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Abstract— Small force measurements are needed in a large
variety of cutting-edge scientific applications. However, the
development of small-scale force standards and suitable cali-
bration procedures remains challenging for national institutes
of metrology. In this context, an electromagnetic force balance is
under development to characterize flexible samples or calibrate
force transducers down to the micronewton level. The main
contribution of this work is the application to this system of a
methodological proposal in order to estimate the stiffness of a
flexible cantilever. This method consists of four distinct steps
based on the existing concept of equivalent representation for
uncertain dynamical systems. The calculation of uncertainty
for specific quantities of interest, such as stiffness, is therefore
linked to this concept using interval analysis and unknown input
shaping.

Index Terms— Small force metrology, Stiffness estimation,
Unknown input, Uncertainty calculation, Interval analysis.

I. INTRODUCTION

According to the database (KCDB) of the mutual
recognition agreement of National Metrology Institutes
(NMIs), the traceability of small force measurements cannot
be guaranteed below 0.1 N at the international level.
However, a large panel of scientific applications involves
much smaller forces, possibly down to the attonewton
(10−18 N) [1], whereas the measuring instruments used do
not benefit from an appropriate calibration procedure, as
there is no small force standard at this scale.

Therefore, NMIs and research laboratories put a lot
of efforts in the development of reference standards and
transfer artefacts to disseminate the force unit [2], and lend
more credibility to the scientific activities concerned. An
electromagnetic small force generator has been developed
to apply microforces on rigid samples [3], which is inspired
of deadweight machines that are traditionally used at
macroscale to produce force standards. Indeed, the weight
of a levitating magnetic indenter subjected to the effect of
the local gravitational field is applied on the sample. The
redefinition of the kilogram unit using electrical metrology
units motivated NMIs to design electrostatic force balances
[4], which currently represent a promising approach to
produce small force standards. Consequently, the above-
mentioned force generator is currently being converted into
an electromagnetic force balance, with a similar operating
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principle based on the regulation of the indenter levitation
height. As stiffness references are widespread and useful
transfer artifacts, this new device aims to characterize the
spring constant of flexible cantilevers in bending using the
indenter tip. The electromagnetic force balance is therefore
a dynamical system, coupled with the cantilever of unknown
stiffness to be characterized.

In the field of dynamic measurements, calculating uncer-
tainty in accordance with the guidelines of the Guide to the
expression of Uncertainty in Measurement (GUM) remains
a challenge for dynamical systems [5], that could be tackled
using control theory tools [6]. From the force balance point
of view, the force applied by the cantilever, but also all the
external disturbances and model discrepancies correspond
to unknown inputs that make the force balance uncertain.
In Reference [7], an exact manner of representing the true
behavior of a specific class of uncertain dynamical SISO
systems is presented, but the calculation of uncertainty is
not addressed. This work builds on this concept of equiv-
alent representation to extend it, and thus propose a new
methodology for determining the measurement uncertainty
of the electromagnetic force balance.

II. PRESENTATION OF THE SYSTEM

Fig. 1a illustrates the early prototype of the force balance
studied in this paper, and whose typical range is between
10-4 N.m-1 and 1 N.m-1. The levitating indenter is made
of a thin capillary glass tube to the end of which is fixed
a small cylindrical magnet of 1 × 1 mm. The levitation is
guaranteed by a constant electromagnetic force produced by
coils, combined with stabilizing diamagnetic forces gener-
ated by graphite plates surrounding the small magnet. The
electrical current is generated by a KIKUSUI DC Power
supply PBZ40-10, and the levitation height is measured
using a chromatic confocal sensor PRECITEC CHRocodile
S. The nonmagnetic cantilever to be characterized is a
0.1mm-thin flexible plastic film mounted at one end on a
PI micromanipulator, in order to be moved. While the other
free end of the cantilever is pushed against the indenter, the
implemented control law adjusts the current injected into the
coils to keep the indenter at its initial levitation height, thus
causing the cantilever to bend. The resulting deformation is
measured and used to estimate its stiffness.

