
Generation of Regression Tests From Logs with Clustering

Guided by Usage Patterns

Frédéric Tamagnan1, Alexandre Vernotte2, Fabrice Bouquet1, and Bruno Legeard1

1Dept. DISC - Femto-ST, Univ. of Franche-Comté, Besançon, France
2R&D, Smartesting, Besançon, France

*Correspondence: Frédéric Tamagnan, Dept. DISC - Femto-ST, Univ. of

Franche-Comté, Besançon, France, frederic.tamagnan@gmail.com

Abstract

Clustering is increasingly being used to select the appropriate test suites. In this paper,

we apply this approach to regression testing. Regression testing is the practice of verifying the

robustness and reliability of software by retesting after changes have been made. Creating and

maintaining functional regression tests is a laborious and costly activity. To be effective, these

tests must represent the actual user journeys of the application. In addition, an optimal num-

ber of test cases is critical for the rapid execution of the regression test suite to stay within the

time and computational resource budget as it is re-run at each major iteration of the software

development. Therefore, the selection and maintenance of functional regression tests based on

the analysis of application logs has gained popularity in recent years. This paper presents a

novel approach to improve regression testing by automating the creation of test suites using user

traces fed into clustering pipelines. Our methodology introduces a new metric based on pattern

mining to quantify the statistical coverage of prevalent user paths. This metric helps to deter-

mine the optimal number of clusters within a clustering pipeline, thus addressing the challenge

of suboptimal test suite sizes. Additionally, we introduce two criteria, to systematically evaluate

and rank clustering pipelines. Experimentation involving 33 variations of clustering pipelines

across four datasets1 demonstrates the potential effectiveness of our automated approach com-

pared to manually crafted test suites. Then, we analyze the semantics of the clusters based on

their principal composing patterns.

Keywords— Clustering, Pattern Mining, Regression Test Selection, User Traces

1All the experiments and data on Scanner, Spree and Booked Scheduler are available at
https://github.com/frederictamagnan/STVR2024

1

1 Introduction and Background

1.1 Introduction

The primary goal of regression testing is to maintain the integrity of the software and ensure that

it continues to meet its requirements and specifications throughout the development process, in

harmony with the expected usage patterns. This involves re-running a set of predefined test cases

on the modified code to ensure that the previously working features still work correctly after the

changes. However, this process can be time-consuming and resource-intensive, as regression tests

must be executed with each software development iteration. Quality Assurance engineers can take

certain steps to minimize the associated costs. Firstly, they can automate the regression testing

process, from creating the test suite to its execution. This automation helps streamline the testing

procedure and save time and effort. Secondly, QA engineers can aim to find an optimal test suite

that provides sufficient coverage for the software under test. By identifying a minimal yet effective

set of tests, they can minimize redundancy and focus on the most critical aspects of the software.

Regression test suites are typically assessed using metrics like the Average Percentage of Faults

Detected (APFD) or code coverage. However, some of these metrics require code instrumentation,

which may not be feasible in certain contexts, such as when using proprietary software products, or

may not adequately capture the statistical significance of covering real user paths.

Given the substantial volume of data that IT systems now collect, including user execution traces,

there is an opportunity to derive new tests from this resource [1].

Several approaches exist for generating regression test suites based on user traces [2, 3], and

some of these methods employ clustering. Clustering, a machine learning technique already used for

test suite prioritization [4–7], can also be directly applied to user traces. This involves segmenting

the user traces into distinct behavioral groups and selecting representatives from each group to

create a comprehensive regression test suite. When utilizing clustering for this purpose, two main

challenges arise. First, one must decide on the clustering pipeline, encompassing aspects such as

trace encoding, clustering models, and the extraction of representatives. Secondly, determining

the number of clusters is a critical issue, as it directly correlates with the number of tests to be

selected. Indeed, the effectiveness of clustering models in disentangling traces can vary depending

on factors like size, sequential nature, dataset balance, and volume. The same clustering model will

not yield similar performance when applied to a dataset with a very limited vocabulary but millions

of sequences compared to a dataset with an extensive vocabulary and only a few hundred sequences.

Additionally, it is necessary to establish a stopping criterion in the search for the optimal number

of clusters and determine a sampling strategy for selecting user traces as test candidates. The

evaluation of the partition’s relevance and the ideal number of clusters is subject to disagreement

among generic internal metrics [8–16]. Hence, a significant hurdle arises due to the lack of a domain-

specific metric to assess how effectively the generated regression tests reflect the real software usage,

which would allow to fine-tune clustering pipelines and benchmark them.

In previous work [16], we addressed this problem by introducing a statistical coverage metric

based on action n-grams representativeness (API Calls, click on the web interface) in order to assess

whether a regression test suite aligned with the actual usage of an application. Next, we used this

2

metric to extract tests: using a clustering pipeline, we performed clustering on the execution traces

and then extracted one trace per cluster to create a test. We increased the number of clusters by 1

until the action n-grams statistical coverage was sufficient. This metric allowed us to determine the

ideal number of clusters for each clustering pipeline and also to compare them, with the best one

being the one that achieves better coverage with the smallest number of clusters/tests.

In this paper, we extend our previous work as follows:

• Introduction of a novel metric: we introduce a novel statistical coverage metric based on

pattern mining to evaluate if a regression test suite is relevant with respect to user traces of

the SUT. This metric is more robust than the one from [16] as patterns excel over n-grams in

capturing long-term dependencies. This metric is absolute and bounded.

