0 0.313 0.313 0.328 7600
ZincOxide 2.097 1.211 1.05 0 2.097 2.111 0 0.423 0.423 0.442 5680

Relative Permittivity Matrix
Coefficicents of Coupling Matrix (×8.85× 10−12)

e15 e16 e21 e22 e24 e31 e32 e33 εS11 εS22 εS33
ALN -0.48 0 0 0 -0.48 -0.58 -0.58 1.55 9 7.4 9

LiNbO3 3.69 -2.53 -2.53 2.53 3.69 0.19 0.19 1.30 43.6 43.6 29.16
PVDF 0 0 0 0 0 0.024 0.001 -0.027 7.4 9.3 7.6
PZT - 2 9.77 0 0 0 9.77 -1.81 -1.81 9.05 504.1 504.1 270
PZT - 4 12.71 0 0 0 12.71 -5.20 -5.20 15.08 762.5 762.5 663.2
PZT - 5H 17.03 0 0 0 17.03 -6.62 -6.62 23.24 1704.4 1704.4 1433.6
PZT - 7A 10.58 0 0 0 10.58 -2.29 -2.29 9.48 499.5 499.5 229.9
PZT - 8 10.34 0 0 0 10.34 -3.87 -3.87 13.91 904.4 904.4 561.6
ZincOxide -0.48 0 0 0 -0.48 -0.56 -0.56 1.32 8.544 8.544 10.204
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MATLAB 3D TOPOLOGY OPTIMIZATION CODE FOR PIEZOELECTRIC ACTUATORS

1 % 3DTOPIEZO_ACTUATION // Abbas Homayouni−Amlashi et al. 2024
2 clc ;clear ;close all
3 %% GENERAL DEFINITIONS
4 La = 3e−2; Wa = 1.5e−2; Ha = 0.1e−2; % Pieozoelectric geometrical dimensions (length, width,

height) (m)
5 Lp = 3e−2; Wp = 1.5e−2; Hp = 0.4e−3; % Passive material geometrical dimensions (length, width,

height) (m)
6 nelx = 80; nely = 40; nelz = 2; % Number of elements in each direction
7 penalKuu = 3; penalKup = 4; penalKpp = 4 ;penalPol = 1; % Penalization factors
8 EL_T = 2; % Element type 1: trilinear 2: quadratic
9 volfrac = 0.4; % Volume fraction

10 Max_loop = 200; % Maximum number of iterations
11 pol_dir = ’z’; % Piezoelectric polarization direction
12 rmin = 3; % Filter radius
13 ft = 2; % 1= Density filter, 2&3= projection with eta and beta as parameters
14 ftBC = ’N’;
15 eta = 0.5; % Threshold
16 beta = 2; % Sharpness factor
17 penalCnt = {60,5,10,0.2}; % Continuation scheme on penalKuu {istart, maxPar, isteps, deltaPar}
18 betaCnt = {60,30,10,2}; % Continuation scheme on beta {istart, maxPar, isteps, deltaPar}
19 move = 0.2; % Optimization variable update move
20 Dir = 0; % Direction of movement x=2; y=1; z=0;
21 Ks = 0.1; % Spring stiffness
22 %% MATERIAL PROPERTIES (PZT 4)
23 ro_p = 7500; % Density of piezoelectric material (kg/m^3)
24 C_p = [1.3900 0.7784 0.7428 0.0000 0.0000 0.0000
25 0.7784 1.3900 0.7428 0.0000 0.0000 0.0000
26 0.7428 0.7428 1.1541 0.0000 0.0000 0.0000
27 0.0000 0.0000 0.0000 0.2564 0.0000 0.0000
28 0.0000 0.0000 0.0000 0.0000 0.2564 0.0000
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.3058]∗1.0e+11; % Piezoelectric stiffness tensor
30 e = [0.0000 0.0000 0.0000 0.0000 12.7179 0.0000
31 0.0000 0.0000 0.0000 12.7179 0.0000 0.0000
32 −5.2028 −5.2028 15.0804 0.0000 0.0000 0.0000]; % Piezoelectric coupling matrix
33 Ep = [0.6746 0.0000 0.0000
34 0.0000 0.6746 0.0000
35 0.0000 0.0000 0.5867]∗1.0e−08; % Piezoelectric permittivity matrix
36 ro_s = 2710; % Density of Passive material (kg/m^3)
37 EE = 70e9; % Passive material Young modulus of elasticity
38 nu = 0.3 ; % Poisson’s ratio
39 C_s = (EE/((1+nu)∗(1−2∗nu)))∗[1−nu nu nu 0 0 0 ; nu 1−nu nu 0 0 0 ; nu nu 1− nu 0 0 0 ;
40 0 0 0 (1−2∗nu)/2 0 0 ; 0 0 0 0 (1− 2∗nu)/2 0 ; 0 0 0 0 0 (1− 2∗nu)/2]; % Passive material

stiffness tensor
41 %% PREPARE FINITE ELEMENT ANALYSIS
42 [C_p_1,e_1,Ep_1] = Matrix_Rotation(C_p,e,Ep,pol_dir); % New tensor matrices after Rotation of

coordinate system
43 [kuu,kup,kpp,~,ndofPZT,EL_NN,TOPNODS,BOTNODS,FRNODS,BAKNODS,LEFNODS,RTNODS] = FEM(La,Wa,Ha,nelz,

nelx,nely,C_p_1,e_1,Ep_1,0,EL_T); % Piezoelectric elemental matrices
44 [ks,~,~,~,~,~,~,~,~,~,~,~] = FEM(Lp,Wp,Hp,max(1,nelz−2),nelx,nely,C_s,zeros(3,6),zeros(3,3),0,EL_T

); % Passive material elemental matrices
45 k0 = max(abs(kuu(:)));beta0 = max(kpp(:));alpha0 = max(kup(:)); % Normalization Factors
46 kuu = kuu/k0;ks = ks/k0;kup = kup/alpha0;kpp = kpp/beta0;gamma = (k0∗beta0)/(alpha0^2); %

Application of normalization
47 kuu_LT = kuu(tril(true(size(kuu)))); % Vector of lower triangular matrix
48 kpp_LT = kpp(tril(true(size(kpp)))); % Vector of lower triangular element of piezoelectric

dielectric stifness matrix
49 ks_LT = ks(tril(true(size(ks)))); % Vector of lower triangular matrix
50 ndof = 3∗ndofPZT; % Mechanical degrees of freedom
51 nele = nelx∗nelz∗nely; % Number of elements
52 ElNum = reshape(1:nele,nelz,nelx,nely); % Element indexing
53 % Building connectivity matrix
54 NNlinear=(nelz+1)∗(nelx+1)∗(nely+1);
55 edg1=reshape(1:NNlinear,nelz+1,nelx+1,nely+1);
56 edg2=reshape(NNlinear+1:NNlinear+(nely+1)∗(nelx+1)∗nelz,nelz,nelx+1,nely+1);
57 edg3=reshape(NNlinear+(nely+1)∗(nelx+1)∗nelz+1:NNlinear+(nely+1)∗(nelx+1)∗nelz+(nelz+1)∗(nely+1)∗

nelx,nelz+1,nelx,nely+1);
58 edg4=reshape(NNlinear+(nely+1)∗(nelx+1)∗nelz+(nelz+1)∗(nely+1)∗nelx+1:NNlinear+(nely+1)∗(nelx+1)∗

nelz+(nelz+1)∗(nely+1)∗nelx+nely∗(nelz+1)∗(nelx+1),nelz+1,nelx+1,nely);
59 n=0;
60 for i=1:nely
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61 for j=1:nelx
62 for k = 1:nelz
63 n=n+1;
64 EDG1=edg1([k,k+1],[j,j+1],[i,i+1]);
65 EDG2=edg2(k,[j,j+1],[i,i+1]);
66 EDG3=edg3([k,k+1],j,[i,i+1]);
67 EDG4=edg4([k,k+1],[j,j+1],i);
68 ED(n,:)=[EDG1(:);EDG2(:);EDG3(:);EDG4(:)]’;
69 end
70 end
71 end
72 EDM = ED(:,[2,4,3,1,6,8,7,5,14,10,13,9,20,19,17,18,16,12,15,11]);
73 edofMatPZT = EDM(:,1:EL_NN); % Electrical connectivitry matrix
74 edofMat(:,3:3:3∗EL_NN)=3∗edofMatPZT;edofMat(:,2:3:3∗EL_NN)=3∗edofMatPZT−1;edofMat(:,1:3:3∗EL_NN)=3∗

edofMatPZT−2; % Mechanical connectivitry matrix
75 [ sI, sII ] = deal( [ ] );
76 for j = 1 : 3∗EL_NN
77 sI = cat( 2, sI, j : 3∗EL_NN );
78 sII = cat( 2, sII, repmat( j, 1, 3∗EL_NN − j + 1 ) );
79 end
80 [ iK , jK ] = deal( edofMat( :, sI )’, edofMat( :, sII )’ );
81 Iar = sort( [ iK( : ), jK( : ) ], 2, ’descend’ ); clear iK jK % Assembly indexing (stiffness

matrix)
82 [ sI, sII ] = deal( [ ] );
83 for j = 1 : EL_NN
84 sI = cat( 2, sI, 1 : 3∗EL_NN );
85 sII = cat( 2, sII, repmat( j, 1, 3∗EL_NN ) );
86 end
87 [ iKup , jKup ] = deal( edofMat( :, sI )’, edofMatPZT( :, sII )’ );
88 Iar_up = [ iKup( : ), jKup( : ) ] ; clear iKup jKup; % Assembly indexing for piezoelectric

coupling matrix
89 [ sI, sII ] = deal( [ ] );
90 for j = 1:EL_NN
91 sI = cat(2,sI,j:EL_NN);
92 sII = cat(2,sII,repmat(j,1,EL_NN−j+1));
93 end
94 [iKp,jKp] = deal(edofMatPZT(:,sI)’,edofMatPZT(:,sII)’);
95 Iar_p = sort([iKp(:),jKp(:)],2,’descend’); clear iKp jKp % Assembly indexing for piezoelectric

dielectric stiffness matrix
96 %% ACTIVE & PASSIVE DOMAINS
97 Passive_el = ElNum([] ,:,:); Passive_el = Passive_el(:); % Definition of passive elements
98 Active_el = setdiff(1:nele,Passive_el); Active_el = Active_el(:);% Definition of active elements
99 %% DEFINITION OF BOUNDARY CONDITION

