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Abstract. The sheer complexity of modern systems requires compositional ap-
proaches to variability modelling. To manage the variability of large systems’
architecture, feature models are widely used at design-time, with several oper-
ators defined to allow their composition. However, complex systems’ architec-
tures may evolve at run-time by acquiring new features and functionalities while
respecting new constraints. To address this challenge, this paper defines compo-
sition operators for component-based run-time variability models that not only
encode these feature model composition operators, but also ensure safe run-time
reconfiguration. To prove the correctness and compositionality properties, we
propose a novel multi-step UP-bisimulation equivalence and use it to show that
the component-based run-time variability models preserve the semantics of the
composed feature models. In addition, reachability results permit safe reconfigu-
ration.

Keywords: System Architecture Evolution · Component-based Systems · Vari-
ability Models · Composition Operators · Multi-step Bisimulation

1 Introduction
Software evolution [10] is the continual development of system software to extend its
own functionality over time by integrating new functionalities not originally modeled.
Systems are expected to evolve over time, new functionalities can be introduced to the
system that expands the configuration space that was previously modeled. To enable
modeling a system as it evolves, there must be a means to integrate sub-models encap-
sulating new functionality to the original model. To support such an evolution, compo-
nent models are expected to be composable in such a way as to be able to merge two
separate models into one model that encapsulates the modified configuration space. For
instance, consider a component-based model that represents the services of the Heroku
Cloud platform [17]. Cloud platforms are dynamic and evolve over time [19], driven
not only by enhancements from its core development team but also through contribu-
tions from its user community. Clients of Heroku Cloud, for instance, can develop and
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Fig. 1: Overview of Feature and JavaBIP models composition

introduce new services, such as advanced monitoring tools or supplementary manage-
ment features, and subsequently offer these services on the Heroku marketplace. Then it
becomes necessary to integrate these newly modeled services with the existing Heroku
Cloud model, as the new services modify the configuration space of what was origi-
nally modeled. This integration ensures that the evolving Heroku Cloud is effectively
modeled and adapted to accommodate the newly introduced services.

In software product line engineering domain, the composition of static variability
models [11,22] like feature models (FMs) [7,18] is an active research area [20]. Various
composition operators to compose FMs [1,2,3,4,9] have been proposed, and featured
transition systems [12] are well-established models used for verification and validation
purpose in different application domains. As highlighted in [12], it is challenging for
these static models to support CPS or AI-intensive systems development. In the domain
of component-based models, a recent survey [13] emphasizes the need for a suitable
methodology to ensure the correctness of reconfigurations in component-based systems.

In this context, an automated model transformation approach has been developed
for enforcing safe reconfiguration of software products by constructing, from feature
models, executable component-based run-time variability models (CBRTVMs) [16].
These CBRTVMs, generated and executed in the JavaBIP framework [8], ensure that
whenever a user requests the selection of a feature, all the required dependencies are
selected at the same time (and similarly for feature deselection). If this is not possible,
the operation is postponed without blocking other requests.

In this paper, we build upon that work, focusing on the compositionality of the
approach (cf. Figure 1, where CM stand for component-based models, and FM for
feature models). We consider three FM composition operators ◦ from [4] and define
corresponding operators ◦′ over JavaBIP models. We introduce a novel notion of multi-
stepUP-bisimulation to show that the composition of two CBRTVMs is behaviourally
equivalent to the CBRTVM obtained from the composition of the corresponding FMs
(Figure 1, at the top). Thus, we render the approach compositional while preserving the
safety of dynamic reconfiguration.

Contributions and Outline This paper introduces composition operators for JavaBIP
CBRTVMs, enabling an automated construction of component-based systems in a mod-



Fig. 2: Part of the Heroku Cloud feature model.

ular fashion while providing reusability, flexibility, and adaptability. In this context, the
paper aims to address the following research question (RQ):

RQ1: How to encode Feature Model composition on CBRTVMs?
RQ2: How to define a behavioural equivalence to prove the correctness and composi-

tionality of such an encoding?

The paper is organised as follows. Section 2 provides a motivating example. Back-
ground material is presented in Section 3. In Section 4, we address RQ1 by defining
three composition operators on JavaBIP models and study their properties. In Section 5,
we address RQ2 by defining the notion of a multi-step UP-bisimulation and proving
the correctness and compositionality of the encoding. Section 6, provides an experi-
mental validation of our results. Section 7 discusses related work. Section 8 concludes
the paper.

2 Motivating Example

Fig. 3: CloudWatch FM

Heroku Cloud is a platform-as-a-service provider,
that offers a range of API-controlled services such
as Dyno types, add-ons, and Regions [17]. Add-
ons are supplementary functionalities encompass-
ing services such as databases, monitoring, and
messaging. We use a feature model representing
a sub-set of Heroku services shown in Figure 2.

Suppose a new monitoring service, Cloud-
Watch [24], is implemented and provided by
Heroku. CloudWatch is an add-on service de-
signed to monitor the performance of the comput-
ing units within the system. Its key functionality
includes conducting comprehensive metric analyses, specifically focusing on CPU and
memory usage metrics. This new service can be modelled in a separate feature model
as presented in Figure 3.