A. Mechanical modeling

The modeling of the electromagnetic force balance has
already been presented in detail in [3], and is therefore briefly



Plastic
cantilever

Coils

Indenter

Graphite plates

Confocal sensor

Contact zone

10mm

Magnet

Glass
tube

(a)

~zg

~xg ~yg
Og

~zt

~xt
~ytOt

measurement axis

I

I

~Felec

~Fdia

~Fv

~Fc

G

m~g

(b)

Fig. 1. (a) Picture of the electromagnetic force balance prototype. (b) Schematic representation used for modeling.

recalled here with some adjustments. The schematic repre-
sentation used to carry out the mechanical modeling is shown
in Fig. 1b. The setup is mounted on a vibration isolation table
associated with a moving frame Rt = (Ot, x⃗t, y⃗t, z⃗t), defined
in relation to the inertial frame Rg = (Og, x⃗g, y⃗g, z⃗g) linked
to the laboratory. Nevertheless, the inclination of the table
varies slowly, which disturbs the dynamic behavior of the
force balance. The angles αx, αy are introduced to describe
the orientation of Rt with respect to Rg . Noting by m the
mass of the levitating indenter, its weight W⃗ is expressed in
Rt as follows:

W⃗ = −mg

 −s(αy)
c(αy)s(αx)
c(αy)c(αx)


Rt

. (1)

The force balance is assumed to be a one degree-of-freedom
system, so its dynamical behavior is described along z⃗t.
The repulsive diamagnetic forces are perpendicular to z⃗t
and are therefore neglected. The electromagnetic force F⃗elec

produced by the two coils is defined as:

F⃗elec = I(γz + β)z⃗t, with I = i0 + i. (2)

The current I corresponds to the numerical command sent to
the controller, with i0 being the known constant command
producing the electromagnetic force that ensures the levi-
tation, and i the command that controls the height of the
indenter. The constant parameters γ and β are studied in the
following section. In this modeling, the force F⃗c applied by
the cantilever on the indenter is assumed to be aligned with
the motion of the micromanipulator, and is therefore defined
as:

F⃗c = −∆zKcz⃗t, (3)

with ∆z = z − zPI, zPI being the position of the PI micro-
manipulator, and Kc the unknown stiffness to be estimated.

Finally, the dynamical behavior of the indenter is described
by the following model:

mz̈ +Kv ż − i0γz =i(γz + β) + i0β −mgc(αx)c(αy)

−∆zKc

(4)

in which Kv models the air friction force F⃗v .

B. Parameter identification

The mass m of the indenter is equal to 4.5 ± 0.1 mg
and the offset current i0 is set to 130 mA. Considering the
static equilibrium of indenter in levitation, i.e. without table
tilt, inertial forces or cantilever effort, and with i = 0, the
previous mechanical model (4) leads to:

β =
mg

i0
= 3.396× 10−4 N.A-1. (5)

Then, parameters Kv and γ are estimated using the free
response of the indenter around its equilibrium position. Fig.
2 shows both the measured displacement of the indenter, and
the fitted output of a linear model of the form:

z̈+a1ż+a0z = 0, with a0 = 737.466 and a1 = 0.389. (6)

Using (4), the coefficients a0 and a1 are expressed as:

a0 =
−i0γ

m
, a1 =

Kv

m
(7)

and give γ = −0.026 kg.s-2.A-1 and Kv = 1.749 × 10−6

kg.s-1.

III. EQUIVALENT STATE-SPACE REPRESENTATION

The first step of the methodology consists in determining
an exact representation of the true behavior of the force
balance, considering all the external disturbances and un-
modeled dynamics. The theorem of equivalent representation
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Fig. 2. Free response of the indenter: comparison between the measured
displacement and the fitted model.

given in [7] is based on an identified linear model (M) of
order p > 0, defined by the companion matrices A, B, C,
respectively the state, input and output matrices of (M) with
appropriate dimensions.

Theorem 1 (Equivalent representation): For any given
nonlinear system (S) and linear model (M), it exists a
virtual input I(t) such that the nonlinear dynamics of the
input-output signals (u(t), y(t)) of (S) can be equivalently
represented by the following linear state-space equations:

(S) ⇔

{
Ẋ = AX +B(u+ I),
y = CX

(8)

in which X ∈ Rp is the state vector of the equivalent model
with the following components:

X =
[
y ẏ . . . y(p−1)

]T
. (9)

The virtual input is therefore additive on the control input
channel and depicts the discrepancy of the linear model
(M). This means that external disturbances, modeling errors
such as nonlinearities and remaining unknown dynamics are
included in I, so that the actual output of the physical
system under study is equivalently reproduced. The evolution
matrix A of the model (M) chosen for the force balance is
determined based on the previously identified free response
of the indenter. The current i is considered as the input signal
of the force balance. According to (2), the electromagnetic
force generated by I depends on the constant parameters γ
and β, but also on the displacement of the indenter. Based on
(4), a constant static gain is determined for (M) neglecting
the dependence on z, resulting in a control matrix B given
by:

B =

[
0
β
m

]
. (10)

Considering X =
[
z ż

]T
as the state vector of the

force balance, the equivalent state-space representation of its

dynamics is therefore expressed as follows:

(S) ⇔

Ẋ =

[
0 1

−737.466 −0.389

]
X +

[
0

75.436

]
(i+ I),

z =
[
1 0

]
X.