100 DE = ElNum(:,1,:); DE=DE(:); % Desired elements for left clamped side
101 DNN = LEFNODS; % Desired node numbers (elemental left nodes)
102 fixeddof = edofMat(DE,[3∗DNN,3∗DNN−1,3∗DNN−2]); fixeddof = unique(fixeddof(:)); % Fix mechanical

DOFs
103 freedofs = setdiff(1:ndof,fixeddof); freedofs=freedofs(:); lf = length(freedofs); % Free

mechanical DOFs
104 %% DEFINITION OF ELECTRODES
105 DE = ElNum(1,:,:); DE = DE(:); % Desired elements for top electrode
106 DE2 = ElNum(nelz,:,:); DE2 = DE2(:); % Desired elements for bottom electrode
107 DE3 = ElNum(ceil(nelz/2),:,:); DE3 = DE3(:); % Desired elements for Middle electrode
108 TE = edofMatPZT(DE,TOPNODS); TE = unique(TE(:)); % Top electrode
109 BE = edofMatPZT(DE2,BOTNODS); BE = unique(BE(:)); % Bottom electrode
110 ME = edofMatPZT(DE3,BOTNODS); ME = unique(ME(:)); % Mid electrode
111 en = [TE;BE;ME]; en = unique(en(:)); % Equipotential nodes
112 pn = edofMatPZT(Passive_el,:); pn = unique(setdiff(pn(:),en(:))); % Nodes of passive elements
113 fn = setdiff(1:ndofPZT,[en;pn]); fn = unique(fn(:)); % FreeNodes
114 Uu = zeros(ndof,1);Up = zeros(ndofPZT,1);Adjoint = zeros(ndof,1); % Creation of null vectors
115 Up([TE;BE],1) = 1; % Actuation voltage
116 %% OUTPUT DISPLACEMENT DEFINITION
117 DE = ElNum(ceil(nelz/2),nelx,ceil(nely/2)); % Desired element
118 DNN = 6;% Desired node numbers
119 DMDOF = edofMat(DE,3∗DNN−Dir); DMDOF=unique(sort(DMDOF(:))); % Desired mechanical degree of

freedom
120 L = sparse(ndof,1); L(DMDOF,1) = −1;
121 %% SOLID & VOID DOMAINS
122 VOID = []; % Definition of void elements
123 SOLID = []; % Definition of solid elements
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124 NVS = setdiff(1:nele,union(VOID(:),SOLID(:))); NVS = NVS(:); % Definition of non−void and non−
solid elements

125 %% FILTERING
126 if ftBC == ’N’, bcF = ’symmetric’; else, bcF = 0; end
127 prj = @(v,eta,beta) (tanh(beta∗eta)+tanh(beta∗(v(:)−eta)))./(tanh(beta∗eta)+tanh(beta∗(1−eta)));

% projection
128 deta = @(v,eta,beta) − beta ∗ csch( beta ) .∗ sech( beta ∗ ( v( : ) − eta ) ).^2 .∗sinh( v( : ) ∗

beta ) .∗ sinh( ( 1 − v( : ) ) ∗ beta ); % projection eta−derivative
129 dprj = @(v,eta,beta) beta∗(1−tanh(beta∗(v−eta)).^2)./(tanh(beta∗eta)+tanh(beta∗(1−eta)));% proj. x

−derivative
130 cnt = @(v,vCnt,l) v+(l>=vCnt{1}).∗(v<vCnt{2}).∗(mod(l,vCnt{3})==0).∗vCnt{4};
131 [dy,dz,dx] = meshgrid(−ceil(rmin)+1:ceil(rmin)−1,−ceil(rmin)+1:ceil(rmin)−1,−ceil(rmin)+1:ceil(

rmin)−1 );
132 h = max( 0, rmin − sqrt( dx.^2 + dy.^2 + dz.^2 )); % Conv. kernel
133 Hp = imfilter( ones( nelz, nelx, nely ), h, bcF ); dHs = Hp; % Matrix of weights (filter)
134 %% INITIALIZE ITERATION
135 x = repmat(volfrac,nelz,nelx,nely); x(VOID) = 0; x(SOLID) = 1; xPhys = x; % Initial values for the

densities
136 pol=repmat(0.5,[nelz,nelx,nely]); % Initial values for polarization
137 loop = 0;
138 Density_change = 1;
139 E0 = 1; Emin = 1e−9;
140 e0 = 1; eMin = 0;
141 eps0 = 1; epsMin = 1e−9;
142 as = []; % Initialize asymptotes
143 dv0 = ones(nelz,nelx,nely); % Volume sensitivity
144 penalratio_up = penalKup/penalKuu; penalratio_pp = penalKpp/penalKuu; % Penalty ratios for

continuation scheme
145 xold1 = [x(:);pol(:)]; % Vector of variables for previous iteration
146 xold2 = [x(:);pol(:)]; % Vector of variables for 2nd previous iteration
147 %% OPTIMIZATION ITERATIONS
148 while Density_change > 1−6 && loop < Max_loop; tic
149 loop = loop+1;
150 %% COMPUTE PHYSICAL DENSITY FIELD (AND ETA IF PROJECT.)
151 xTilde = imfilter( reshape( x, nelz, nelx, nely ), h, bcF ) ./ Hp; xPhys(NVS) = xTilde(NVS); %

Filtered field
152 if ft > 1 % Compute optimal eta∗ with Newton
153 f = ( mean( prj( xPhys, eta, beta ) ) − volfrac ) ∗ (ft == 3); % Function (volume)
154 while abs( f ) > 1e−6 % Newton process for finding opt. eta
155 eta = eta − f / mean( deta( xPhys, eta, beta ) );
156 f = mean( prj( xPhys, eta, beta ) ) − volfrac;
157 end
158 dHs = Hp ./ reshape( dprj( xPhys, eta, beta ), nelz, nelx, nely ); % Sensitivity modification
159 xPhys = prj( xPhys, eta, beta ); % Projected (physical) field
160 end
161 %% FE−ANALYSIS
162 xPhys = reshape(xPhys,nelz,nelx,nely);
163 sK = ones(length(kuu_LT( : )),1).∗(Emin+xPhys(:)’.^penalKuu∗(E0−Emin));
164 sK(:,Active_el) = kuu_LT( : ).∗ sK(:,Active_el);
165 sK(:,Passive_el) = ks_LT( : ).∗ sK(:,Passive_el);
166 sKup = ones(length(kup(:)),1).∗(eMin+xPhys(:)’.^penalKup∗(e0−eMin).∗((2∗pol(:)−1)’.^penalPol));
167 sKup(:,Active_el) = kup(:).∗ sKup(:,Active_el);
168 sKup(:,Passive_el) = 0;
169 sKpp = ones(length(kpp_LT(:)),1)∗(epsMin+xPhys(:)’.^penalKpp∗(eps0−epsMin));
170 sKpp(:,Active_el)= kpp_LT(:).∗ sKpp(:,Active_el);
171 sKpp(:,Passive_el)= 0;
172 Kuu = sparse(Iar( :, 1 ),Iar( :, 2 ),sK(:)); Kuu = Kuu+Kuu’−diag(diag(Kuu)); % Global stifness

matrix
173 for i=1: length(DMDOF);Kuu(DMDOF(i,1),DMDOF(i,1)) = Kuu(DMDOF(i,1),DMDOF(i,1))+Ks; end %

Assembling the stifness of the modeled spring
174 Kup = sparse(Iar_up(:,1),Iar_up(:,2),sKup(:)); % Global piezoelectric coupling matrix
175 Kpp = sparse(Iar_p(:,1),Iar_p(:,2),sKpp(:)); Kpp = Kpp+Kpp’−diag(diag(Kpp)); % Global

piezoelectric permittivity matrix
176 Ktot = [Kuu(freedofs,freedofs),Kup(freedofs,fn);Kup(freedofs,fn)’,−gamma∗Kpp(fn,fn)];
177 U = Ktot \ [−Kup(freedofs,en)∗Up(en,:);gamma∗Kpp(fn,en)∗Up(en,:)]; % Response of the system
178 Uu(freedofs) = U(1:length(freedofs)); Up(fn) = U(length(freedofs)+1:end);
179 %% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
180 obj = full(sum(−L.∗Uu)); % Objective Function
181 lambda = zeros (ndof,1);mu = zeros (ndofPZT,1);
182 ADJ = Ktot \[L(freedofs,1);0∗fn];
183 lambda(freedofs,:) = ADJ(1:lf,:); mu(fn,:) = ADJ(lf+1:end,:);
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184 DCKuuE(Active_el) = sum((lambda(edofMat(Active_el,:))∗kuu).∗Uu(edofMat(Active_el,:)),2);
185 DCKuuE(Passive_el) = sum((lambda(edofMat(Passive_el,:))∗ks).∗Uu(edofMat(Passive_el,:)),2);
186 DCKupE(Active_el) = sum((lambda(edofMat(Active_el,:))∗kup).∗Up(edofMatPZT(Active_el,:)),2);
187 DCKupE(Passive_el) = 0;
188 DCKpuE(Active_el) = sum((Uu(edofMat(Active_el,:))∗kup).∗mu(edofMatPZT(Active_el,:)),2);
189 DCKpuE(Passive_el) = 0;
190 DCKppE(Active_el) = −gamma∗sum((mu(edofMatPZT(Active_el,:))∗kpp).∗Up(edofMatPZT(Active_el,:)),2);
191 DCKppE(Passive_el) = 0;
192 DCKuu = reshape(DCKuuE,[nelz,nelx,nely]);
193 DCKup = reshape(DCKupE+DCKpuE,[nelz,nelx,nely]);
194 DCKpp = reshape(DCKppE,[nelz,nelx,nely]);
195 dc = penalKuu∗(E0−Emin)∗xPhys.^(penalKuu−1).∗DCKuu+ penalKup∗(E0−Emin)∗((2∗pol−1).^(penalPol)).∗

xPhys.^(penalKup−1).∗DCKup+penalKpp∗(eps0−epsMin)∗xPhys.^(penalKpp−1).∗DCKpp; % Sensitivity
with respect to x