To incorporate this service, the Heroku FM and the CloudWatch FM must be
composed into one model that includes these new functionalities. Composition tech-
niques, as outlined by Acher et al. [1], facilitate this process for static feature models.



This allows independent development of sub-feature models by different stakeholders
and enables the reuse of existing models. In [16], the transformation process encodes
static feature models in terms of component-based run-time variability models allow-
ing safe reconfiguration at runtime. To allow a modular construction and composability
of CBRTVMs, this paper defines composition operators for CBRTVMs that correctly
encode the composition operators of feature models with the advantage of supporting
configuration evolution at runtime.

3 Background
This section describes the preliminary notions related to feature models and their com-
position on the one hand, and to the JavaBIP component-based framework, on the other
hand.

3.1 Feature Models

Introduced for product lines, feature models are used for representing the commonality
and variability of features and of relationships among them [7]. A feature could be a
software artifact such as a part of code, a component, or a requirement (cf. Figures 2
and 3). To express the variability of the system, feature models provide 1) a decompo-
sition in sub-features, where a sub-feature may be mandatory (black circle), or optional
(unfilled circle), 2) XOR-group or an OR-group. In a XOR-group, exactly one feature is
selected, while in an OR-group, one or more features are selected, whenever the parent
feature is selected. In addition, the combination of the optional and mandatory features
is seen as an AND-group. In the main hierarchy, cross-tree constraints can be used to
describe dependencies between arbitrary features, e.g. selecting a feature requires the
selection of another one, or that two features mutually exclude each other.

We recall the formalisation of feature models that we have used in [16].

Definition 1 (Feature Diagram). A feature diagram is a tree-like structure conforming
to the following grammar:

Node ::= OR
(
Node1, . . . ,Nodek

)
| XOR

(
Node1, . . . ,Nodek

)
| AND

(
[mand]Node1, . . . , [mand]Nodek

)
| leaf

We denote by π ⊆ Node × Node the parent relation, i.e. a node n is a child of n′ iff
π(n) = n′. Let µ ⊆ Node × Node be the reflexive and transitive closure of π−1, i.e. µ(n)
is the set of all descendants of n ∈ Node, including itself.

Definition 2 (Feature model). A feature model over a set of features F is a tuple FM =

(root, φ, ρ, χ), where root ∈ Node is a feature diagram, φ : µ(root) → F is a bijective
function associating features to nodes, and ρ, χ ⊆ F × F are the requires and excludes
relations, respectively, with χ being symmetric.4

For a feature f ∈ F in the FM, we denote n f
def
= φ−1( f ), i.e. n f is the node, such

that φ(n f ) = f . Abusing notation, we also write π( f ) = f ′ iff π(n f ) = n f ′ . We use the
predicate mand to denote the fact that a given node represents a mandatory feature.

4 We write f1 ⇒ f2 iff ρ( f1, f2) and f1 ⇒ ¬ f2 (equivalently f2 ⇒ ¬ f1) iff χ( f1, f2).



Definition 3 (Dependency Graph). Given an FM (root, φ, ρ, χ) over F, its dependency
graph is a directed graph G = (F, E), where F is the set of features, and E ⊆ F × F is
the set of directed edges representing the parent, mandatory and requires relations:

E def
=

{
( f1, f2) | π( f1) = f2

}
∪

{
( f1, f2) | π( f2) = f1 ∧ mand( f2)

}
∪ ρ .

Definition 4 (Configuration Semantics). Let FM = (root, φ, ρ, χ) be a feature model
over a set of features F and let (F, E) be its dependency graph. A configuration is a set
of features Φ ⊆ F. We say that Φ is

1. free from internal conflict if, for any f1, f2 ∈ Φ, holds ( f1, f2) < χ;
2. saturated if, for any f ∈ Φ, holds E( f ) ⊆ Φ;
3. valid if it is saturated, free from internal conflict and respects structural constraints

of XOR and OR nodes: exactly one (XOR) or at least one (OR) child feature selected,
respectively (saturation implies that AND-node constraints are respected);

4. partial-valid if there exists a valid configuration Φ′ ⊇ Φ.

The FM semantics is the set of its valid configurations, denoted [[FM]] [23].

Assumption 1. We follow [16] in assuming that all considered feature models are such
that any configuration free from internal conflict is partial-valid.

3.2 Composition of Feature Models

In this paper, we adopt a denotational logic-based methodology for the composition of
feature models, as outlined in [4]. This methodology encompasses the following steps:

1. The input feature models FM1 and FM2 are encoded as propositional formulae
φFM1 and φFM2 respectively.

2. The composition operator is translated into a Boolean logic formula φc representing
the composed feature model FM.

3. The feature diagram is then synthesized from φc.

We focus on three composition operators inspired by the ones in [4] and defined by
the following Boolean formulae:

Intersection (∩): φ = φFM1 ∧ φFM2

Strict Intersection (∩̇): φ =
(
φFM1 ∧ not(F2 \ F1)

)
∧

(
φFM2 ∧ not(F1 \ F2)

)
Union (∪): φ = φFM1 ∨ φFM2

where the set of features of the composed feature model is F = F1∪F2, and, for a given
set of features F′ ⊆ F, we define not(F′) def

=
∧

f∈F′ ¬ f .
Thus, a configuration Φ ⊂ F1 ∪ F2 is valid in FM1 ∩ FM2 iff Φ ∩ Fi is valid

in FMi for both i = 1, 2. It is valid in FM1 ∩̇ FM2, iff Φ is valid in FM1 and FM2.
Finally, Φ is valid in FM1 ∪ FM2 if the constraints for each feature in Φ are satisfied
in either FM1 or FM2, i.e. holds [[FM1]] ∪ [[FM2]] ⊆ [[FM]] but not necessarily
[[FM1]] ∪ [[FM2]] = [[FM]].