(11)

IV. ESTIMATION OF THE VIRTUAL INPUT

Once the equivalent model of the indenter has been
determined, an estimate of the virtual input I is required to
apply the proposed method. Indeed, the dynamics of the force
applied by the cantilever on the indenter is not described
by the identified model (M) and is therefore included
in I. In control theory, the virtual input I corresponds
to an unknown input that can be estimated using various
techniques. As in Reference [7], a Linear Kalman Filter
is turned into an Extended State observer (ES-LKF) which
is a common technique for estimating unknown external
disturbances and unmodeled dynamics. In such an observer
design, all unknown inputs are lumped into an additional
state to be estimated with the initial state vector X . The
extended state vector Xe ∈ R3 is thus defined as:

Xe =
[
z ż I

]T
(12)

and leads to the following extended state-space representa-
tion: {

Ẋe = AXe + Bi+Dİ,
z = CXe

(13)

in which

A =

 0 1 0
−737.466 −0.389 75.436

0 0 0

 ,B =

 0
75.462

0

 ,

D =
[
0 0 1

]T
, C =

[
1 0 0

]
.

(14)
According to the principle of equivalent representation, no
uncertainty is introduced by the known matrices of (M),
the discrepancy of the model only lies in the virtual input
I. However, the consistency of the estimated virtual input
Î depends on the reliability of the ES-LKF inputs. Indeed,
if the signals given to the observer are different from the
input-output signals of (S), the virtual input I may not be
estimated correctly. Therefore, the observer must take into
account the uncertainty associated with its inputs to ensure
the potential metrological traceability of the approach. The
input signals of the ES-LKF are the varying current i and the
displacement z of the indenter measured with noise. White
Gaussian stochastic processes ω and ωi with zero mean and
infinite variance are used to model respectively the unknown
dynamics of the virtual input [7] and the noise of the output
current of the power supply:{

İ = ω,

i = ic + ωi,
(15)

with ic the known numerical value of i. The extended
state-space representation (13) is therefore turned into the



following stochastic model:{
Ẋe = AXe + Bic + δΩ,

z = CXe.
(16)

with δ =
[
B D

]
∈ R3×2, Ω =

[
ωi ω

]T ∈ R2. The
continuous model (16) is discretized using a zero-order hold
operating at Ts. Considering zk as the discrete displacement
of the indenter measured with a discrete-time band-limited
white Gaussian noise vk with zero mean and variance R ∈ R,
the discrete stochastic evolution of Xe

k and zk are described
by: {

Xe
k+1 = FXe

k + Gick +Ωk,

zk = CXe
k + vk,

F = eATs , G =

∫ Ts

0

eAtBdt

(17)

in which Ωk is a band-limited white Gaussian process noise
with a zero-mean and a covariance matrix Q given by:

Q = E
[
Ωk ΩT

k

]
=

∫ Ts

0

eAtδWδT eA
T tdt,

with : W =

[
wPSDi 0

0 wPSD

]
,

(18)

wPSD and wPSDi being respectively the constant power
spectral densities of the stochastic process noise ω and ωi,
set to 1× 10−4 A2/Hz and 1.1095× 10−12 A2/Hz. Let X̂e

0

and P0 be initial conditions, the prediction-update steps of
the Kalman filter are given by the following equations:

X̂e
k|k−1 = FX̂e

k−1 + Gick−1,

Pk|k−1 = FPk−1FT +Q,

Kk = Pk|k−1CT (CPk|k−1CT +R)−1,

X̂e
k = X̂e

k|k−1 +Kk(z
m
k − CX̂e

k|k−1),

Pk = (I3 −KkC)Pk|k−1

(19)

in which zmk is the actual displacement value measured at
time tk. The estimated virtual input Î corresponds to the
third component of X̂e

k , the third diagonal component of P̂k

gives the variance σ2
k of the related observation error. An

interval [Îk
]

that must include I is determined at the k-th
time instant as follows:[

Îk
]
≜

[
Îk − 3σk, Îk + 3σk

]
. (20)

Fig. 3 shows the estimate of the virtual input Î along with
the 3σ bounds, whose dynamics is related to the action of
the free end of the cantilever on the controlled position of the
indenter. The displacement zPI of the PI micromanipulator
moving the cantilever is shown in Fig. 4.