• Fine-tuning of clustering pipelines: we employ our novel metric to establish a fine-tuning

process for clustering pipelines and determine the optimal number of clusters. This approach

enhances the accuracy and efficiency of clustering-based test suite selection, ultimately im-

proving the quality of regression testing.

• Benchmarking of clustering pipelines: Two criteria are introduced for comparing pipelines

based on the testers’ requirements. One emphasizes maximum coverage, and the other priori-

tizes the ratio between the number of tests and coverage. This approach allows benchmarking

different clustering pipelines without the need to instrument the code. The experimentation

includes 33 variations of clustering-based test selection pipelines, with a significant emphasis

on the embeddings stage, recognized as a critical step in the clustering process[17]. These

experiments were conducted on four datasets from different web applications, resulting in the

creation of test suites with better coverage performance than human-written ones.

• Open-source code on 2 public datasets: The code of the experiments is provided in an

open repository to allow the reproducibility of results.

To sum up, the methodology provides the means to enhance the test objective by incorporating as

test cases the most frequent user behavior through clustering. Since a bug in an application is only

problematic if encountered by users, focusing the testing effort on actual user behavior increases the

likelihood of a bug-free user experience.

The remainder of the paper is structured as follows: sections 1.2 and 1.3 provides notations,

definitions and research questions; section 2 presents related works; section 3 defines our new metric

and outlines our approach for fine-tuning and benchmarking clustering pipelines along with associ-

ated criteria; section 4 presents experiments and results, measuring the performance of clustering

pipelines on four datasets; section 5 encompasses discussions, and section 6 conclusion and perspec-

tives, where we reflect on the findings and outline future directions in our research.

3

1.2 Definition and Notation

1.2.1 Traces and ML pipelines

From a web application perspective, a user trace is defined as a sequence of GUI user events and/or

back-end API calls, also called Events, that a user has triggered while browsing a web application. In

this paper, the following notation is used, x for a user trace and X for a set of traces. t denotes a test

and T is a set of tests.For example I = {login, logout, add, delete, changeQuantity} would be the set

of API Calls for an e-commerce software. A user trace could be x = ⟨login, add, add, delete, logout⟩
for a user browsing the website and adding items to their basket and a test t = ⟨login, logout⟩ testing
the login and the logout of a user.

In the state-of-the-art, the general pipeline to select tests from user traces is the following:

• Preprocessing: Let ρ(X) be the preprocessing stage that transforms a set of user traces X into

a numerical representation Xe

• Clustering: Let ϕ(Xe) be the clustering stage that partitions numerical representation of traces

into k clusters. ϕ takes Xe as input and returns a set of cluster labels Y . The values of Y

range from 1 to k

• Sampling: Let ψ(X,Y) be the sampling stage that takes a set of user traces X and their cluster

labels and returns a set of Tests T . In this paper, one test per cluster is sampled,

resulting in a test suite of k tests.

So in the following, reference to a certain clustering pipeline is noted as Ω(X), Ω being the com-

bination of the three stages detailed above. Ω takes a set of traces X and return a set of tests T .

Ω(X) = (ψ ◦ ϕ ◦ψ)(X). The pipeline applied to the user traces with k as the number of clusters for

ϕ is denoted as Ωk(X). As the result of Ωk(X) can be different each time, the clustering model ϕ

reaching a local optimum, or due to the randomness of the sampling stage ψ, the result of Ω for a

specific run r is marked as Ωr
k(X).

1.2.2 Sequential Pattern Mining (Closed Sequential Patterns)

Sequential pattern mining is the task of identifying all frequent subsequences within a sequence

database that meet or exceed a user-defined minimum frequency. It is an enumeration problem, as it

involves listing all subsequences that satisfy the given constraints. Such as in market basket analysis,

it identifies frequently co-occurring items in transactions, revealing patterns like which products are

regularly bought together. For example, it can determine that customers often purchase bread, milk,

and eggs in that specific order, helping retailers optimize product placement and promotions. Various

algorithms have been developed to perform this enumeration task, each consistently producing the

same set of frequent sequential patterns under identical conditions [18]. However, these algorithms

differ significantly in their methodologies and efficiency. Moreover, given the vast search space of

possible subsequences, efficient sequential pattern mining algorithms must integrate techniques to

avoid full search space exploration. To ensure clarity in the ensuing discussion, key terms used in

sequential pattern mining are defined below.

4

Definition 1.1 (Sequence). A sequence s is a tuple s = ⟨I1, I2 . . . In⟩ with Ii ∈ I a set of items,

and ∀i : 1 ≤ i ≤ n. In our case, the set of items can be all the API calls of our system. For example

I = {login, logout, add, delete, changeQuantity} would be the set of items for an e-commerce soft-

ware. In this context, a sequence is a user trace, s = ⟨login, add, add, delete, logout⟩. In the general

context of Sequential Pattern Mining, each element of a sequence can comprise multiple events. For

instance, the following sequence s = ⟨login, (add, delete), (add, changeQuantity, logout)⟩ could rep-

resent several actions occurring simultaneously (elements within the same parenthesess). However,

this does not apply to our framework.