When synthesizing feature diagrams from Boolean formulas, it is important to note
that a single Boolean formula corresponds to multiple possible feature model structures.
Despite potential differences in dependency graphs, these varying structures encode
the same set of valid configurations. In our work, we do not restrict the structure of
the diagram for a given Boolean formula. Any algorithm can be used for synthesizing
composed feature models, as long as the diagram is equivalent to the original formula.

3.3 JavaBIP Component-based Approach

A component is a software object that encapsulates certain behaviours of a software
element. The concept of components is broad and may be used for component-based
software systems, microservices, service-oriented applications, and so on. For the co-
ordination of concurrent components, we make use of JavaBIP [8], which is an open-
source Java implementation of the BIP (Behaviour-Interaction-Priority) framework [6].

In this context, the component behaviour is defined by a finite state machine (FSM)
(Q, P,→), whose states (Q) are linked by transitions labelled by involved ports (P). Jav-
aBIP allows two types of ports: enforceable and spontaneous. Enforceable ports repre-
sent actions controlled by the JavaBIP engine. They can be synchronised, i.e. executed
together atomically. Spontaneous ports represent notifications that components receive
about events that happen in their environment. They cannot be synchronised with other
ports. An interaction is a set of ports—either one or several enforceable ports, or exactly
one spontaneous port. To define allowed interactions, JavaBIP provides requires and ac-
cepts macros associated with enforceable ports and representing causal and acceptance
constraints, respectively [8]. This allows JavaBIP to provide a coordination layer that is
powerful enough to model—naturally and compositionally—the constraints expressed
in the feature model. Intuitively, the requires macro specifies ports required for synchro-
nization with the given port. For example, “C1.p Requires (C2.q; C3.r),C4.s”5 means
that port p of component C1 must be synchronized with at least one of the two ports
q and r of components C2 and C3, respectively, and with the s of component C4. The
accepts macro lists all ports that are allowed to synchronize with the given port, thus al-
lowing optional ports. For example, “C1.p Accepts C2.q,C3.r,C4.s,C5.t” means that
in addition to the ports listed by the requires macro, the port t of component C5 is also
allowed to synchronize with p despite not being required by it. Graphically, allowed
interactions are defined by connectors. The behaviour specification of each component
along with the set of requires and accepts macros are provided to the JavaBIP engine.
The engine orchestrates the overall execution of the whole component-based system by
deciding which component transitions must be executed at each cycle.

Let JB = (C, ρ, α) be a JavaBIP model6, where: C is the set of components, ρ is
the set of the requires macros, and α is the set of the accepts macros. For a set of ports
a ⊂

⋃
B∈C PB, we write a |= ρ, α to denote that a satifies the conjunction of all the

constraints in ρ and α seen as Boolean formulae (see [8] for detailed presentation).
Note that, in particular, this implies the transitivity of the requires constraints.

5 We use a notation that is slightly different from that in [8] without change of meaning.
6 Throughout this paper, we use JB to denote arbitrary JavaBIP models, as opposed to CM,

which is used to denote CBRTVMs, i.e. JavaBIP models generated from FMs.



The operational semantics of JB is defined by the labelled transition system (LTS)
LJB = (Q, P,→), where:

– Q def
=

∏
B∈C QB is the Cartesian product of the sets of component states,

– P def
=

⋃
B∈C PB is the set of all the enforceable and spontaneous ports in the system,

– → ⊆ Q × 2P × Q is the set of transitions q
a
−→ q′, such that

• either a = {p} with p ∈ PB a spontaneous port of some component B ∈ C,
(qB, p, q′B) a transition in B and qB′ = q′B′ , for all B′ , B,

• or all ports in a are enforceable, a |= ρ, α, and, for any component B ∈ C, either
(qB, a ∩ PB, q′B) is a transition in B, or a ∩ PB = ∅ and qB = q′B.

A state q′ is reachable from a state q if there exists a sequence of interactions
e1, e2, . . . , en such that (q, e1, q1), (q1, e2, q2), . . . , (qn−1, en, q′) ∈ →.

4 CBRTVMs and Their Composition
Throughout the paper, we use the term Component-Based Run-Time Variability Model
(CBRTVM) to highlight the following facts: 1) the model in question is executable and
can be used at run time to enforce the variability constraints, and 2) the set of valid con-
figurations is never computed explicitly but is derived from components representing
individual features. Thus, a JavaBIP implementation of a CBRTVM is a JavaBIP model
with 1) one component per feature, encoding the feature life-cycle, and 2) a set of syn-
chronisation macros encoding the dependencies among features. We build on such an
implementation proposed in our previous paper [16].