196 dp = 2∗penalPol∗((2∗pol−1).^(penalPol−1)).∗xPhys.^(penalKup).∗DCKup; % Sensitivity with respect to
p

197 dc = imfilter(reshape(dc,nelz,nelx,nely)./ dHs,h,bcF); % Filter objective sensitivity
198 dv = imfilter(reshape(dv0,nelz,nelx,nely)./ dHs,h,bcF); % Filter compliance sensitivity
199 %% UPDATING OPTIMIZATION VARIABLES
200 [Xupdate,as ,lmid ]= ocUpdate(loop , [x(:);pol(:)], [dc(:);dp(:)] ,[sum(xPhys(:))/(volfrac∗nele) −

1],[dv(:)’ / (volfrac∗nele),0∗pol(:)’]’ ,[move ,0.7 ,1.2] ,xold1 ,xold2 ,as , beta );
201 xnew = Xupdate(1:nele,1); xnew(VOID)=0; xnew(SOLID)=1; % Vector of updated density variables
202 Density_change = max(abs(xnew(:)−x(:)));
203 xold2 = xold1(:); xold1 = [x(:);pol(:)];
204 pol = reshape(Xupdate(nele+1:2∗nele,1),nelz,nelx,nely); % Vector of updated polarization variables
205 x(NVS) = xnew (NVS);
206 %% CONTINIUATION SCHEME ON PENALIZATION FACTORS & BETA
207 [penalKuu ,beta] = deal(cnt(penalKuu ,penalCnt,loop),cnt(beta,betaCnt,loop));
208 penalKup=penalKuu∗penalratio_up; penalKpp=penalKuu∗penalratio_pp;
209 %% PLOT DENSITIES & POLARIZATION
210 fprintf(’ It:%2.0i Time:%3.2fs Obj:%3.3e Vol:%3.3f ch:%3.3f\n ’,loop,toc,obj,mean(xPhys(:)

),Density_change);
211 Display(xPhys,pol,nelz,nelx,nely,Active_el,Passive_el,nele,ElNum)
212 end
213 %% PLOT DEFORMATION
214 Kuu = sparse(Iar( :, 1 ),Iar( :, 2 ),sK(:)); % Global stifness matrix
215 Kuu = Kuu+Kuu’−diag(diag(Kuu));
216 Ktot = [Kuu(freedofs,freedofs),Kup(freedofs,fn);Kup(freedofs,fn)’,−gamma∗Kpp(fn,fn)];
217 U = Ktot \ [−Kup(freedofs,en)∗Up(en,:);gamma∗Kpp(fn,en)∗Up(en,:)]; % Mechanical displacement
218 Uu(freedofs)=U(1:length(freedofs));
219 Deformation(Uu,xPhys,nelz,nelx,nely,edofMat,ElNum)
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MATLAB 3D TOPOLOGY OPTIMIZATION CODE FOR PIEZOELECTRIC ENERGY HARVESTERS

1 % 3DTOPIEZO_ENERGY−HARVESTING // Abbas Homayouni−Amlashi et al. 2024
2 clc ;clear ;close all
3 %% GENERAL DEFINITIONS
4 La = 3e−2 ; Wa = 1.0e−2 ; Ha = 0.1e−2 ; % Pieozoelectric geometrical dimensions (length, width,

height) (m)
5 Lp = 3e−2 ; Wp = 1.0e−2 ; Hp = 0.1e−2 ; % Passive material geometrical dimensions (length, width

, height) (m)
6 nelx = 3∗33 ; nely = 33 ; nelz = 4 ; % Number of elements in each direction
7 penalKuu = 3; penalKup = 6; penalKpp = 4 ; penalPol = 1 ; % Penalization factors
8 EL_T = 1; % Element type 1: trilinear, 2− quadratic
9 volfrac = 0.5; % Volume fraction

10 Max_loop = 120; % Maximum number of Iteration
11 pol_dir = ’z’; % Piezoelectric polarization direction
12 move = 0.2; % Optimization variable update move
13 ft = 2; % 1= Density filter, 2&3= projection with eta and beta as parameters
14 ftBC = ’N’;
15 rmin = 1.5; % Filter radius
16 eta = 0.5; % Threshold
17 beta = 2; % Sharpness factor
18 penalCnt = {60,5,10,0.2}; % Continuation scheme on penalKuu {istart, maxPar, isteps, deltaPar}
19 betaCnt = {60,60,10,2}; % Continuation scheme on beta {istart, maxPar, isteps, deltaPar}
20 Dir=0; % Direction of force x=2; y=1; z=0;
21 omega = 150; % Excitation frequency (Hz)
22 wj = 0.1; % Objective function weigthing factor
23 Mass = 30; % Mass of attachement (gram)
24 %% MATERIAL PROPERTIES (PZT 4)
25 ro_p = 7500; % Density of piezoelectric material (kg/m^3)
26 C_p = [1.3900 0.7784 0.7428 0.0000 0.0000 0.0000
27 0.7784 1.3900 0.7428 0.0000 0.0000 0.0000
28 0.7428 0.7428 1.1541 0.0000 0.0000 0.0000
29 0.0000 0.0000 0.0000 0.2564 0.0000 0.0000
30 0.0000 0.0000 0.0000 0.0000 0.2564 0.0000
31 0.0000 0.0000 0.0000 0.0000 0.0000 0.3058]∗1.0e+11; % Piezoelectric stiffness tensor
32 e = [0.0000 0.0000 0.0000 0.0000 12.7179 0.0000
33 0.0000 0.0000 0.0000 12.7179 0.0000 0.0000
34 −5.2028 −5.2028 15.0804 0.0000 0.0000 0.0000]; % Piezoelectric coupling matrix
35 Ep = [0.6746 0.0000 0.0000
36 0.0000 0.6746 0.0000
37 0.0000 0.0000 0.5867]∗1.0e−08; % Piezoelectric permittivity matrix
38 ro_s = 2710; % Density of Passive material (kg/m^3)
39 EE = 70e9; % Young modulus of elasticity
40 NU = 0.30 ; % Poisson ratio
41 C_s = (EE/((1+NU)∗(1−2∗NU)))∗[1−NU NU NU 0 0 0 ; NU 1−NU NU 0 0 0 ; NU NU 1− NU 0 0 0 ;
42 0 0 0 (1−2∗NU)/2 0 0 ; 0 0 0 0 (1− 2∗NU)/2 0 ; 0 0 0 0 0 (1− 2∗NU)/2]; % Stiffness matrix for

passive material
43 %% PREPARE FINITE ELEMENT ANALYSIS
44 [C_p_1,e_1,Ep_1] = Matrix_Rotation(C_p,e,Ep,pol_dir);
45 [kuu,kup,kpp,m_p,ndofPZT,EL_NN,TOPNODS,BOTNODS,FRNODS,BAKNODS,LEFNODS,RTNODS] = FEM(La,Wa,Ha,nelz,

nelx,nely,C_p_1,e_1,Ep_1,ro_p,EL_T); % Pizeoelectric elemental matrices
46 [ks,~,~,m_s,~,~,~,~,~,~,~,~] = FEM(Lp,Wp,Hp,max(1,nelz−2),nelx,nely,C_s,zeros(3,6),zeros(3,3),ro_s

,EL_T); % Passive material elemental matrices
47 k0 = max(abs(kuu(:)));beta0 = max(kpp(:));alpha0 = max(kup(:)); M0 = max(m_p(:)); % Normalization

Factors
48 kuu = kuu/k0;ks = ks/k0;kup = kup/alpha0;kpp = kpp/beta0;gamma = (k0∗beta0)/(alpha0^2); %

Application of normalization I
49 m_p = m_p/M0; m_s = m_s/M0; omega = M0∗(omega∗2∗pi)^2/k0; % Application of normalization II
50 kuu_LT = kuu(tril(true(size(kuu)))); % Vector of lower triangular matrix
51 kpp_LT = kpp(tril(true(size(kpp)))); % Vector of lower triangular element of piezoelectric

dielectric stifness matrix
52 mp_LT = m_p(tril(true(size(m_p)))); % Vector of lower triangular element of piezoelectric mass

matrix
53 ms_LT = m_s(tril(true(size(m_s)))); % Vector of lower triangular element of passive material mass

matrix
54 ks_LT = ks(tril(true(size(ks)))); % Vector of lower triangular matrix
55 ndof = 3∗ndofPZT; % Mechanical degrees of freedom
56 nele = nelx∗nelz∗nely; % Number of elements
57 ElNum = reshape(1:nele,nelz,nelx,nely); % Element indexing
58 % Building connectivity matrix
59 NNlinear=(nelz+1)∗(nelx+1)∗(nely+1);
60 edg1=reshape(1:NNlinear,nelz+1,nelx+1,nely+1);
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61 edg2=reshape(NNlinear+1:NNlinear+(nely+1)∗(nelx+1)∗nelz,nelz,nelx+1,nely+1);
62 edg3=reshape(NNlinear+(nely+1)∗(nelx+1)∗nelz+1:NNlinear+(nely+1)∗(nelx+1)∗nelz+(nelz+1)∗(nely+1)∗