Definition 1.2 (Subsequence). α = ⟨Ia1
, Ia2

, . . . Ian
⟩ is a subsequence of another sequence β =

⟨Ib1 , Ib2 , . . . Ibm⟩ (or β is a supersequence of α), denoted as α ⪯ β, if there exist integers 1 ≤ j1 <

j2 < . . . < jn ≤ m such that Ia1
= Ibj1 , Ia2

= Ibj2 , . . . , Ian
= Ibjn .

For example, in the more practical context of traces, s = ⟨login, delete⟩ is a subsequence of

t = ⟨login, add, delete, logout⟩, because Is1 = It1 and Is2 = It3 and the order in the items is

preserved.

Definition 1.3 (Support). The support (or frequency) of a sequence α, denoted as σ(α,D), rep-

resents the number of input sequences in the database D that include α. A sequence or pattern

is considered frequent if it appears at least as many times as a user-defined threshold, min sup,

known as the minimum support. The entire set of frequent sequences is denoted by FS. The task of

frequent sequence mining involves identifying FS in a given database based on a specified minimum

support threshold. We can also define the support as a fraction of the total length of D, such as

30%

Definition 1.4 (Closed Sequence). A frequent sequence α is considered a closed sequence if there

is no supersequence of α with the same support. Conversely, if a frequent sequence β has a super-

sequence γ with identical support, then β is termed a non-closed sequence, and γ is said to absorb

β. The complete set of frequent closed sequences is represented as FCS. Formally, α ∈ FCS if

∀β ∈ FS, α ⪯ β =⇒ σ(α,D) ̸= σ(β,D). The task of closed sequence mining involves identifying

FCS within a given input database, based on a specified minimum support threshold.

An example of the computation of frequent closed patterns is provided in Section 3.1.3.

1.3 Research Questions

There are three main research questions addressed in this paper:

• RQ1: What is the representativeness of a test suite with respect to the actual

usage? As it is difficult to obtain a test suite that reflects the actual usage of a system, the

creation of a metric that represents the disparity between user traces and regression tests to

qualify the relevance of a test suite is needed.

• RQ2: Can clustering of user sessions help to segment representative usage in an

optimal number of clusters?

5

By selecting test candidates among clusters of user traces, it is wished to get a representative

test suite. For this task, it is essential to select the optimal number of clusters from user traces.

Picking at least one test per cluster, having too many clusters may lead to a test suite with

redundant test cases. Not having enough clusters may lead to a test suite that insufficiently

covers the observed user behavior on the system. To address this question, a specific criterion

needs to be defined that allows the detection of whether there are too many or too few clusters.

• RQ3: To what extent do clustering pipelines produce different results? This paper

hypothesizes that various clustering models, including those utilizing neural embeddings, will

yield divergent outcomes when employed on datasets with differing characteristics. If this is the

case, selecting the most appropriate pipeline for each case study is essential. It is necessary

to ascertain the validity of this assumption and establish methods for benchmarking these

pipelines. Additionally, the paper aims to evaluate whether the use of neural embeddings offers

significant advantages over traditional clustering approaches. After the completion of clustering

on user traces, one or more traces are chosen from each cluster as potential test candidates.

Various techniques from the state-of-the-art employ random sampling; the suitability of this

approach, which seems limited, needs to be evaluated.

2 Related Works

In the following section, we explore related works, categorizing them into four primary areas: re-

gression test selection and prioritization with clustering, test generation using clustering applied to

user traces, logs embeddings leveraging NLP Models, and the evaluation of clustering methods.

2.1 Regression Test Selection and Prioritization with Clustering

Prior research has explored the application of semi-supervised clustering methods, such as SSKM,

to enhance regression test selection, demonstrating improvements in test selection performance and

underscoring the significance of pairwise constraints in this context [4]. Kandil et al. [5] unveiled an

automated agile regression testing approach comprising two key techniques, WSTP and CRTS, which

prioritize sprint test cases based on agile parameters and select release test cases through clustering

and text mining, improving the efficiency and effectiveness of regression testing for agile projects.

Almaghairbe et al.[6] investigated clustering techniques (Agglomerative hierarchical, DBSCAN, and

EM) for automated test oracle creation. The study found that smaller clusters often contain a high

proportion of failures, offering practical implications. Previous work has shown that clustering-based

test case prioritization in an industrial software context can enhance fault detection rates and reduce

fault escapes in truncated testing scenarios as well (Carlson et al. [7]).

2.2 Test Generation With Clustering Applied on User Traces

Clustering approaches can serve as a valuable tool for extracting insights from user traces. These

techniques enable the identification of prominent user behaviors, facilitating the discovery of a com-

6

prehensive set of test cases that effectively cover a substantial portion of the system [19–23]. More-

over, clustering can aid in the detection of any absent tests within the realm of user traces [24].

Luo et al. [19] harnessed a user session-based testing technique that clusters user sessions using

applications’ service profiles and augments selected sessions to cover dependence relationships be-

tween web pages, resulting in a significantly reduced test suite size while maintaining fault detection

rates, as demonstrated through empirical studies. Liu et al. wielded the USCHC (User Sessions

Clustering based on Hierarchical Clustering algorithm) method for web application test case opti-

mization, utilizing a bottom-up hierarchical clustering algorithm to cluster initial test cases, select

representative test cases, and improve testing efficiency as demonstrated in experiments [20]. Sim-

ilarly, with K-medoids, Li et al. [21] introduced a method for testing web applications based on

user session data using clustering techniques, with the algorithm selecting less than 3% of real user

sessions as test data and demonstrating its effectiveness in covering web application code and discov-

ering faults. Dorcis et al. [22] utilized a Sequences String Comparison Clustering method, drawing

inspiration from gene sequencing comparisons. This approach involves extracting string patterns

from execution traces to choose user traces for testing purposes. Afshinpour et al. [23] deployed a

test suite reduction approach using natural language processing techniques, particularly Word2Vec,

to identify similarities between tests, resulting in significant reduction while maintaining fault de-

tection capabilities, demonstrated through a case study involving mutants for evaluation. Utting

et al. [24] employed the MeanShift algorithm to detect missing regression tests by conducting joint

clustering of user traces and test traces, effectively identifying clusters that do not have associated

tests.