V. VIRTUAL INPUT SHAPING

The virtual input I corresponds to the discrepancy of
(M) and thus represents the dynamics of various unknown
quantities. Therefore, the force applied by the cantilever on
the indenter must be distinguished from the rest in order to
estimate its stiffness Kc. To do so, a shaping model h is
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Fig. 3. Plot of the estimated virtual input Î with the 3σ bounds.
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Fig. 4. Plot of the PI micromanipulator displacement zPI.

introduced to describe the dynamics of the virtual input I as
follows:

I(t) = h(Q(t), D(t)) + ε(t), (21)

with Q and D two vectors that respectively gathers the
quantities to be estimated and measurement biases. More
precisely, D refers to significant inputs which can be mea-
sured or estimated, likely to deteriorate the estimation of Q if
they are not taken into account. The Residual Shaping Error
(RSE) ε stems from the principle of equivalent representa-
tion, and corresponds to unknown remaining dynamics. The
mechanical model (4) is equal to:

z̈ +
Kv

m
ż − i0γ

m
z =

β

m
i+ i

γ

m
z + g

[
1− c(αx)c(αy)

]
− z − zPI

m
Kc,

(22)

and reveals the expression of the identified model (M).
During a test, the tilt of the table is modified by slowly



0 2 4 6 8 10 12

−0.2

0

0.2

0.4

0.6

0.8

1
·10−6

Time (s)

M
ea

su
re

d
di

sp
la

ce
m

en
t

z
(m

)

Fig. 5. Measurement of the indenter position z during loading phase with
closed-loop control.

varying angles αx, αy , which disturbs the balance of forces
and thus deteriorates the estimate of stiffness Kc. The offset
current i0 and the displacement zPI of the cantilever to be
tested are considered as external inputs with respect to (S).
Therefore, the vectors Q and D are defined as follows:

Q = Kc , D =
[
i0 αx αy zPI

]T
. (23)

Hence, the virtual input shaping considered in this paper is
expressed by:

I =
i0γ

mg
iz + i0

[
1− c(αx)c(αy)

]
− i0∆z

mg
Kc + ε. (24)

In this manner, the dynamics of the force balance is described
by the following equivalent model:

z̈ +
Kv

m
ż − i0γ

m
z =

β

m

(
i+ I

)
. (25)

VI. UNCERTAINTY PROPAGATION

The observation error related to the estimated virtual input
Î is propagated towards the quantities of interest in Q thanks
to the shaping model (24). The calculation is addressed using
the framework of interval analysis [8], taking into account
the possible uncertain parameters involved.

A. Interval analysis : useful concepts

A real interval [x] is a closed subset of R:

[x] = [x−, x+] = {x ∈ R | x− ≤ x ≤ x+}, (26)

with x− and x+ respectively the lower and upper bounds of
[x]. The set of real intervals is denoted by IR. A box [x],
also a real interval vector, is defined as the Cartesian product
of n real intervals:

[x] = [x−
1 , x

+
1 ]× . . .× [x−

n , x
+
n ] = [x1]× . . .× [xn] ∈ IRn.

(27)
The lower and upper bounds of a box [x] corresponds respec-
tively to x− = (x−

1 , . . . , x
−
n )

T and x+ = (x+
1 , . . . , x

+
n )

T .
Arithmetic operations ◦ ∈ {+,−, . , /} between real

TABLE I
NUMERICAL VALUES USED FOR UNCERTAINTY PROPAGATION

Parameter Scalar value Interval

i0 (A) 0.130 -
γ (kg.s-2.A-1) −0.026 -

m (kg) - [4.4× 10−6, 4.6× 10−6]
g (m.s-2) 9.807 -

numbers have been extended to the framework of intervals
following the form given in [8]. A contractor C is an operator
able to reduce a box [x] ∈ IRx by removing parts that do not
satisfy an expression of the form f(x) ∈ [y], with f a function
from Rx to Ry , and [y] a box of IRy . This membership
relation corresponds to a constraint, and is associated with
the set S = {x ∈ Rx | f(x) ∈ [y]}. Hence, the contraction of a
given box [x] under this constraint returns a box C([x]) ⊂ [x]
that satisfies C([x]) ∩ S = [x] ∩ S.