nelx,nelz+1,nelx,nely+1);
63 edg4=reshape(NNlinear+(nely+1)∗(nelx+1)∗nelz+(nelz+1)∗(nely+1)∗nelx+1:...
64 NNlinear+(nely+1)∗(nelx+1)∗nelz+(nelz+1)∗(nely+1)∗nelx+nely∗(nelz+1)∗(nelx+1),nelz+1,nelx+1,nely);
65 n=0;
66 for i=1:nely
67 for j=1:nelx
68 for k = 1:nelz
69 n=n+1;
70 EDG1=edg1([k,k+1],[j,j+1],[i,i+1]);
71 EDG2=edg2(k,[j,j+1],[i,i+1]);
72 EDG3=edg3([k,k+1],j,[i,i+1]);
73 EDG4=edg4([k,k+1],[j,j+1],i);
74 ED(n,:)=[EDG1(:);EDG2(:);EDG3(:);EDG4(:)]’;
75 end
76 end
77 end
78 EDM = ED(:,[2,4,3,1,6,8,7,5,14,10,13,9,20,19,17,18,16,12,15,11]);
79 edofMatPZT = EDM(:,1:EL_NN); % Electrical connectivitry matrix
80 edofMat(:,3:3:3∗EL_NN)=3∗edofMatPZT;edofMat(:,2:3:3∗EL_NN)=3∗edofMatPZT−1;edofMat(:,1:3:3∗EL_NN)=3∗

edofMatPZT−2; % Mechanical connectivitry matrix
81 [sI,sII] = deal([]);
82 for j = 1:3∗EL_NN
83 sI = cat(2,sI,j:3∗EL_NN);
84 sII = cat(2,sII,repmat(j,1,3∗EL_NN−j+1));
85 end
86 [iK,jK] = deal(edofMat(:,sI)’,edofMat(:,sII)’);
87 Iar = sort([iK(:),jK(:)],2,’descend’); clear iK jK % Assembly indexing (stiffness matrix)
88 [sI,sII] = deal([]);
89 for j = 1 : EL_NN
90 sI = cat(2,sI,1:3∗EL_NN);
91 sII = cat(2,sII,repmat(j,1,3∗EL_NN));
92 end
93 [iKup,jKup] = deal(edofMat(:,sI)’,edofMatPZT(:,sII)’);
94 Iar_up = [iKup(:),jKup(:)]; clear iKup jKup; % Assembly indexing for piezoelectric coupling matrix
95 [sI,sII] = deal([]);
96 for j = 1:EL_NN
97 sI = cat(2,sI,j:EL_NN);
98 sII = cat(2,sII,repmat(j,1,EL_NN−j+1));
99 end

100 [iKp,jKp] = deal(edofMatPZT(:,sI)’,edofMatPZT(:,sII)’);
101 Iar_p = sort([iKp(:),jKp(:)],2,’descend’); clear iKp jKp % Assembly indexing for piezoelectric

dielectric stiffness matrix
102 %% ACTIVE & PASSIVE DOMAINS
103 Passive_el=ElNum([2:nelz−1],:,:); Passive_el=Passive_el(:); % Definition of passive elements
104 Active_el=setdiff(1:nele,Passive_el); Active_el=Active_el(:);% Definition of active elements
105 %% DEFINITION OF BOUNDARY CONDITION
106 DE = ElNum(:,1,:); DE=DE(:); % Desired element for left clamped side
107 DNN = LEFNODS; % Desired node numbers (elemental left nodes)
108 fixeddof = edofMat(DE,[3∗DNN−1,3∗DNN−2]); fixeddof = fixeddof(:); % Fix mechanical DOFs
109 freedofs = setdiff(1:ndof,fixeddof); lf = length(freedofs); % Free mechanical DOFs
110 %% DEFINITION OF ELECTRODES
111 PE1 = edofMatPZT(ElNum(1,:,:),TOPNODS); PE1 = PE1(:);
112 PE2 = edofMatPZT(ElNum(1,:,:),BOTNODS); PE2 = PE2(:);
113 PE3 = edofMatPZT(ElNum(nelz,:,:),TOPNODS); PE3 = PE3(:);
114 PE4 = edofMatPZT(ElNum(nelz,:,:),BOTNODS); PE4 = PE4(:);
115 en = [PE1;PE2;PE3;PE4]; en = unique(en(:)); % Equipotential nodes
116 pn = edofMatPZT(Passive_el,:); pn = unique(setdiff(pn(:),en(:))); % Nodes of passive elements
117 fn = setdiff(1:ndofPZT,[en;pn]); fn = unique(fn(:)); % FreeNodes
118 Nelec=2; % Number of potential electrodes
119 B = sparse(ndofPZT,Nelec); % Creation of null Bolean matrix
120 B(PE1’,1)=1; B(PE4’,2)=1; % Creation of Bolean matrix
121 Up=zeros(ndofPZT,1);ADJ1 = zeros(ndof,1); ADJ2 = zeros(ndof,1); % Creation of null displacement

vector
122 %% FORCE DEFINITION
123 nf = 1; % Number of forces
124 F = sparse(ndof,nf); % Definition of null vector for the force
125 DE = ElNum(:,1,:);DE=DE(:); % Desired element for appliation of force
126 DNN = LEFNODS; % Desired elemental node number
127 Fe=edofMat(DE,3∗DNN−Dir); Fe = Fe(:); % Desired mechanical degrees of freedom
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128 F(Fe,1) = +1; % Amplitude of the force
129 Ftot = [F(freedofs,:);zeros(length(fn),nf);zeros(Nelec,nf)];
130 %% DEFINITION OF ATTACHMENT MASS
131 sMass=zeros(nele,1);
132 sMass(ElNum([2:nelz−1],nelx,ceil(0.4∗nely):ceil(0.6∗nely)))=1; % Distribution of mass
133 le = Lp/nelx; we = Wp/nely; he = Ha; % Dimension of each element
134 ro_M = Mass∗1e−3/(le∗we∗he)/length(find(sMass)); % Density of heavy elements
135 sMMass = (ro_M/ro_p)∗mp_LT(:).∗sMass’;
136 sMMass = reshape( sMMass, length( mp_LT(:) ) ∗ nele, 1 );
137 M_Att = sparse(Iar( :, 1 ),Iar( :, 2 ),sMMass(:)); % Mass matrix containing only the attachement

mass
138 %% SOLID & VOID DOMAINS
139 VOID = []; % Definition of void elements
140 SOLID = []; % Definition of solid elements
141 NVS = setdiff(1:nele,union(VOID(:),SOLID(:))); NVS = NVS(:); % Definition of non−void and non−

solid elements
142 %% FILTER INITIALIZATION [Ferrari & Sigmund 2020]
143 if ftBC == ’N’, bcF = ’symmetric’; else, bcF = 0; end
144 prj = @(v,eta,beta) (tanh(beta∗eta)+tanh(beta∗(v(:)−eta)))./(tanh(beta∗eta)+tanh(beta∗(1−eta)));

% projection
145 deta = @(v,eta,beta) − beta ∗ csch( beta ) .∗ sech( beta ∗ ( v( : ) − eta ) ).^2 .∗sinh( v( : ) ∗

beta ) .∗ sinh( ( 1 − v( : ) ) ∗ beta ); % projection eta−derivative
146 dprj = @(v,eta,beta) beta∗(1−tanh(beta∗(v−eta)).^2)./(tanh(beta∗eta)+tanh(beta∗(1−eta)));% proj. x

−derivative
147 cnt = @(v,vCnt,l) v+(l>=vCnt{1}).∗(v<vCnt{2}).∗(mod(l,vCnt{3})==0).∗vCnt{4};
148 [dy,dz,dx] = meshgrid(−ceil(rmin)+1:ceil(rmin)−1,−ceil(rmin)+1:ceil(rmin)−1,−ceil(rmin)+1:ceil(

rmin)−1 );
149 h = max( 0, rmin − sqrt( dx.^2 + dy.^2 + dz.^2 )); % Conv. kernel
150 Hs = imfilter( ones( nelz, nelx, nely ), h, bcF ); dHs = Hs; % Matrix of weights (filter)
151 %% INITIALIZE ITERATION
152 x = repmat(volfrac,nelz,nelx,nely); x(VOID) = 0; x(SOLID) = 1; xPhys = x; % Initial guess for the

densities
153 pol = repmat(0.5,[nelz,nelx,nely]); % Initial values for polarization
154 loop = 0;
155 Density_change = 1;
156 E0 = 1; Emin = 1e−9;
157 e0 = 1; eMin = 1e−9;
158 eps0 = 1; epsMin = 1e−9;
159 as = []; % Initialize asymptotes
160 dv0 = ones(nelz,nelx,nely); % Volume sensitivity
161 penalratio_up = penalKup/penalKuu; penalratio_pp = penalKpp/penalKuu; % Penalty ratios for

continuation scheme
162 xold1 = [x(:);pol(:)]; % Vector of variables for previous iteration
163 xold2 = [x(:);pol(:)]; % Vector of variables for 2nd previous iteration
164 %% OPTIMIZATION ITERATIONS
165 while loop < Max_loop; tic
166 loop = loop+1;
167 %% COMPUTE PHYSICAL DENSITY FIELD (AND ETA IF PROJECT.) [Ferrari & Sigmund 2020]
168 xTilde = imfilter( reshape( x, nelz, nelx, nely ), h, bcF ) ./ Hs; xPhys(NVS) = xTilde(NVS);