2.3 Logs embeddings with NLP models

When feeding execution traces using trace execution, the textual information needs to be transformed

into numbers. Naive NLP methods such as Bag-of-words or Tf-IDF can be employed, but the last

ten years of advances in NLP can also help us build more meaningful representations of sequences

of words. Stocco et al. [25] have trained a Doc2vec model on a large corpus of web pages and

propose WEBEMBED, an innovative abstraction function that utilizes neural network embeddings

and threshold-free classifiers to prune in a relevant way redundant states in a model-based test

generation perspective. Transformers have been used as well to transform execution traces of tests

into embeddings in order to prioritize them. In Jabbar et al. [26], the authors fine-tune CodeBert

[27] with a classifying task (either a test pass or fail) to build representations of tests and rank them

later. Embeddings of logs have been employed as well for anomaly detection with various forms,

Transformers encoding [28] or Autoencoder embeddings [29].

2.4 Evaluation of Clustering

To assess clustering models, there are two evaluation approaches: internal and external evaluation.

In the current state-of-the-art in clustering, external evaluation is commonly employed due to its

suitability for benchmarking multiple models [8, 9] using pre-labeled data. For this purpose, the

v-measure, presented by Rosenberg et al. [10] as a unified measure to gauge model performance,

7

reflects the harmonic mean of completeness and homogeneity, where perfect labeling achieves a score

of 1.0. On the other hand, internal evaluation primarily assesses the similarity within clusters and

dissimilarity between elements from different clusters, making it valuable for hyperparameter tuning,

especially for determining the optimal number of clusters. Notable internal evaluation metrics in-

clude the David-Bouldin Index [12, 13] and the Silhouette coefficient [14, 15], which aid in validating

cluster consistency. Despite internal evaluation metrics seeming ideal for selecting the number of

clusters in a model, as demonstrated by Rendon et al. [11], applying these metrics to three distinct

use cases involving K-means clustering with Bag-of-Words preprocessing resulted in varying cluster

numbers, a phenomenon not uncommon in clustering, posing a challenge in the context of regression

test selection.

While prior research has boosted our confidence in using clustering to identify regression tests from

user traces, three critical issues remain unaddressed in clustering for test selection: 1) determining

the optimal number of clusters, 2) ranking clustering pipelines, 3) employing a universally applicable,

bounded metric that reflects the coverage of principal usage patterns.

3 Test Selection Coverage Function for tuning and bench-

marking

3.1 Usage Pattern Coverage Metric

In this section, the Usage Pattern Coverage (UPC) metric, is introduced. It comprises four key

parts, each dedicated to a specific aspect of the metric. In the first subsection, the goal of the

metric is detailed. In the second subsection, the metric’s design is explained with a focus on mining

frequent closed patterns. The third subsection provides an illustrative example to demonstrate how

the UPC metric functions in practice (following the workflow of Figure 1). In the fourth subsection,

we delve into the application of the UPC metric for test suite evaluation.

3.1.1 Goal of the metric

The main goal is to build a metric that:

• Reflects if a regression test suite covers the most representative user flows from a statistical

perspective

• Measures the quality of regression testing suites with an absolute (compared to the relativity

of generic internal evaluation metrics) and bounded (ranging from 0% to 100%) metric

• Does not need to instrument the code, to avoid difficulties in implementing the metric because

the code of the SUT is not always easily accessible to the QA engineers.

3.1.2 A Usage Pattern Coverage Metric Based on Frequential Closed Patterns

The UPC metric aims to measure how effectively a test suite captures the principal behaviors

observed in user traces. To achieve this, we utilize sequential pattern mining to extract frequent

8

Customer using a
website/app

User Traces are
collected through

Logs

User Traces Pattern Mining Closed Sequential
Patterns Discovered

Login → Logout
Login → addItem → Logout

Login → BrowseItem → Pay → Logout

Test Suite

Login → Logout
Login → addItem → Logout

Login → BrowseItem → Pay → Logout

Closed Sequential
Patterns Discovered

Usage Pattern
Coverage Search for the presence

of the patterns in the
Regression Test Suite

Step 1 : Logs
collection

Step 2 : Frequent
Pattern Mining

Step 3 :
Establishing a

coverage score for
a Testing Suite

Figure 1: Workflow of how Usage Pattern Coverage metric is built and used

closed patterns, which are defined earlier in Section 1.2.2. Mining frequent closed patterns instead of

mere frequent patterns ensures our outputs are both concise and representative, as closed patterns

include all significant items without redundancy. We have selected the ClaSP algorithm [30] due to

its efficiency and its implementation availability in the SPMF library [31] with Python wrappers.