4.1 Feature Model Encoding

Fig. 4: FSM for a feature

For each feature f in a feature model FM, we
define the corresponding component enc(n f ) as
shown in Figure 4. Each state represents either the
presence or the absence of the corresponding fea-
ture in the configuration. The states S_f and SR_f
represent the feature (de)activation having been
requested but not yet realised. Transitions labeled
by enforceable ports are shown as solid black
arrows, whereas those labeled by spontaneous
ports are shown as dashed green arrows. Below,
ns f , a f , s f , d f denote, respectively, not_selected f ,
activate f , selected f and deactivate f . Let L =

(Q, P,→) be the LTS of a JavaBIP model CM gen-
erated from FM. We define a mapping ψ : Q→ 2F that associates each state of the LTS
to the configuration of the FM by putting ψ(q) def

= { f ∈ F | q f ∈ { f , SR_ f }}.
Denote by SCCf the strongly connected component of the dependency graph GFM

containing the feature f . For the feature f to be activated, 1) all features in SCC f must
be activated at the same time, 2) all other features that f depends on must either be
activated at the same time or already selected, and 3) all features in conflict with f must
not be selected. Thus, the synchronisation macros for the port a f are defined by

a f Requires (a f ′ ) f ′∈SCCf \{ f }, (s f ′ ; a f ′ ) f ′∈E( f )\SCCf , (ns f ′ ) f ′∈χ( f ) ,

a f Accepts (a f ′ ) f ′∈SCCf \{ f }, (a f ′ ) f ′∈E∗( f )\SCCf , (s f ′ ) f ′∈E∗( f )\SCCf , (ns f ′ ) f ′∈χ( f ) ,
(1)



Fig. 5: Example of a feature model with its dependency graph (SCCs shown in yellow)

where E∗ is the transitive closure of E. Notice that, due to cascading dependencies,
there are more accepted ports than required ports.

Similarly, for the feature f to be deactivated, 1) all features in SCC f must be deac-
tivated at the same time and 2) all features that depend on f must either be deactivated
at the same time or not yet selected. Thus, the synchronisation macros for the port d f

are defined by

d f Requires (d f ′ ) f ′∈SCCf \{ f }, (ns f ′ ; d f ′ ) f ′∈E−1( f )\SCCf ,

d f Accepts (d f ′ ) f ′∈SCCf \{ f }, (d f ′ ) f ′∈(E−1)∗( f )\SCCf
.

(2)

Finally, the ports s f and ns f accept but do not require synchronisation with any
other ports, i.e. their Requires macros are empty while their Accepts macros contain
all enforceable ports in the system.

Example 1. Consider the dependency graph in Figure 5. For feature C, we have

aC Requires aA; sA and aC Accepts aA, sA, aB, sB ,

meaning that the port ac can be synchronized with both aA and aB (allowing S CC2 to be
activated together with S CC1), or with sA and sB (allowing S CC2 to be activated after
S CC1). It is easy to see that, for instance, aA and sB cannot be enabled at the same time
since activation of B would have required that of A.

Note. The encoding presented above is different from the one in [16]. Component be-
haviour in Figure 4 has additional looping transitions not_selected f and selected f

on states S f and S R f , respectively. Synchronisation macros (1) and (2) allow (de)activation
of features at the same time as features in other SCCs, which we did not allow in [16].
However, these differences do not impact the theoretical results presented there. Specif-
ically, any reachable state in the generated JavaBIP model corresponds to a saturated
partial-valid configuration of the feature model. Conversely, if there exists a valid con-
figuration in the feature model, it is guaranteed to be reachable in the JavaBIP model.

4.2 Composition Operators on Macros

Our approach is structural. Let CM1 and CM2 be two JavaBIP CBRTVMs. To compose
them into CM′ based on a composition operator ◦′, we take the union of their com-
ponent sets, and compose the sets of their coordination macros. This section explains
how these macros are composed for each of the composition operators presented in
Section 3.2.



Composing Requires Macros Let us consider two sets of Requires macros, denoted
ρ1 and ρ2. A new set ρ of Requires macros will be obtained in relation with operator
◦′ ∈ {∪,∩, ∩̇}.

Definition 5. (Composition Operators) Let ρ1 and ρ2 be two sets of Requires macros.
We define the following composition operators:

– Intersection (∩):

ρ1 ∩ ρ2
def
= {x Requires L1 , L2 | (x Requires L1) ∈ ρ1 and (x Requires L2) ∈ ρ2} ∪

{(x Requires L) ∈ ρ1 | x ∈ P1 \ P2} ∪ {(x Requires L) ∈ ρ2 | x ∈ P2 \ P1}

– Strict Intersection (∩̇): ρ1 ∩̇ ρ2
def
= ρ1 ∩ ρ2, where, for i ∈ 1, 2,

ρi
def
= ρi ∪ {x Requires false | x ∈ P3−i \ Pi} .