% filtered field
169 if ft > 1 % Compute optimal eta∗ with Newton
170 f = ( mean( prj( xPhys, eta, beta ) ) − volfrac ) ∗ (ft == 3); % Function (volume)
171 while abs( f ) > 1e−6 % Newton process for finding opt. eta
172 eta = eta − f / mean( deta( xPhys, eta, beta ) );
173 f = mean( prj( xPhys, eta, beta ) ) − volfrac;
174 end
175 dHs = Hs ./ reshape( dprj( xPhys, eta, beta ), nelz, nelx, nely ); % Sensitivity modification
176 xPhys = prj( xPhys, eta, beta ); % Projected (physical) field
177 end
178 %% FE−ANALYSIS
179 xPhys = reshape(xPhys,nelz,nelx,nely);
180 sM = ones(length(mp_LT( : )),1).∗xPhys(:)’;
181 sM(:,Active_el)= mp_LT( : ).∗ sM(:,Active_el);
182 sM(:,Passive_el)= ms_LT( : ).∗ sM(:,Passive_el);
183 sM = reshape( sM, length( mp_LT(:) ) ∗ nele, 1 );
184 sKuu = ones(length(kuu_LT( : )),1).∗(Emin+xPhys(:)’.^penalKuu∗(E0−Emin));
185 sKuu(:,Active_el)= kuu_LT( : ).∗ sKuu(:,Active_el);
186 sKuu(:,Passive_el)= ks_LT( : ).∗ sKuu(:,Passive_el);
187 sKuu = reshape(sKuu, length(kuu_LT(:)) ∗ nele, 1 );
188 sKup = ones(length(kup(:)),1)∗(eMin+xPhys(:)’.^penalKup∗(e0−eMin).∗((2∗pol(:)−1)’.^penalPol));
189 sKup(:,Active_el)=kup(:).∗ sKup(:,Active_el);
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190 sKup(:,Passive_el)=zeros(size(kup(:))).∗sKup(:,Passive_el);
191 sKpp = ones(length(kpp_LT(:)),1)∗(epsMin+xPhys(:)’.^penalKpp∗(eps0−epsMin));
192 sKpp(:,Active_el)= kpp_LT(:).∗ sKpp(:,Active_el);
193 sKpp(:,Passive_el)= zeros(size(kpp_LT(:))).∗sKpp(:,Passive_el);
194 M= sparse(Iar( : , 1 ),Iar( : , 2 ),sM); % Global Mass matrix
195 Kuu = sparse(Iar( : , 1 ),Iar( : , 2 ),sKuu); KuuM = Kuu−(M)∗omega; % Global stiffness matrix
196 Kuu = Kuu−(M+M_Att)∗omega;Kuu = Kuu+Kuu’−diag(diag(Kuu)); % Global dynamic stiffness matrix
197 Kup = sparse( Iar_up( :, 1 ), Iar_up ( :, 2 ),sKup(:)); % Global piezoelectric coupling matrix
198 Kpp = sparse( Iar_p( :, 1 ), Iar_p ( :, 2 ),sKpp(:)); Kpp =Kpp+Kpp’−diag(diag(Kpp)); % Global

piezoelectric permittivity matrix
199 Ktot = [Kuu(freedofs,freedofs),Kup(freedofs,fn),Kup(freedofs,en)∗B(en,:);
200 Kup(freedofs,fn)’,−gamma∗Kpp(fn,fn),−gamma∗Kpp(fn,en)∗B(en,:);
201 B(en,:)’∗Kup(freedofs,en)’,−gamma∗B(en,:)’∗Kpp(fn,en)’,−gamma∗B(en,:)’∗Kpp(en,en)∗B(en,:)];
202 U = ( Ktot \ Ftot); % Response of the system
203 Up(fn,:) = U(lf+1:lf+length(fn),:); Up(en,:) = B(en,:)∗U(lf+length(fn)+1:end,:);
204 %% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
205 lambda1 = zeros (ndof,nf);lambda2 = zeros (ndof,nf);mu1 = zeros (ndofPZT,nf);mu2 = zeros (ndofPZT,

nf);
206 ADJ1 = Ktot\[−Kuu(freedofs,freedofs)∗U(1:lf,:);zeros(length(fn),nf);zeros(Nelec,nf)]; % First

adjoint vector
207 lambda1(freedofs,:) = ADJ1(1:lf,:); mu1(fn,:) = ADJ1(lf+1:lf+length(fn),:);mu1(en,:) = B(en,:)∗ADJ1

(lf+length(fn)+1:end,:);
208 ADJ2 = Ktot\[zeros(lf,nf);−gamma∗Kpp(fn,fn)∗Up(fn,:)−gamma∗Kpp(fn,en)∗Up(en,:);−gamma∗B(en,:)’∗

Kpp(en,en)∗Up(en,:)−gamma∗B(en,:)’∗Kpp(en,fn)∗Up(fn,:)]; % Second adjoint vector
209 lambda2(freedofs,:) = ADJ2(1:lf,:); mu2(fn,:) = ADJ2(lf+1:lf+length(fn),:);mu2(en,:) = B(en,:)∗ADJ2

(lf+length(fn)+1:end,:);
210 Uu_i = zeros(ndof,1); Wm = 0 ; We = 0 ; dc = zeros(nelz,nelx,nely) ; dp = zeros(nelz,nelx,nely);
211 for i = 1:nf
212 Uu_i(freedofs,1) = U(1:lf,i);Up_i = Up(:,i);
213 lambda1_i = lambda1(:,i); lambda2_i = lambda2(:,i);
214 mu1_i = mu1(:,i);mu2_i = mu2(:,i);
215 Wm = Wm+Uu_i’∗KuuM∗Uu_i; % Mechanical energy
216 We = We+Up_i’∗Kpp∗Up_i∗gamma; % Electrical energy
217 dcKuuE(Active_el,:) = wj∗((((1/2)∗Uu_i(edofMat(Active_el,:)) + lambda1_i(edofMat(Active_el,:)))∗kuu

).∗Uu_i(edofMat(Active_el,:)))−(1−wj)∗((lambda2_i(edofMat(Active_el,:))∗kuu).∗Uu_i(edofMat(
Active_el,:)));

218 dcKuuE(Passive_el,:) = wj∗((((1/2)∗Uu_i(edofMat(Passive_el,:)) + lambda1_i(edofMat(Passive_el,:)))∗
ks).∗Uu_i(edofMat(Passive_el,:)))−(1−wj)∗((lambda2_i(edofMat(Passive_el,:))∗ks).∗Uu_i(edofMat(
Passive_el,:)));

219 dcKupE(Active_el,:) = wj∗((lambda1_i(edofMat(Active_el,:))∗kup).∗Up_i(edofMatPZT(Active_el,:)) + ((
Uu_i(edofMat(Active_el,:)))∗kup).∗mu1_i(edofMatPZT(Active_el,:)))−(1−wj)∗((lambda2_i(edofMat(
Active_el,:))∗kup).∗Up_i(edofMatPZT(Active_el,:)) + ((Uu_i(edofMat(Active_el,:)))∗kup).∗mu2_i(
edofMatPZT(Active_el,:)));

220 dcKupE(Passive_el,:) = 0;
221 dcKppE(Active_el,:) = wj∗((−mu1_i(edofMatPZT(Active_el,:))∗kpp).∗Up_i(edofMatPZT(Active_el,:)))

−(1−wj)∗((1/2)∗(Up_i(edofMatPZT(Active_el,:))∗kpp).∗Up_i(edofMatPZT(Active_el,:)) − (mu2_i(
edofMatPZT(Active_el,:))∗kpp).∗Up_i(edofMatPZT(Active_el,:)));

222 dcKppE(Passive_el,:) = 0;
223 dcME(Active_el,:) = wj∗((((1/2)∗Uu_i(edofMat(Active_el,:)) + lambda1_i(edofMat(Active_el,:)))∗(−

m_p∗omega)).∗Uu_i(edofMat(Active_el,:)))−(1−wj)∗((lambda2_i(edofMat(Active_el,:))∗(−m_p∗omega)
).∗Uu_i(edofMat(Active_el,:)));

224 dcME(Passive_el,:) = wj∗((((1/2)∗Uu_i(edofMat(Passive_el,:)) + lambda1_i(edofMat(Passive_el,:)))
∗(−m_s∗omega)).∗Uu_i(edofMat(Passive_el,:)))−(1−wj)∗((lambda2_i(edofMat(Passive_el,:))∗(−m_s∗
omega)).∗Uu_i(edofMat(Passive_el,:)));

225 dcKuu = reshape(full(sum(dcKuuE,2)),[nelz,nelx,nely]);
226 dcKup = reshape(full(sum(dcKupE,2)),[nelz,nelx,nely]);
227 dcKpp = gamma∗reshape(full(sum(dcKppE,2)),[nelz,nelx,nely]);
228 dcM = reshape(full(sum(dcME,2)),[nelz,nelx,nely]);
229 dc = dc + penalKuu∗(E0−Emin)∗xPhys.^(penalKuu−1).∗dcKuu+penalKup∗(e0−eMin)∗xPhys.^(penalKup−1).∗

dcKup.∗((2∗pol−1).^(penalPol))+penalKpp∗(eps0−epsMin)∗xPhys.^(penalKpp−1).∗dcKpp+dcM; %
Density variable sensitivity

230 dp = dp + (e0−eMin)∗2∗penalPol∗((2∗pol−1).^(penalPol−1)).∗xPhys.^penalKup.∗dcKup; % Polarization
variable sensitivity

231 end
232 c = wj∗Wm−(1−wj)∗We; % Objective function
233 dc = imfilter( reshape( dc, nelz, nelx, nely ) ./ dHs, h, bcF ); % Filter objective sensitivity
234 dv = imfilter( reshape( dv0, nelz, nelx, nely ) ./ dHs, h, bcF ); % Filter compliance sensitivity
235 %% UPDATING OPTIMIZATION VARIABLES (Ferrari & Sigmund 2020)
236 [Xupdate,as ,lmid ]= ocUpdate (loop , [x(:);pol(:)], [dc(:);dp(:)] ,[sum(xPhys(:))/(volfrac∗nele)

− 1],[dv(:)’ / (volfrac∗nele),0∗pol(:)’]’ ,[move ,0.7 ,1.2] ,xold1 ,xold2 ,as , beta );
237 xnew = Xupdate(1:nele,1);xnew(VOID)=0;xnew(SOLID)=0;% Vector of updated density variables
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238 Density_change = max(abs(xnew(:)−x(:)));
239 xold2 = xold1(:);xold1 = [x(:);pol(:)];
240 pol = reshape(Xupdate(nele+1:2∗nele,1),nelz,nelx,nely); % Vector of updated polarization variables
241 x (NVS)= xnew(NVS);
242 %% CONTINIUATION SCHEME ON PENALIZATION FACTORS & BETA
243 [penalKuu ,beta] = deal(cnt(penalKuu ,penalCnt,loop),cnt(beta,betaCnt,loop));
244 penalKup=penalKuu∗penalratio_up; penalKpp=penalKuu∗penalratio_pp;
245 %% PRESENTATION OF RESULTS
246 fprintf(’ It:%2.0i Time:%3.2fs Obj:%3.4e Wm.:%3.4e We.:%3.4e Vol:%3.3f ch:%3.3f\n ’,loop,toc,c,Wm,