Once a set of frequent closed patterns PX is extracted from a dataset of user traces, the UPC metric

is defined to evaluate how well these patterns are represented in the test traces. The UPC metric is

calculated as the ratio of the number of frequent closed patterns from PX found in the test traces to

the total number of frequent closed patterns in PX from the user traces, weighted by the frequency

of each pattern in the user traces. Essentially, this metric assesses the extent to which a test suite

includes the principal behaviors observed in user traces, weighted by their occurrence.

This approach allows the UPC metric to capture the (sub)sequential nature of user interactions

rather than merely counting individual API calls or n-grams of API calls. By focusing on frequent

closed patterns, the UPC metric provides a robust measure of test suite coverage, ensuring that the

primary user behaviors are thoroughly tested.

Definition 3.1 (Usage Pattern Coverage). Let T be a test suite needed to be evaluated over X a

set of user traces. Let PX be the list of frequent closed patterns in X present above min sup = θ, PT

the list of frequent closed patterns from PX present in T, and CountX(p) the number of occurrences

of a specific pattern p in X (number of traces from X where p is present). Then the Usage Pattern

9

Coverage of T with respect to X is defined as the following:

UPCθ(T,X) =

∑
p∈PT

CountX(p)∑
p∈PX

CountX(p)
(1)

By definition, the Usage Pattern Coverage (UPC) is bounded between 0 and 100%. 0% if none

of the closed frequent patterns found in the user traces are present in the evaluated test suite. 100%

if all those patterns are present in the test suite.

3.1.3 An illustrative Example

• Let a dataset X of 5 user traces x1, x2, x3, x4 and x5 recorded from a SUT (Table 1a)

• The exhaustive list of possible API calls is login, add, delete , logout and changeQuantity

• Let a test suite T composed of 2 tests t1 and t2 (Table 1b)

• User traces or test traces are sequences of API calls and share the same vocabulary

Session id Api Call Sequence

x1 login add logout
x2 login add add logout
x3 login add delete logout
x4 login add add
x5 login add changeQuantity logout

(a) List of user traces

Test id Api Call Sequence

t1 login add delete logout

t2 login login

(b) List of tests

Table 1: Elements of illustrative example

Computation of the UPC of T with respect to D of Equation (1) with minimum support equals

to 30%:

1. Extract with the ClaSP algorithm the frequent closed patterns contained in the user traces

data (column patterns of Table 2)

2. Count the occurrence of each frequent closed pattern in the user traces data (column A of

Table 2)

3. Identify the presence of frequent closed pattern in the test suite (column B of Table 2)

4. Compute the weighted presence of each pattern in the test suite with respect to the user traces

data (A times B, column A·B of Table 2)

5. Sum the A column and the A·B column separately. Dividing the sum of A·B by the sum of

A gives us the UPC of the test suite. In this example, the usage coverage of the test suite is

81.8%

As noted, some patterns, such as login→ add→ changeQuantity were not extracted as part of

frequent closed patterns because they appeared in fewer sequences, resulting in a support below the

chosen minimum threshold of 30% (e.g., 20% for this specific pattern).

10

Frequent Closed Patterns A B A·B
in user traces In Test Suite ?

login→ add→ add 2 False 0

login→ add→ logout 4 True 4

login→ add 5 True 5

sum 11 - 9

Table 2: List of frequent closed patterns of the illustrative example and their counts in the user
traces A, their presence in the test suite B, and their weighted presence in the test suite A·B

3.2 Test Selection Coverage Function for tuning and benchmarking

3.2.1 Proposed Method and Examples

In the following subsections, we introduce the Test Selection Coverage function, which is derived

from the UPC metric. To aid in the comprehension of our methodology, we commence with intuitive

examples that shed light on its underlying principles. Subsequently, we move from intuition to a

formal description of the Test Selection Coverage function and its properties, the methodology to

tune a clustering pipeline and the criteria for benchmarking. To underscore its efficacy, we carry

out a comparative analysis of the UPC metric against other generic metrics. This comparative

study showcases the superior suitability of the UPC metric for the purposes of pipeline tuning and

benchmarking. A metric has been introduced above that gives the coverage of a test suite with

respect to the most frequent closed patterns present in the usage traces. The idea is to use this

method to 1) tune our clustering pipelines to find the right number of clusters and 2) benchmark

them to elect the best one.

ρ φ ψ

Test Selection Clustering Pipeline Ω

Preprocessing
Clustering
with K clusters

SamplingUser Traces

Regression
Test Suite

Test 1
Test 2

...
Test K

Usage Pattern
Coverage for

one run

Repeat this
process R

times to get a
robust

estimation

Usage
Pattern

Coverage

If Usage Pattern Coverage is above the
target stop the loop, else increase k by 1

Figure 2: Tuning the Clustering Pipeline to find the best k: k∗

Tuning : Finding The Right Number Of Clusters For tuning the clustering pipelines and

finding the best number of clusters, the idea is similar to the elbow method with distortion: increase

the number of clusters until a point at which our objective is satisfied. In this case, the objective is

11

coverage (UPC) above a threshold. This method is described in Figure 2. After setting a number

of clusters k0, a test suite with k tests is extracted, one test per cluster. Then, the UPC of the test

suite for one run of the clustering pipeline is computed. This operation is repeated a great number of

times and averaged to obtain a robust estimate of UPC. If the UPC has reached a target threshold,

the optimal k, k∗ has been found. If not, k is raised by 1. This process coincides to study of the

values of the curve representing the UPC with respect to the number of clusters (fig 3).