B. Stiffness estimation

The interval [Kc] is introduced for the stiffness to be
estimated. In the same way, the measurement bias vector
D is replaced with the following box [dm]:

[dm] = [i0]× [αx]× [αy]× [zPI] ∈ IR4, (28)

[i0] being a degenerate interval, i.e. it only contains the
known scalar value i0. The tilt angles αx and αy have been
estimated a priori for this paper and are thus considered
bounded as follows:

[αx] = [−1.75× 10−10 rad, 1.75× 10−10 rad],

[αy] = [−2.62× 10−10 rad, 2.62× 10−10 rad].
(29)

The displacement zPI is provided in real-time by the PI-
controller with a precision of ±2 µm. An interval [zPI] is
defined as [zPI − 2 × 10−6 m, zPI + 2 × 10−6 m] to carry
out the calculation. In the same way, [z] = [z−3

√
R m, z+

3
√
R m] and [I] = [I−3σ A, I+3σ A] are introduced, with

σ = 3.505× 10−4 A. Considering d as an element of [dm],
the possible values of the cantilever stiffness are therefore
described by the solution set Sk defined as:

Sk =
{
Kc ∈ [Kc]0 | ∃ d ∈ [dm], h(Kc,d) ∈ [Îk]}, (30)

with [Kc]0 = [−0.4 N.m-1, 0.4 N.m-1] the initial search
space. The membership relation h(Q,d) ∈ [Îk] is considered
as a constraint and is thus used to contract [Kc]0. The
forward-backward contractor is implemented to compute the
unknown stiffness of the cantilever. A sequence of primitive
constraints is determined from the shaping model and is
evaluated forward and backward. Further information on its
operation can be found in [9]. Represented as a graph, the
primitive decomposition of the virtual input shaping is said
to be acyclic with respect to Kc, which guarantees that the
contraction is minimal. The numerical value of the variables
included in (24) are summarized in Table I. Fig. 5 shows the
position of the indenter in closed-loop with its equilibrium
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altitude taken as a reference, regulated using an integral-
derivative controller operating at fs = 1/Ts = 1 kHz. During
the loading phase by the PI micromanipulator, a steady-state
error on the indenter position remains due to the constant
loading velocity. Fig. 6 shows the estimated bounds of Sk
with respect to time, narrowing as zPI increases. As the
stiffness of the cantilever is assumed to be constant over
the trial duration, the final estimated interval [Kc] is defined
as:

[Kc] =

12fs⋂
k=0

Sk, and thus equals [0.082 N.m-1, 0.090 N.m-1].

(31)

VII. DISCUSSION

The intersection of the computed solution sets is used to
determine the final interval [Kc]. In this work, the computed
bounds seem to converge towards constant values, which is
consistent as a constant parameter is estimated. However,
the calculation is based on the assumption that ε = 0
which is not necessarily true. Indeed, if disturbances with
significant dynamics have been omitted in the shaping of
the virtual input, the computed sets Sk may be disjoints and
thus lead to [Kc] = ∅. In this case, an additional indicator
is needed to reject estimated sets that have been distorted,
or the shaping must be refined to take these disturbances
into account. The table on which the electromagnetic force
balance is mounted presents a residual inertial regime due to
an imperfect vibration isolation system. As a consequence,
the finished electromagnetic force balance will include a
dedicated triaxial accelerometer to measure the disturbing
inertial forces in real-time. Further in-depth studies will also
examine the importance of the contact point location in the
stiffness estimation process.

VIII. CONCLUSION

This work highlights the suitability of the equivalent repre-
sentation paradigm mentioned earlier in the introduction, for
estimating unknown quantities and their related uncertainty.

The methodological proposal is illustrated on a force balance
dedicated to the estimation of the unknown stiffness of a
flexible cantilever. According to the theorem of equivalent
representation, the dynamical behavior of the force balance is
perfectly described by an identified linear model (M) thanks
to a virtual input I, which corresponds to the discrepancy of
(M). A linear Kalman filter is used as an ESO to compute
an estimated interval [Î] based on the filter observation error,
and meant to enclose the theoretical value of I. A shaping
model is then introduced to describe the dynamics of the
virtual input depending on the quantities to be estimated
and measurement biases. The virtual input shaping model is
finally used to propagate the estimated interval [Î] towards
the quantities of interest. The uncertainty propagation is
carried out within the framework of interval analysis, using
the forward-backward contractor. In the future, mechanical
characterization activities will be undertaken with the French
NMI in the field of small forces, enabling the proposed
approach to be compared with metrological means.
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