We,mean(xPhys(:)),Density_change);
247 Display(xPhys,pol,nelz,nelx,nely,Active_el,Passive_el,nele,ElNum)
248 end
249 %% PLOT DEFORMATION (ELEMENTAL)
250 Uu = zeros(ndof,1);
251 Uu(freedofs,1) = U(1:lf,1);
252 Uu(edofMat(:,[3:3:24])) = Uu(edofMat(:,3:3:24))− Uu(edofMat(1,3));
253 Deformation(Uu,xPhys,nelz,nelx,nely,edofMat,ElNum) % Plot the deformation
254 %% Hints
255 % ∗∗ To run this code you have to add five addon functions :
256 % 1 Display, 2 ocUpdate, 3 FEM, 4 Matrix_Rotation, 5 Deformation
257 %
258 % ∗∗ With the addon functions, code can be compiled solely
259 %
260 % ||=====================================================================||
261 % || THIS CODE IS WRITTEN BY ABBAS HOMAYOUNIAMLASHI, OLE SIGMUND, ||
262 % || THOMAS SCHLINQUER, MICKY RAKOTONDRABE, ABDENBI MOHANDOUSAID ||
263 % || 2024 ||
264 % ||=====================================================================||
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ADD-ON FUNCTIONS : 1 - Display the results
1 %% PRESENTATION OF RESULTS (2D & 3D) // ABBAS HOMAYOUNI−AMLASHI 2024
2 function Display(xPhys,pol,nelz,nelx,nely,Active_el,Passive_el,nele,ElNum)
3 figure (1)
4 if nelz<=6;AX= subplot (4, nelz, [1:2∗nelz]); cla();
5 else; AX=subplot (1, 2, 1); cla(); end
6 Xactive=zeros(nele,1);Xactive(Active_el,1)=xPhys(Active_el);
7 Xpassive=zeros(nele,1);Xpassive(Passive_el,1)=xPhys(Passive_el);
8 isovals_active = shiftdim( flipud(reshape( Xactive, nelz, nelx, nely )), 1);
9 isovals_active = smooth3( isovals_active, ’box’, 1 );

10 patch(isosurface(isovals_active, .5),’FaceColor’,’m’,’EdgeColor’,’none’);
11 patch(isocaps(isovals_active, .5),’FaceColor’,’m’,’EdgeColor’,’none’);
12 isovals_Passive = shiftdim( flipud(reshape( Xpassive, nelz, nelx, nely )), 1);
13 isovals_Passive = smooth3( isovals_Passive, ’box’, 1 );
14 patch(isosurface(isovals_Passive, .5),’FaceColor’,[0 1 1],’EdgeColor’,’none’);
15 patch(isocaps(isovals_Passive, .5),’FaceColor’,[0 1 1],’EdgeColor’,’none’);
16 isovals = shiftdim( reshape( ones(nele,1), nelz, nelx, nely ), 1);
17 isovals = smooth3( isovals, ’box’, 1 );
18 patch(isosurface(isovals, .5),’FaceColor’,’none’,’EdgeColor’,’none’);
19 patch(isocaps(isovals, .5),’FaceColor’,’none’,’EdgeColor’,’none’);
20 set(AX,’XTick’,[], ’YTick’, [],’ZTick’, []);
21 title(’Density’);view( [ 120, 30 ] ); axis equal tight; camlight; box on;AX.BoxStyle = ’full’;

drawnow
22 if nelz>6; n=0;
23 for i=1:nelz; for j=1:nelx; for k=1:nely
24 if xPhys (i,j,k)>0.9 && ismember(ElNum(i,j,k),Active_el)==1;
25 n=n+1; Coordinate(n,:)=0.01∗[i,j,k];
26 COl(n,:) = [0.5−0.5∗pol(i,j,k),0,0.5+0.5∗pol(i,j,k)];
27 end
28 end; end; end
29 if exist(’Coordinate’)
30 AX2=subplot (1, 2, 2);
31 pcshow([Coordinate(:,2) Coordinate(:,3) Coordinate(:,1)],COl,’MarkerSize’,120,’BackgroundColor’

,[1,1,1])
32 set(AX2,’XTick’,[], ’YTick’, [],’ZTick’, []);title(’Polarization’);view( [ 30, 30 ] );axis equal

tight;box on;AX2.BoxStyle = ’full’;drawnow
33 end;end
34 if nelz<=6
35 for NL=2∗nelz+1:3∗nelz
36 XX(:,:)=xPhys(NL−2∗nelz,:,:);
37 ax(NL)=subplot ( 4 , nelz , NL );
38 imagesc(1−XX(:,:)’) ;colormap(ax(NL),gray) ;
39 set ( ax(NL) , ’XTick’ , [ ] , ’YTick’ , [ ] , ’XTicklabel’ , [ ] ,...
40 ’YTicklabel’ , [ ] , ’xcolor’ , ’w’ , ’ycolor’ , ’w’)
41 xlabel ( sprintf ( ’Layer Number = %.0f’ , NL−2∗nelz ) , ’Color’ , ’k’)
42 title(’Densities’);
43 axis equal ; axis tight ; caxis([0 1]); drawnow ; hold on
44 end
45 for NL=3∗nelz+1:4∗nelz
46 XX(:,:)=(xPhys(NL−3∗nelz,:,:).∗(pol(NL−3∗nelz,:,:).∗2−1));
47 ax(NL)=subplot ( 4 , nelz , NL );
48 imagesc(XX(:,:)’) ;colormap(ax(NL),jet) ;
49 set ( ax(NL) , ’XTick’ , [ ] , ’YTick’ , [ ] , ’XTicklabel’ , [ ] ,...
50 ’YTicklabel’ , [ ] , ’xcolor’ , ’w’ , ’ycolor’ , ’w’)
51 xlabel ( sprintf ( ’Layer Number = %.0f’ , NL−3∗nelz ) , ’Color’ , ’k’)
52 title(’Polarization’);
53 axis equal ; axis tight ;caxis([−1 1]); drawnow ; hold on
54 end
55 else;end
56 end

ADD-ON FUNCTIONS : 2 - Updating algorithm
1 %% OCUpdate Algorithm (F. Ferrari et al. 2021)
2 function [x,as , lmid ]= ocUpdate (loop ,xT ,dg0 ,g1 ,dg1 ,ocPar ,xOld ,xOld1 ,as , beta )
3 [xU,xL] = deal ( min(xT+ ocPar (1) ,1) , max (xT−ocPar (1) ,0));
4 if loop <2.5 || beta > 4
5 as = xT +[ −0.5 ,0.5].∗( xU −xL) ./( beta +1) ;
6 else
7 tmp = (xT − xOld ) .∗( xOld − xOld1 );
8 gm = ones ( length (xT) ,1);
9 [gm(tmp >0) , gm(tmp <0) ] = deal ( ocPar (3) ,ocPar (2) );
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10 as = xT + gm .∗ [−( xOld −as (: ,1)) ,(as (: ,2) −xOld )];
11 end
12 xL = max (0.9∗ as (: ,1) +0.1∗ xT ,xL); % adaptive lower bound
13 xU = min (0.9∗ as (: ,2) +0.1∗ xT ,xU); % adaptive upper bound
14 % −−−−− split (+) and (−) parts of the objective and constraint derivatives
15 p0_0 = (dg0 >0) .∗ dg0 ; q0_0 = (dg0 <0) .∗ dg0 ;
16 p1_0 = (dg1 >0) .∗ dg1 ; q1_0 = (dg1 <0) .∗ dg1 ;
17 [p0 ,q0] = deal ( p0_0 .∗( as (: ,2) −xT).^2 , − q0_0 .∗( xT −as (: ,1)) .^2) ;
18 [p1 ,q1] = deal ( p1_0 .∗( as (: ,2) −xT).^2 , − q1_0 .∗( xT −as (: ,1)) .^2) ;
19 % −−−−−−−−−−−−−−−−−−−−−− define the primal projection map and dual function
20 primalProj = @(lm) min (xU ,max (xL ,( sqrt (p0+lm∗p1).∗ as (: ,1)+ sqrt (q0+lm∗q1).∗ as (: ,2))

...
21 ./( sqrt (p0+lm∗p1)+ sqrt (q0+lm∗q1))));
22 psiDual = @(lm) g1−((as(:,2)−xT)’∗p1_0−(xT−as(: ,1))’∗q1_0)+sum(p1./(max(as(:,2)−primalProj(lm),1

e−12))+q1./( max(primalProj(lm)−as (:,1),1e−12)));
23 % −−−−−−−−−−−−−−−−−−−−−−− compute the Lagrange multiplier through bisection
24 lmUp = 1e6; x = xT; lmid = −1;
25 if psiDual ( 0 ) ∗ psiDual ( lmUp ) < 0 % check if LM is within the interval
26 lmid = fzero ( psiDual , [ 0, lmUp ] );
27 x = primalProj ( lmid ); % update desing variables
28 elseif psiDual (0) < 0 % constraint cannot be active
29 lmid =0; x= primalProj ( lmid );
30 elseif psiDual ( lmUp ) > 0 % constraint cannot be fulfilled
31 lmid = lmUp ; x= primalProj ( lmid );
32 end
33 end

ADD-ON FUNCTIONS : 3 - Finite element matrices

1 %% FINITE ELEMENT MATRICES // ABBAS HOMAYOUNI−AMLASHI 2024
2 function [kuu,kup,kpp,m,ndofPZT,EL_NN,TOPNODS,BOTNODS,FRNODS,BAKNODS,LEFNODS,RTNODS] = FEM(L,W,H,

nelz,nelx,nely,C,e,Ep,ro,EL_T)
3 le = L/nelx; we = W/nely; he=H; % Element geometry
4 if EL_T == 1 % Trilinear elements
5 g = 1/sqrt(3);
6 GP = [−g −g −g;g −g −g;g g −g;−g g −g;−g −g g;g −g g;g g g;−g g g]; % Gauss quadrature points
7 J = [ le/2, 0, 0; 0, we/2, 0; 0, 0, he/2]; % Jacobian matrix
8 detJ = (he∗le∗we)/8; % Determinant of Jacobian matrix
9 kuu = 0 ; kup = 0 ; kpp=0 ; m = 0; % Initial values for piezoelectric matrices