3.2.2 Benchmarking : Which Clustering Pipeline Is Better ?

Between two clustering pipelines Ω1 and Ω2, it is needed to elect which one is the best for a specific

use-case, for a pre-determined maximum test budget.

First criterion: smallest k∗ The first criterion is to consider that for a target coverage fixed,

the pipeline reaching this coverage with the smallest k∗ is the best pipeline, as this pipeline offers

a smaller test suite than the other (as one test per cluster is extracted). This criterion puts the

emphasis on the target coverage being necessarily reached in terms of software requirements.

Second criterion: Area Under the UPC Curve Some examples show that the first criterion

is very sensitive to the target coverage threshold chosen.

Example 1: In Figure 3, two clustering pipelines are studied, Ω1 and Ω2. If a target coverage of

88% is chosen, their performance is equal, k∗ is equal to 11 in both cases. They reach the target

coverage of 88% in 11 clusters/tests. If a target coverage of 89% is chosen, the Ω2 is better, reaching

the target coverage of 89% in 11 clusters/tests whereas Ω1 is reaching the target coverage in 13

clusters/tests.

Example 2: In Figure 4, with two other clustering pipelines, if a target coverage of 80% is chosen,

the Ω1 is better, reaching the target coverage in 4 clusters/tests whereas Ω2 is reaching the target

coverage in 10 clusters/tests. Whereas if a target coverage of 95% is chosen, the Ω2 is better, reaching

the target coverage in 12 clusters/tests. The Ω1 is not able to reach the target coverage even in 25

clusters/tests. To sum up:

1. The choice of the best pipeline is sensitive to the target coverage chosen

2. When the smallest k∗ is chosen as the criterion, two pipelines can have the same k∗, and it

can be an equality

3. In the event that two pipelines fail to achieve the target coverage, comparing them becomes

challenging.

A second criterion is to compare them with respect to the entire range of target coverage. This

conforms to the idea of comparing the area under the curve (AUC) drawn. In this case, a normalized

X-axis is employed. So that the AUC is bounded between 0 and 1. With an AUC of 1 being the

best performance. This idea has already been employed for the ROC curve machine learning metric

12

[32]. The normalized AUC is computed for the pipelines Ω1 and Ω2 in Figure 5 and the pipeline Ω1

obtains a better normalized AUC than Ω2 (0.85 vs 0.75). This second criterion emphasizes on the

ratio number of tests vs coverage for a pre-determined maximum test budget.

Figure 3: Examples of 2 clustering pipelines with their Test Selection Coverage Function, for a target
coverage of 88%, the two pipelines perform equally. For a target coverage of 89%, Ω1 has a smaller
k∗

Figure 4: Examples of 2 clustering pipelines with their Test Selection function coverage, for a target
coverage of 80%, Ω1 has a smaller k∗. It is the contrary for a target coverage of 90%.

To summarize, those definitions of tuning and benchmarking align to the properties of the curve

drawn by increasing the number of clusters of Ω, which will be called Test Selection Coverage

Function in the next Part.

3.2.3 Test Selection Coverage Function

Definition 3.2 (Test Selection Coverage Function). Let Ωk be a clustering pipeline whose the

number of clusters hyperparameter is k, X a set of user traces, TΩk
the test suite extracted with the

clustering pipeline Ωk, R the number of runs.

The test selection coverage function is

13

Figure 5: The pipeline Ω1 obtains a better normalized CAUC than Ω2 (0.85 vs 0.75).

TSCΩ(k) =
1

R

R∑
r=1

UPC(Ωr
k(X)) =

1

R

R∑
r=1

UPC(TΩk
) (2)

The Test Selection Coverage function measure the evolution of the average value for R runs of the

UPC of a clustering pipeline Ωk with respect to the number of clusters. Empirically, this function

is increasing. It will be used to detect what is the optimal number of clusters/tests (as we extract

one test per cluster), which is reached when the function starts to be asymptotic.

3.2.4 Tuning a clustering pipeline

Definition 3.3 (Optimal number of cluster for Ω, k∗). Let Ωk be a clustering pipeline whose the

number of clusters hyperparameter is k, X a set of user traces, TΩk
the test suite extracted with

the clustering pipeline Ωk, TSCΩ the test selection coverage function declared above, and Kmax the

maximum budget of tests.

k∗ where TSCΩ reaches a target coverage UPC∗ is defined as follows:

k∗ =

min{k |TSCΩ(k) ≥ UPC∗, k ≤ Kmax} if such k exists

∞ otherwise

In other words, the optimal number of clusters k∗ for a clustering pipeline is defined as the

smallest value of the number of clusters when the UPC of a clustering pipeline reaches a target

coverage, for example 80%. This k∗ exists only if it is under a maximum budget of test Kmax fixed

in advance by the tester.

3.2.5 Benchmarking the clustering pipelines

First Criterion: Smallest k∗

Definition 3.4 (Ranking of clustering pipelines based on k∗). Let Ω1, Ω2 be two clustering pipelines,

Ω1 is considered better than Ω2 if: k∗(Ω1) < k∗(Ω2)

14

Davies Bouldin Index Silhouette Score V-Measure Defect Detection Rate Line Coverage UPC
P1: Bounded × ✓ ✓ ✓ ✓ ✓
P2: Does not need ground truth labels ✓ ✓ × ✓ ✓ ✓
P3: Does not need system instrumentation × × × × × ✓
P4: Quantify testing effectiveness × × × ✓ ✓ ✓
P5: Statistically reflects user paths × × × × × ✓

Table 3: Properties of the UPC and other generic metrics used in machine-learning and software
testing

It is assessed that one clustering pipeline outperforms another in a specific use-case if it achieves

the desired coverage with a smaller number of clusters, and consequently, a reduced number of tests.