(A port that requires false will never be executed.)
– Union (∪):

ρ1 ∪ ρ2
def
= {x Requires L1 ; L2 | (x Requires L1) ∈ ρ1 and (x Requires L2) ∈ ρ2} ∪

{x Requires true | x ∈ P1 \ P2} ∪ {x Requires true | x ∈ P2 \ P1}

(A port that has a “Requires true” constraint can be executed as a singleton.)

Saturation Process for Accepts Macros The composition of Accepts macros is in-
dependent of the composition operator used. For two sets of macros α1 and α2, it is
defined as the saturation of the set:

{x Accepts L1 , L2 | (x Accepts L1) ∈ α1 and (x Accepts L2) ∈ α2}

∪ {x Accepts L1 | x ∈ P1 \ P2} ∪ {x Accepts L2 | x ∈ P2 \ P1} .

Notice that, without saturation, ports required for interaction may be excluded from
the Accepts macros. For instance, consider a scenario where port x requires port y (i.e.
x Requires y), and port y requires port z (i.e. y Requires z). If the Accept macro for x
only contains y (i.e. x Accepts y) after composition, then port z will be excluded (cf.
Section 3.3). However, based on the Requires macros, x transitively requires z since
y Requires z. To address this, saturation expands the right-hand side of each Accepts
macro to include all ports required for interaction. In the example, it would add z to the
Accepts macro for x, ensuring x accepts all necessary ports.

Let α = {a1, a2, ..., an} represent the set of Accepts macros, where each macro is
denoted as ai : xi Accepts Li. We perform a saturation on α, which systematically
iterates over each Accepts macro ai ∈ α, initializing the right-hand side rhsi with Li.
It then expands rhsi by conjoining additional ports from other Accepts macros that can
interact with ports currently in rhsi. This iteration continues until rhsi stabilizes.

The resulting set α contains saturated Accepts macros, where the right-hand side
of each macro encompasses all ports across composed interactions. This ensures the
Accepts macros handle all relevant ports involved in potential interactions.



4.3 Composition Operators on JavaBIP Models

Definition 6. (Composition) Let CM1 = (C1, ρ1, α1) and CM2 = (C2, ρ2, α2) be JavaBIP
models as defined in Section 3.3. Their composition by ◦′ ∈ {∪,∩, ∩̇} is the JavaBIP
model CM′ = (C’, ρ′, α′) where:

– C’ = C1 ∪ C2 is the union of their components,
– ρ′ is the composed require macros such that ρ′ = ρ1 ◦

′ ρ2 as defined in Section 4.2,
– α′ is the saturated accept macros as defined in Section 4.2.

Note that, when these composition operators are applied to CBRTVMs, the result-
ing models can be optimised. In the process of synthesizing a feature diagram from a
Boolean formula in feature modelling [4], dead features can be identified and removed
as they cannot be part of any valid configuration of FM. This goes beyond the scope
of this paper, it is worth noting that the composed CBRTVM can be similarly opti-
mised when a (sub)set of dead features is known. When composing the JavaBIP models
CM′ = CM1 ◦

′ CM2, the component set is defined as the union C′ = C1 ∪C2 (see Sec-
tion 4.3). Consequently, C′ may contain components corresponding to dead features
that may be excluded when synthesizing the composed feature model FM. To that end,
CM′ can also be modified by removing all such components corresponding to dead
features. In addition, macros should be refined by removing ports associated with com-
ponents corresponding to dead features. Ports that are on the left-hand side of a macro,
e.g. p f Requires L1, should be removed. For ports that appear on the right-hand side of
a macro, e.g. p f ′ Requires L1 with a f ∈ L1, the list L1 can be replaced by false, since at
least one of the ports required to fire p′f (the one corresponding to the dead feature) will
never be enabled. For accept macros, ports linked to dead features are simply removed.

5 A Bisimulation for Correctness and Compositionality Results
Bisimulation is a binary relation commonly used in Concurrency Theory (e.g. [21]) to
establish the behavioural equivalence between two transition systems: whenever one
system can execute an action, the same action can be executed by the other from any
equivalent state, and vice versa. Bisimilarity ensures that, not only the states reachable
within the two systems are equivalent but so are the execution options at every moment.
In this section, we propose the notion of multi-stepUP-bisimulation, which extends the
concept of bisimulation by allowing transitions to match over multiple steps. The multi-
step UP-bisimulation is then used to show that the composed CBRTVMs preserve
the semantics of the composed feature models (correctness of the encoding), and the
equivalence is the congruence for the defined composition operators (compositionality
of the encoding).

In the context of FMs, various structures can be synthesized from the same Boolean
formula, leading to differing saturated partial-valid configurations. However, the set of
valid configurations is the same. On their side, two CBRTVMs generated from a FM
have the same set of valid configurations reachable from the initial configuration, but
they may have different paths and intermediate states to reach the valid configuration. To
deal with such a situation, we consider paths in the LTSs, rather than single transitions.



Definition 7 (P-path). Let L = (Q, P,→), with→ ⊆ Q × 2P × Q, be an LTS. Let P be

a predicate on Q. A P-path in L is a sequence of transitions q1
l1
−→ q2

l2
−→ . . .

lk
−→ qk+1,

such that both P(q1) and P(qk+1) hold. We write q1
u
=⇒
P

qk+1, with u =
⋃k

i=1 li.