10 for ii=1:8
11 s=GP(ii,1);t=GP(ii,2);u=GP(ii,3); % s,t,u (natural coordinates)
12 N1 = (1/8)∗(1−s)∗(1+t)∗(1−u);N2 = (1/8)∗(1+s)∗(1+t)∗(1−u);N3 = (1/8)∗(1+s)∗(1+t)∗(1+u);N4 = (1/8)

∗(1−s)∗(1+t)∗(1+u);
13 N5 = (1/8)∗(1−s)∗(1−t)∗(1−u);N6 = (1/8)∗(1+s)∗(1−t)∗(1−u);N7 = (1/8)∗(1+s)∗(1−t)∗(1+u);N8 = (1/8)

∗(1−s)∗(1−t)∗(1+u);
14 N=[N1,0,0,N2,0,0,N3,0,0,N4,0,0,N5,0,0,N6,0,0,N7,0,0,N8,0,0;
15 0,N1,0,0,N2,0,0,N3,0,0,N4,0,0,N5,0,0,N6,0,0,N7,0,0,N8,0;
16 0,0,N1,0,0,N2,0,0,N3,0,0,N4,0,0,N5,0,0,N6,0,0,N7,0,0,N8]; % Matrix of interpolation functions
17 DN =[ ((t + 1)∗(u − 1))/8, −((t + 1)∗(u − 1))/8, ((t + 1)∗(u + 1))/8, −((t + 1)∗(u + 1))/8, −((t

− 1)∗(u − 1))/8, ((t − 1)∗(u − 1))/8, −((t − 1)∗(u + 1))/8, ((t − 1)∗(u + 1))/8;
18 (s/8 − 1/8)∗(u − 1), −(s/8 + 1/8)∗(u − 1), (s/8 + 1/8)∗(u + 1), −(s/8 − 1/8)∗(u + 1), −(s/8 −

1/8)∗(u − 1), (s/8 + 1/8)∗(u − 1), −(s/8 + 1/8)∗(u + 1), (s/8 − 1/8)∗(u + 1);
19 (s/8 − 1/8)∗(t + 1), −(s/8 + 1/8)∗(t + 1), (s/8 + 1/8)∗(t + 1), −(s/8 − 1/8)∗(t + 1), −(s/8 −

1/8)∗(t − 1), (s/8 + 1/8)∗(t − 1), −(s/8 + 1/8)∗(t − 1), (s/8 − 1/8)∗(t − 1)]; % dN/d(s,t,u)
20 Bphi=J\DN; % Piezo Gradient interpolation matrix (Potential to electrical field matrix)
21 Bu(1,1:3:24)=Bphi(1,:);Bu(2,2:3:24)=Bphi(2,:);Bu(3,3:3:24)=Bphi(3,:);
22 Bu(6,1:3:24)=Bphi(2,:);Bu(6,2:3:24)=Bphi(1,:);
23 Bu(4,2:3:24)=Bphi(3,:);Bu(4,3:3:24)=Bphi(2,:);
24 Bu(5,1:3:24)=Bphi(3,:);Bu(5,3:3:24)=Bphi(1,:); % Strain−displacement matrix
25 kuu = kuu + transpose(Bu)∗C∗Bu∗detJ; % Stiffness matrix
26 kup = kup + Bu’∗e’∗Bphi∗detJ; % Piezoelectric coupling matrix
27 kpp = kpp + Bphi’∗Ep∗Bphi∗detJ; % Dielectric stiffness matrix
28 m = m+detJ∗ro∗(N’∗N); % mass matrix
29 end
30 EL_NN = 8; % Elemental node numbers
31 ndofPZT = (nelx+1)∗(nelz+1)∗(nely+1); % Total electrical degrees of freedom
32 TOPNODS=[4,3,7,8]; BOTNODS=[1,2,5,6];
33 FRNODS=[5,6,7,8]; BAKNODS=[1,2,3,4];
34 LEFNODS=[1,4,5,8]; RTNODS=[2,3,6,7];
35 elseif EL_T == 2 % Quadratic elements
36 GPW = [−sqrt(3/5),5/9;0,8/9;sqrt(3/5),5/9]; % Gauss quadrature points and weights
37 x1=0; y1=we; z1=0; x2=le; y2=we; z2=0; x3=le; y3=we; z3=he; x4=0; y4=we; z4=he;



48 Abbas Homayouni-Amlashi 1 et al.

38 x5=0; y5=0; z5=0; x6=le; y6=0; z6=0; x7=le; y7=0; z7=he; x8=0; y8=0; z8=he;
39 x9=(x1+x2)/2;y9=(y1+y2)/2;z9=(z1+z2)/2;
40 x10=(x2+x3)/2;y10=(y2+y3)/2;z10=(z2+z3)/2;
41 x11=(x3+x4)/2;y11=(y3+y4)/2;z11=(z3+z4)/2;
42 x12=(x1+x4)/2;y12=(y1+y4)/2;z12=(z1+z4)/2;
43 x13=(x2+x6)/2;y13=(y2+y6)/2;z13=(z2+z6)/2;
44 x14=(x3+x7)/2;y14=(y3+y7)/2;z14=(z3+z7)/2;
45 x15=(x4+x8)/2;y15=(y4+y8)/2;z15=(z4+z8)/2;
46 x16=(x1+x5)/2;y16=(y1+y5)/2;z16=(z1+z5)/2;
47 x17=(x5+x6)/2;y17=(y5+y6)/2;z17=(z5+z6)/2;
48 x18=(x6+x7)/2;y18=(y6+y7)/2;z18=(z6+z7)/2;
49 x19=(x8+x7)/2;y19=(y8+y7)/2;z19=(z8+z7)/2;
50 x20=(x8+x5)/2;y20=(y8+y5)/2;z20=(z8+z5)/2;
51 xs=le/2;xt=0;xu=0;ys=0;yt=we/2;yu=0;zs=0;zt=0;zu=he/2;
52 J = [xs ys zs; xt yt zt; xu yu zu]; % Jacobian matrix
53 detJ = xs∗(yt∗zu − zt∗yu) − ys∗(xt∗zu − zt∗xu) + zs∗(xt∗yu − yt∗xu); % Determinant of Jacobian

matrix
54 kuu = 0 ; kup = 0 ; kpp=0 ; m = 0; % Initial values for piezoelectric matrices
55 for i=1:3
56 s = GPW(i,1);
57 for j=1:3
58 t = GPW(j,1);
59 for k=1:3
60 u = GPW(k,1);
61 NV(1)=(1−s)∗(1+t)∗(1−u)∗(−s+t−u−2)/8; NV(2)=(1+s)∗(1+t)∗(1−u)∗(s+t−u−2)/8;
62 NV(3)=(1+s)∗(1+t)∗(1+u)∗(s+t+u−2)/8;NV(4)=(1−s)∗(1+t)∗(1+u)∗(−s+t+u−2)/8;
63 NV(5)=(1−s)∗(1−t)∗(1−u)∗(−s−t−u−2)/8;NV(6)=(1+s)∗(1−t)∗(1−u)∗(s−t−u−2)/8;
64 NV(7)=(1+s)∗(1−t)∗(1+u)∗(s−t+u−2)/8;NV(8)=(1−s)∗(1−t)∗(1+u)∗(−s−t+u−2)/8;
65 NV(9)=(1+t)∗(1−u)∗(1−s^2)/4; NV(10)=(1+s)∗(1+t)∗(1−u^2)/4;
66 NV(11)=(1+t)∗(1+u)∗(1−s^2)/4; NV(12)=(1−s)∗(1+t)∗(1−u^2)/4;
67 NV(13)=(1+s)∗(1−u)∗(1−t^2)/4; NV(14)=(1+s)∗(1+u)∗(1−t^2)/4;
68 NV(15)=(1−s)∗(1+u)∗(1−t^2)/4;NV(16)=(1−s)∗(1−u)∗(1−t^2)/4;
69 NV(17)=(1−t)∗(1−u)∗(1−s^2)/4;NV(18)=(1+s)∗(1−t)∗(1−u^2)/4;
70 NV(19)=(1−t)∗(1+u)∗(1−s^2)/4;NV(20)=(1−s)∗(1−t)∗(1−u^2)/4;
71 N=zeros(3,60);N(1,1:3:60)=NV(:)’;N(2,2:3:60)=NV(:)’;N(3,3:3:60)=NV(:)’;
72 DN=[−((t + 1)∗(u − 1)∗(2∗s − t + u + 1))/8, −((t + 1)∗(u − 1)∗(2∗s + t − u − 1))/8, ((t + 1)∗(u +

1)∗(2∗s + t + u − 1))/8, ((t + 1)∗(u + 1)∗(2∗s − t − u + 1))/8, ((t − 1)∗(u − 1)∗(2∗s + t +
u + 1))/8, −((t − 1)∗(u − 1)∗(t − 2∗s + u + 1))/8, −((t − 1)∗(u + 1)∗(2∗s − t + u − 1))/8,
−((t − 1)∗(u + 1)∗(2∗s + t − u + 1))/8, (s∗(t + 1)∗(u − 1))/2, −((u^2 − 1)∗(t + 1))/4, −(s∗(
t + 1)∗(u + 1))/2, ((u^2 − 1)∗(t + 1))/4, ((t^2 − 1)∗(u − 1))/4, −((t^2 − 1)∗(u + 1))/4, ((t
^2 − 1)∗(u + 1))/4, −((t^2 − 1)∗(u − 1))/4, −(s∗(t − 1)∗(u − 1))/2, ((u^2 − 1)∗(t − 1))/4,
(s∗(t − 1)∗(u + 1))/2, −((u^2 − 1)∗(t − 1))/4;