Second Criterion: Best CAUC

Definition 3.5 (CAUC). Let Ω be a clustering pipeline, the area under the curve of the Test

Selection Coverage function is defined as

CAUC(Ω) =

Kmax−1∑
i=2

1

2
(TSCΩ(ki) + TSCΩ(ki+1)) ·∆k

The area under the curve of the Test Selection Coverage Function is a good measure of the

performance of a clustering pipeline regardless a specific target coverage. It measures the clustering

pipeline’s ability to achieve a high ratio of UPC per test. The CAUC can be interpreted as the mean

value of the UPC calculated across all possible number of clusters values

Definition 3.6 (Ranking of clustering pipelines based on CAUC). Let Ω1, Ω2 be two clustering

pipelines, Ω1 is considered better than Ω2 if: CAUC(Ω1) > CAUC(Ω2)

To summarize, a clustering pipeline is considered better than another if it has a higher ratio of

UPC per test

3.3 Comparison of UPC with other Generic Metrics

Five properties can be listed to assess the relevancy of metrics to tune and benchmark clustering

pipelines.

1. P1 - Bounded: Metrics with well-defined boundaries allow us to determine if we are close to

the optimal number of clusters or if a clustering pipeline is suitable for production. When

a property is bounded, it helps in understanding how close the result is to perfection. In

contrast, metrics that range from 0 to infinity can be used to rank models but do not provide

clear indications of whether a model is good or optimal for practical deployment.

2. P2 - No Ground Truth Labels Needed: Metrics should not depend on ground truth labels,

enabling the evaluation of clustering effectiveness in the absence of labeled data, which is often

the case for QA engineers generating regression test suites.

15

3. P3 - No System Instrumentation Needed: Metrics should not rely on system instrumentation,

allowing efficient evaluation of clustering pipelines without the need for resource-intensive

activities like obtaining code coverage or running multiple test iterations.

4. P4 - Quantify Testing Effectiveness: Metrics should accurately measure testing effectiveness,

ensuring tests align with specified criteria beyond traditional machine learning measures.

5. P5 - Statistically Reflect User Paths: Metrics should statistically represent user behavior

patterns, capturing both the structural and statistical characteristics of user paths within the

data.

UPC metric is bounded between 0 and 1 as the denominator will be always superior or equal to

the numerator and verifies P1. UPC metric does not need ground truth labels such as V-measure

which needs pre-labeled data to compare ground truth labels with labels produced by the clustering

(P2). UPC metric does not need to instrument the code to be computed and only need the user

traces logs (P3). UPC metric quantifies testing effectiveness as it is one of the possible representation

of the user paths coverage whereas pure machine learning metrics such as Davies Bouldin index (P4).

UPC reflects user paths statistically as it is based on a frequent closed pattern mining algorithm

(P5). To summarize, the UPC metric possesses the key properties discussed (Table 3), in contrast

to machine learning metrics that may not align perfectly with software testing requirements. Unlike

conventional software testing metrics, the UPC metric eliminates the need for software integration,

simplifying the process. Furthermore, it enables to statistically reflect user paths, providing an

advantage in assessing clustering for regression testing suites.

4 Experiments

This section focuses on the experimental evaluation of the proposed metric for assessing regression

test suites derived from clustering on test traces. The primary emphasis lies in the preprocessing

stage and the generation of embeddings, as these steps are considered among the most critical

factors influencing the overall effectiveness of the clustering process. By carefully examining and

optimizing these stages, the impact on the performance of the entire pipeline is demonstrated.

Notably, in the current state of the art, neural embeddings utilizing autoencoders and transformers

have not yet been extensively evaluated for this specific application. This work is innovative in

that it explores these advanced embedding techniques within the context of clustering test traces,

providing new insights and potential advancements in the field. Given the diverse nature of software

datasets, different preprocessing and embedding techniques can yield varying levels of performance.

Therefore, the experiments are designed to evaluate the extent to which these pipelines perform

across different datasets, highlighting their robustness and adaptability. This evaluation is crucial

since the optimization of the UPC corresponds to an NP-hard problem similar to the weighted set

cover, which is akin to the test minimization problem. To provide a comprehensive evaluation, a

vanilla baseline is included for comparison. Additionally, three pipelines from existing literature that

address similar topics have been adapted [23][21][20]. These adaptations enable benchmarking the

16

approach against established methods, providing a clear context for the evaluation of the proposed

metric.

4.1 Use cases and Datasets

In this section, we present the four datasets used to evaluate the approach and we finish with a

synthesis.

4.1.1 Scanner

A supermarket scanner enables customers to scan product barcodes as they add items to their cart

for later self-checkout. Our SUT pertains to the back-end API of such a supermarket scanner device,

comprising 10 distinct Events, including actions like Unlock when a customer accesses a scanner,

Scan for adding products with barcode recognition, and Delete for removing items from the internal

shopping list. A second software, employing a probabilistic finite state machine, models customer

behaviors during supermarket scanner use and facilitates the artificial generation of user traces,

all while utilizing this API. These user traces are recorded as logs (see Table 4) by the SUT. The

software was developed by a University of Franche-Comté teacher in Java for a software engineering

class, and comes with regression tests provided by the same teacher.