Note that P may hold on some intermediate states of a P-path. We now introduce
the notion of the multi-step UP-bisimulation. This allows us to compare behaviors of
two LTSs w.r.t. states that satisfy a given predicate along the P-paths where the sets of
observable actions coincide. This way the multi-step UP-bisimulation tolerates non-
atomicity of interactions.

Definition 8 (Multi-step UP-Bisimulation). Let Li = (Qi, Pi,→i), with i = 1, 2 and
→i ⊆ Qi × 2P × Qi be two LTSs. Let P be a predicate on Q1 ∪ Q2. LetU ⊆ P1 ∪ P2 be
a set of unobservable ports, such that P1 \ U = P2 \ U. A relation R ⊆ Q1 × Q2 is a
multi-stepUP-bisimulation if, for all (q1, q2) ∈ R, hold the following two conditions:

– for any q1
u1
==⇒
P

q′1, there exists q2
u2
==⇒
P

q′2, such that (q′1, q
′
2) ∈ R and u1 \U = u2 \U,

– and symmetrically for any q2
u2
==⇒
P

q′2 in L2.

Notice that, in the classical setting, when transition labels are singleton, i.e. → ⊆
Q ×

{
{p} | p ∈ P

}
× Q and P1 = P2, multi-stepUP-bisimulation reduces to the classical

bisimulation by taking P = true andU = ∅.

Definition 9 (Multi-step UP-bisimilarity). Given two JavaBIP models JB1 and JB2,
a predicate P on their states and a set of unobservable ports U, we say that they
are multi-step UP-bisimilar, denoted JB1 'UP JB2, if there exists a multi-step UP-
bisimilation relating the initial states of their semantic LTSs.

Multi-stepUP-bisimilarity allows us to speak of the equivalence of JavaBIP models
in general and of CBRTVMs in particular.

Let FM1 and FM2 be two feature models, ◦ ∈ {∪,∩, ∩̇}, CM and CM′ be the
CBRTVMs derived as in Figure 1 with F and F′ their respective sets of features. We
are interested in comparing the configurations reached by the two models. Thus, we
want to observe what features are (de)activated following given (de)activation requests.

Notice that, while F ⊆ F′ = F1 ∪ F2 by construction, it is possible that F ( F′,
since dead features may be eliminated in FM1 ◦ FM2.

In this context, we define the set of unobservable ports (cf. Figure 4) to be

U
def
= {selected f , not_selected f | f ∈ F′} ∪ {S f , SR f | f ∈ F′ \ F} .

Since the notion of a “saturated partial-valid configuration” is specific to any given
feature model, to establish equivalence of two CBRTVMs, we have to limit our con-
sideration to valid configurations only. Thus we take P to be the predicate, such that
P(q) evaluates to true exactly when either q f = init, for all f ∈ F or ψ(q) is a valid
configuration of the composed feature model FM1 ◦ FM2 (cf. Figure 1).

To prove the correctness of the composition operators’ encodings, we have to show
that, for any FM1 and FM2, holds CM 'UP CM′. Under Assumption 1, we can prove
the following propositions:



Table 1: Feature inclusion in configurations Φ1, Φ2, and Φ3
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Φ1 X X X X X X X X X X X X X Invalid Invalid Valid
Φ2 X X X X X X X X X X X X Valid Invalid Valid
Φ3 X X X X X X X X X X X X Valid Valid Valid

Proposition 1. Let FM1 and FM2 be two feature models. Let L = (Q, P,→) and L′ =

(Q′, P′,→) be the semantic LTSs of the corresponding CBRTVMs CM and CM′ as in
Figure 1. Then CM 'UP CM′ with P andU defined as above.

Sketch of the proof. The relation R ⊆ Q × Q′, such that (q, q′) ∈ R iff q f = q′f , for all
f ∈ F, and q′f ∈ {init, S_f}, for all f ∈ F′\F, is a multi-stepUP-bisimulation relating
the initial states (init) f∈F and (init) f∈F′ of L and L′, respectively. �

Multi-stepUP-bisimulation is not a congruence on JavaBIP models since it allows
the breaking of interaction atomicity. However, it is a congruence on the sub-algebra of
models generated from CBRTVMs by the composition operators defined in Section 4.

Proposition 2. Let CM1, CM2, and CM3 be composed from CBRTVMs. Let P be a
predicate on the states of CM1 and CM2 and U a set of unobservable ports, such that
CM1 'UP CM2. For any ◦′ ∈ {∪,∩, ∩̇}, holds CM1 ◦

′ CM3 'U′P′ CM2 ◦
′ CM3, with

– P′(q) = true iff P(q12) = true and ψ(q3) is a valid configuration in CM3, with q12
and q3 the projections of q on the union of state spaces of CM1 and CM2, and on
the state space of CM3, respectively,

– U′ def
= U ∪ {selected f , not_selected f | f ∈ F3}, where F3 is the set of features

in CM3.