73 −((s − 1)∗(u − 1)∗(s − 2∗t + u + 1))/8, −((s + 1)∗(u − 1)∗(s + 2∗t − u − 1))/8, ((s + 1)∗(u + 1)
∗(s + 2∗t + u − 1))/8, ((s − 1)∗(u + 1)∗(s − 2∗t − u + 1))/8, ((s − 1)∗(u − 1)∗(s + 2∗t + u +

1))/8, −((s + 1)∗(u − 1)∗(2∗t − s + u + 1))/8, −((s + 1)∗(u + 1)∗(s − 2∗t + u − 1))/8, −((s
− 1)∗(u + 1)∗(s + 2∗t − u + 1))/8, ((s^2 − 1)∗(u − 1))/4, −((u^2 − 1)∗(s + 1))/4, −((s^2 −

1)∗(u + 1))/4, ((u^2 − 1)∗(s − 1))/4, (t∗(s + 1)∗(u − 1))/2, −(t∗(s + 1)∗(u + 1))/2, (t∗(s −
1)∗(u + 1))/2, −(t∗(s − 1)∗(u − 1))/2, −((s^2 − 1)∗(u − 1))/4, ((u^2 − 1)∗(s + 1))/4, ((s^2
− 1)∗(u + 1))/4, −((u^2 − 1)∗(s − 1))/4;

74 −((s − 1)∗(t + 1)∗(s − t + 2∗u + 1))/8, −((s + 1)∗(t + 1)∗(s + t − 2∗u − 1))/8, ((s + 1)∗(t + 1)
∗(s + t + 2∗u − 1))/8, ((s − 1)∗(t + 1)∗(s − t − 2∗u + 1))/8, ((s − 1)∗(t − 1)∗(s + t + 2∗u +

1))/8, −((s + 1)∗(t − 1)∗(t − s + 2∗u + 1))/8, −((s + 1)∗(t − 1)∗(s − t + 2∗u − 1))/8, −((s
− 1)∗(t − 1)∗(s + t − 2∗u + 1))/8, ((s^2 − 1)∗(t + 1))/4, −(u∗(s + 1)∗(t + 1))/2, −((s^2 −

1)∗(t + 1))/4, (u∗(s − 1)∗(t + 1))/2, ((t^2 − 1)∗(s + 1))/4, −((t^2 − 1)∗(s + 1))/4, ((t^2 −
1)∗(s − 1))/4, −((t^2 − 1)∗(s − 1))/4, −((s^2 − 1)∗(t − 1))/4, (u∗(s + 1)∗(t − 1))/2, ((s^2
− 1)∗(t − 1))/4, −(u∗(s − 1)∗(t − 1))/2];

75 Bphi= double(J\DN);
76 B=zeros(6,60);
77 B(1,1:3:60)= Bphi(1,:);B(2,2:3:60)= Bphi(2,:);B(3,3:3:60)= Bphi(3,:);
78 B(6,1:3:60)= Bphi(2,:);B(6,2:3:60)= Bphi(1,:);
79 B(4,2:3:60)= Bphi(3,:);B(4,3:3:60)= Bphi(2,:);
80 B(5,1:3:60)= Bphi(3,:);B(5,3:3:60)= Bphi(1,:);
81 kuu = kuu + GPW(i,2)∗GPW(j,2)∗GPW(k,2)∗transpose(B)∗C∗B∗detJ;
82 kup = kup + GPW(i,2)∗GPW(j,2)∗GPW(k,2)∗B’∗e’∗Bphi∗detJ;
83 kpp = kpp+ GPW(i,2)∗GPW(j,2)∗GPW(k,2)∗Bphi’∗Ep∗Bphi∗detJ;
84 m = m + GPW(i,2)∗GPW(j,2)∗GPW(k,2)∗ detJ∗ro∗(N’∗N);
85 end
86 end
87 end
88 EL_NN = 20; % Elemental node numbers
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89 ndofPZT =((2∗nelz+1)∗(2∗nelx+1)−nelx∗nelz)∗(nely+1)+(nelx+1)∗(nelz+1)∗nely; % Electrical degrees of
freedom

90 TOPNODS=[4,3,7,8,11,14,15,19]; BOTNODS=[1,2,5,6,9,13,16,17];
91 FRNODS=[5,6,7,8,17,18,19,20]; BAKNODS=[1,2,3,4,9,10,11,12];
92 LEFNODS=[1,4,5,8,12,15,16,20]; RTNODS=[2,3,6,7,10,13,14,18];
93 end
94 end

ADD-ON FUNCTIONS : 4 - Rotation of coordinate system
1 %% TRANSFORMATION OF TENSOR CONSTANTS FOR ANISOTROPIC MATERIALS // ABBAS HOMAYOUNI−AMLASHI 2024
2 function [Cnew,enew,Epnew]=Matrix_Rotation(C,e,Ep,pol_dir)
3 if pol_dir == ’y’ % For Polarization in the y direction
4 alpha= 0;beta=pi/2;gamma=0;
5 elseif pol_dir == ’z’ % For Polarization in the z direction
6 alpha= 0;beta=0;gamma=0;
7 elseif pol_dir == ’x’ % For Polarization in the x direction
8 alpha= 0;beta=pi/2;gamma=pi/2;
9 end

10 xi1=cos(gamma)∗cos(alpha)−cos(beta)∗sin(alpha)∗sin(gamma);
11 xi2=−sin(gamma)∗cos(alpha)−cos(beta)∗sin(alpha)∗cos(gamma);
12 xi3=sin(beta)∗sin(alpha);
13 theta1=cos(gamma)∗sin(alpha)+cos(beta)∗cos(alpha)∗sin(gamma);
14 theta2=−sin(gamma)∗sin(alpha)+cos(beta)∗cos(alpha)∗cos(gamma);
15 theta3=−sin(beta)∗cos(alpha);
16 psi1=sin(gamma)∗sin(beta);psi2=cos(gamma)∗sin(beta);psi3=cos(beta);
17 L=[xi1,theta1,psi1;xi2,theta2,psi2;xi3, theta3, psi3];
18 Z=[ xi1^2,theta1^2,psi1^2,2∗theta1∗psi1,2∗psi1∗xi1,2∗xi1∗theta1;
19 xi2^2,theta2^2,psi2^2,2∗theta2∗psi2,2∗psi2∗xi2,2∗xi2∗theta2;
20 xi3^2,theta3^2,psi3^2,2∗theta3∗psi3,2∗psi3∗xi3,2∗xi3∗theta3;
21 xi2∗xi3,theta2∗theta3,psi2∗psi3,theta2∗psi3+theta3∗psi2,psi2∗xi3+psi3∗xi2,xi2∗theta3+xi3∗theta2;
22 xi3∗xi1,theta3∗theta1,psi3∗psi1,theta1∗psi3+theta3∗psi1,psi1∗xi3+psi3∗xi1,xi1∗theta3+xi3∗theta1;
23 xi1∗xi2,theta1∗theta2,psi1∗psi2,theta1∗psi2+theta2∗psi1,psi1∗xi2+psi2∗xi1,xi1∗theta2+xi2∗theta1];
24 Cnew=Z∗C∗Z’; % New stiffness matrix
25 enew=L∗e∗Z’; % New coupling matrix
26 Epnew=L∗Ep∗L’; % New permittivity matrix
27 end

ADD-ON FUNCTIONS : 5 - Plot deformation
1 %% PLOT DEFORMATION (ELEMENTAL) // ABBAS HOMAYOUNI−AMLASHI 2024
2 function Deformation(Uu,xPhys,nelz,nelx,nely,edofMat,ElNum)
3 figure (2); ax = gca;
4 AMP = 5/ max(abs(Uu(:))); % Amplification & normalization of deformation
5 view( [ 50, 20 ] ); % View angle
6 face = [ 1 2 3 4 ; 2 6 7 3 ; 4 3 7 8 ; 1 5 8 4 ; 1 2 6 5 ; 5 6 7 8 ];
7 xPhys=reshape(xPhys,nelz,nelx,nely);
8 for elz = 1:nelz
9 for elx = 1:nelx

10 for ely = 1:nely
11 if xPhys(elz,elx,ely)>0.5
12 Ue = AMP∗Uu(edofMat(ElNum(elz,elx,ely),:));
13 ly = −(ely−nely)−1; lx = elx−1; lz = −(elz−nelz)−1;
14 xx_box = [lx lx+1 lx+1 lx lx lx+1 lx+1 lx]’;
15 yy_box = [ly ly ly ly ly+1 ly+1 ly+1 ly+1]’;
16 zz_box = [lz lz lz+1 lz+1 lz lz lz+1 lz+1]’;
17 patch(’Faces’,face,’Vertices’,[xx_box,yy_box,zz_box],’FaceColor’,’none’)
18 xx = [Ue(1,1)+lx Ue(4,1)+lx+1 Ue(7,1)+lx+1 Ue(10,1)+lx Ue(13,1)+lx Ue(16,1)+lx+1 Ue(19,1)+lx+1 Ue

(22,1)+lx]’;
19 yy = [Ue(2,1)+ly+1 Ue(5,1)+ly+1 Ue(8,1)+ly+1 Ue(11,1)+ly+1 Ue(14,1)+ly Ue(17,1)+ly Ue(20,1)+ly Ue

(23,1)+ly]’;
20 zz = [Ue(3,1)+lz Ue(6,1)+lz Ue(9,1)+lz+1 Ue(12,1)+lz+1 Ue(15,1)+lz Ue(18,1)+lz Ue(21,1)+lz+1 Ue

(24,1)+lz+1]’;
21 Dis_R = max(abs(Uu(edofMat(ElNum(elz,elx,ely),:)))/max(abs(Uu(:))));
22 patch(’Faces’,face,’Vertices’,[xx,yy,zz],’FaceColor’,[Dis_R,0.4,1−Dis_R])
23 end
24 end
25 end
26 end
27 box on; ax.BoxStyle = ’full’; axis equal; set(gca,’XTick’,[], ’YTick’, [],’ZTick’, []);axis off;

drawnow; end
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