Sketch of the proof. The key observation is that any P-path can be extended to a longer
one in the semantic LTS of the same CBRTVM by firing unobservable (not_)selected
ports after the firing of the corresponding (de)activate ports. �

These new results with the multi-step UP-bisimulation used guarantee that for a
given composition operator, a reachable state in the composed CBRTVM corresponds
to a saturated partial-valid configuration in the composed feature model.

6 Experimental Validation
Integration of CloudWatch service For evaluation purposes, we use the Heroku
Cloud FM (Figure 2) as FM1. As FM2, we take the CloudWatch FM (Figure 3) ex-
tended with all mandatory features from the Heroku Cloud FM alongside the first option



within these mandatory features, excluding Dyno, to which Production_tier is specifi-
cally appended. This setup allows us to better illustrate and experimentally validate the
three composition operators studied in the paper.

Feature models (FMs) are taken as input and transformed into CBRTVMs. They
are executable and can be used at run time to enforce the variability constraints. As
explained in Section 4, the set of valid configurations is never computed explicitly but
is derived from components representing individual features. Thus, CBRTVMs include
JavaBIP component specifications along with synchronisation macros for coordination.
We have developed a Java-based composer dealing with the macros that support three
composition operators: union, intersection, and strict intersection. The component spec-
ifications sets of CBRTVMs to compose and a resulting macro file for a chosen compo-
sition operator are then packaged to create a composed CBRTVM.

Table 1 shows the configurations Φ1, Φ2, and Φ3, and their validity in the composed
FM across three distinct operators. We carried out our experiment by starting from an
empty initial configuration and initiating spontaneous activation requests to the com-
posed CBRTVM for all the features in configuration Φ1 in random order. We repeated
this process 50 times to observe the reached configurations for each case.

Fig. 6: Observed configurations.

Figure 6 sums up the reacha-
bility outcomes across the oper-
ators used for the composition.
As anticipated, the CBRTVM
model aligned with theoretical
results across all cases, transi-
tioning to valid configurations
while preventing invalid ones
from being reached. Specifi-
cally, in the intersection case de-
picted in Figure 6, Φ1 was never
reached due to the exclusion
constraint between CloudWatch
and BasicMonitor. On the con-
trary, both Φ2 or Φ3 are reached depending on the activation sequence of BasicMonitor
and CloudWatch, explaining the outcomes in Figure 6. In the strict intersection sce-
nario, Φ3 was the only valid configuration and was consistently reached, as Φ1 and Φ2
were never attained since they are not valid (cf. Table 1). Finally, in the union case, all
configurations are reachable from the initial configuration, making Φ1 attainable upon
activating all features within it, as shown in Table 1. Φ2 and Φ3 in the union case are
valid configurations however they are never reached (zero on the plot) since the activa-
tion of all features in Φ1 is requested, and one has Φ2 ⊂ Φ1 and Φ3 ⊂ Φ1. However,
if the activation of all features in only Φ2 or Φ3 were requested instead, then those
configurations would be reached.

Illustration ofP-path equivalence Let us illustrate the multi-step transition matching,
where a sequence of transitions in one model corresponds either to a single transition
or to a sequence of transitions in the other model. Consider the feature models FM1
and FM2 shown in Figures 7a and 7b. Following the process in Figure 1, we have



(a) FM1 (b) FM2 (c) (d)

Fig. 7: Two feature models (a,b) and two options for their intersection (c,d)

Fig. 8: Execution traces of CM and CM′, with CM generated from the FM in Figure 7c.

automatically generated the CBRTVMs for these two feature models. We then used the
macros composer for the intersection operator to generate the model CM′.

The behaviour of CM′ must be compared with that of a CBRTVM CM generated
for a feature model representing FM1 ∩ FM2. However, as described in [4], several
feature models can be used to represent FM1 ∩ FM2, among which, in particular, any
of the two FMs shown in Figures 7c and 7d. It is easy to see that these resulting feature
models have the same set of valid configurations despite their different structures.

The CBRTVM generated for the FM in Figure 7d behaves exactly as CM′. Since
our goal, here, is to illustrate the equivalence of different paths, we focus on the FM in
Figure 7c. Let CM be the generated CBRTVM corresponding to this FM.

Consider the execution traces associated with a specific sequence of reconfiguration
requests: activation of the feature F1, followed by F2, then F3. Figure 8 shows how
both models respond to this sequence of requests starting from the initial states q0 and
q′0 of CM and CM′ that are related by R as defined in Section 5. The sets of ports used
as labels for the two paths in Figure 8 coincide up to the unobservable ports s f 1 and s f 2.

From their initial states q0 and q′0, upon reception of the activation request for F1
(through the spontaneous port S - f f1 ), both CM and CM′ transition to states q1 and q′1,
respectively. These target states are linked by the relation R. Then, when the activation
request for F2 is received, both models transition to q2 and q′2, where (q2, q′2) ∈ R.
Afterwards, CM moves to the state I3 (in yellow in Figure 8), which corresponds to
a saturated partial-valid configuration that is not a valid one. Hence, P(I3) = false,
meaning that a P-path cannot terminate in I3. Hence, according to Definition 8, this



state does not need to be related to any state in CM′. However, the next transition in
CM leads to the state q3, which corresponds to a valid configuration. On its side, from q′2
CM′ performs the transition a f 1a f 2. Finally, following the reception of the request for
the activation of F3, the two P-paths in Figure 8 reach their terminal states (q5, q′5) ∈ R.
Notice that the last transition in the top trace involves two unobservable ports, s f 1 and
s f 2, as opposed to the one in the bottom trace, which only involves s f 1. This reflects
the fact that F3 has an explicit dependency on both features F1 and F2 in the FM of
Figure 7c, but only on F1 in FM2.

7 Related Work
In the context of static variability models based on feature models [1,3,9], the tech-
niques for composing FMs using predefined operators such as union and intersection
have been studied. To respect the semantics of these operators, specific rules for merg-
ing common features during composition were defined. In addition, the work in [2,4]
introduced more advanced techniques to enable composing FMs under arbitrary user-
defined operators. The approach encodes input FMs as Boolean formulas and translates
the composition operator into a Boolean formula over encoded models to obtain the
composed model formula. The resulting feature model diagram can then be synthe-
sized from the boolean formula. Another approach relates features through constraints
in a separate view model aggregated with inputs. In line with this research (cf. Figure 1),
we contribute with composition operators designed for composing run-time component
models. While existing feature model composition focuses on static variability models,
our framework provides automated support for dealing with configuration evolution in
a modular and a compositional fashion.

A comparison of variability modeling and decision modeling approaches can be
found in [14]. Both approaches focus on variability modeling but from different points
of view, and both provide model derivation support. Our composition approach is FM-
oriented as hierarchy, (de)composition, as well as configuration constraints, are essen-
tial in FM. Furthermore, our framework provides automated support for dealing with
configuration workflows, which is essential in decision modelling approaches.

In Featured Transitions Systems (FTS) [12], each transition is annotated with a com-
bination of features to determine the variants that can execute it. As they were initially
thought in the static setting where all the features and their relationships could be spec-
ified in advance and not allowed to change, FTS do not support run-time adaptation,
e.g., of CPS or AI-intensive systems with new features, constraints and functionalities.
In [15], the composition of features is tackled by both superimposition and parallel
composition, which are the most used in variability-intensive systems engineering. The
authors introduce compositional feature-oriented systems (CFOSs) as a unified formal
way for programs in a guarded command language. Unlike FTS-based verification and
validation, our compositional approach allows mixing design-time and run-time tech-
niques, and thus by some means they support operations over FTS such as FTS merge.

An early description of the distinction between positive and negative variability can
be found in [25], where authors combine model-driven and aspect-oriented software de-
velopment to support both variability types. In [25], features are separated in models and
composed by aspect-oriented composition techniques on model level. Aspect-oriented
techniques enable the explicit expression and modularization of variability on model,



code, and template level. Differently from [25], our approach is only model-driven when
supporting composition and reconfiguration to allow both variability types.

In the domain of component-based models, a recent survey [13] emphasizes that
a suitable methodology to ensure the correctness of reconfigurations in component-
based systems is still needed. We believe that the present work contributes to this active
research topic, at both development and management stages (cf. [13], Fig. 1).

Component-based models are compositional by their intrinsic nature. Nevertheless,
adding composition operators for building complex component-based systems is of in-
terest, both theoretical and practical, namely because of safety properties to ensure or
to preserve by construction. In this domain, Attie et al. [5] propose a formal framework
for compositional construction of software architectures by introducing an associative,
commutative intersection composition operator for architectures. If architectures A1 and
A2 enforce safety properties φ1 and φ2 respectively, [5] shows that their intersection
composition A1 ∩ A2 enforces the conjunction φ1 ∧ φ2. Our approach to CBMs compo-
sition also aims to facilitate incremental software system construction. However, in our
approach the composition is directly performed on the syntactic representation of coor-
dination constraints rather than by encoding interaction models into Boolean formulas.
In addition, we introduce new composition operators beyond intersection.

8 Conclusion and Future work
This paper introduces composition operators for CBRTVMs, enabling automated con-
struction of component-based systems. It provides reusability by allowing CBRTVM
models to be reused across systems and instances through composition, flexibility by
enabling models to be composed according to specific user needs through various op-
erators, and adaptability by facilitating the incremental addition of functionalities.

In a broader software engineering perspective, we have automatically related the
composition of feature models, which are well-established variability models for soft-
ware evolution, with the composition of component-based models. We have also pro-
vided new composition operators for the CBRTVMs, that preserve the FM semantics.
These contributions push FM variability and their composition, which are available at
the design and development stages, into safe runtime reconfiguration that is automati-
cally ensured at the management stage.

In future work, we plan to develop a more generalized composition approach that
goes beyond the predefined operators currently examined. By allowing for user-defined
composition, we intend to provide greater flexibility in constructing CBRTVMs.

To prove the correctness and compositionality of our approach, we have introduced
a novel multi-stepUP-bisimulation relation. We have shown that it is a congruence on
the sub-algebra of JavaBIP models generated by CBRTVMs but not on JavaBIP models
in general. In future work, we are planning to study and characterise the maximal sub-
algebra of models for which multi-stepUP-bisimulation is a congruence.
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