Timestamp UserId API Method ReturnCode Param1 Param2

1674724050 client0 Unlock 0 [] scan0

1674724050 client0 Scan -2 [35705901109324] scan0

1674724050 client0 Scan 0 [3017800238592] scan0

1674724050 client0 Transmission 0 [Cashier3] scan0

1674724050 client0 Abandon ? [] scan0

1674724050 client0 OpenSession 0 [] Cashier3

1674724050 client0 Add 0 [35705901109324] Cashier3

1674724050 client0 CloseSession 0 [] Cashier3

1674724050 client0 Pay 5.5499 [90] Cashier3

Table 4: Example of a user trace in the Scanner logs

4.1.2 Spree: Headless Ecommerce API

Spree is an open-source, modular e-commerce platform tailored for global brands, leveraging a REST

API framework. It affords brands the flexibility to implement a headless e-commerce model, allowing

them to easily integrate their preferred customer-facing front-end solution. Additionally, Spree

provides an administrative interface for efficient management of inventory, products, orders, and

customer accounts. The API is composed of 56 various methods, grouped by categories, including

Authentication for managing the authentication of a user, Cart, Line Items for allowing a guest

customer or a logged user to initialize a cart and start adding products, Checkout for managing

the various check-out steps such as updating billing, shipments, and payment information, and

Shipments for retrieving the various shipments proposed and computing the shipping rates.

17

UserId Abstract Name Method URL ReturnCode

312458 createACart POST api /v2/storefront/cart 201

312458 listAllTaxons GET api/v2/storefront/taxons/?per page=100 200

312458 SortByPrice GET api/v2/storefront/products 200

312458 retrieveAProduct GET api/v2/storefront/products/long-sleeve-jumper 200

Table 5: Example of a user trace in the Spree logs

A second software was developed, utilizing a probabilistic finite state machine to model customer

shopping behaviors via the API, enabling the artificial generation of customer execution traces for

this use case as well (see Table 5).

4.1.3 Teaming

Teaming is a modular solution for IP telephony, conferences, and office automation tools developed

by Orange. Teaming has a set of REST API web services whose API is composed of 97 various

requests. Orange gave us real customers and test execution traces of this use case. APIs will not be

documented for teaming for industrial privacy reasons.

4.1.4 Booked Scheduler

Booked Scheduler is a web-based scheduling software developed by Tinkle Toes Software Company

designed to help organizations manage and schedule resources such as rooms, equipment, and per-

sonnel. Booked Scheduler provides a user-friendly interface for creating, viewing, and managing

bookings or reservations. Anonymized user traces are obtained by monitoring the application in

operation at the Femto-ST Laboratory at the Université de Franche-Comté. This application is

used by over 300 researchers and technicians, and counts over 30 user traces per day. Some key fea-

tures of Booked Scheduler include Resource Management, which allows you to define and manage

various resources that can be scheduled, such as meeting rooms, equipment, and vehicles; Booking

Management, where users can check the availability of resources, make bookings, and view their

own or others’ bookings, with administrators having the ability to manage and modify bookings as

needed; and Calendar Integration, which synchronizes with external calendar applications like

Google Calendar to provide seamless integration and avoid scheduling conflicts.

UserId PathName Type TargetElement TargetType GenSelector

47ef34d0 Web/reservation.php change select #BeginPeriod -

47ef34d0 Webreservation.php click option #BeginPeriod :nth-child(5)

47ef34d0 Web/reservation.php change select #EndPeriod -

47ef34d0 Web/reservation.php change select #EndPeriod :nth-child(10)

47ef34d0 Webreservation.php click button button.reservation Buttons .pull-right-sm .btn-success

Table 6: Example of a user trace in the Booked Scheduler logs

For this dataset, an open-source front-end events collector made by the company smartesting is

used. This allows to capture actions such as clicking on a button, clicking on a dropdown list, etc.

with the associated locators.

18

4.1.5 Datasets Summary

• Scanner: 7000 generated user traces and 27 regression tests

• Spree: 4999 generated user traces

• Teaming: Orange provided a dataset of 9662 real user traces and 236 regression tests

• Booked Scheduler: collection of 4302 real user traces

Metrics WMT 2014 English (0.44% subset) Scanner Spree Teaming Booked Scheduler

of Samples 20000 7079 4999 9662 4302

Vocabulary Size 34046 14 29 95 267

Average Token Frequency per Sample 0.00 1.01 0.75 0.02 0.03

Maximum Consecutive Repetitions of a Token 11 19 2 3915 54

of samples w/ more than 5 consecutive repetitions 2 5252 0 214 123

Average Number of Different Tokens per Sentence 22.57 7.12 11.99 1.42 5.6

Number of Rare Elements (one appearance only) 16679 0 1 8 0

Table 7: Analysis and comparison of datasets with respect to a set of NLP metrics

Several metrics are computed on those datasets to characterize their specificity (Table 7). Along-

side, the same metrics are featured for a 0.44% subset of the English part of the WMT 2014 English-

German dataset.

The rationale underlying these metrics is as follows: The number of samples is the total count of

individual data points in a dataset. Additionally, the vocabulary size for an NLP model is the total

number of unique tokens present in the dataset. The average token frequency per sample measures

how often tokens recur across samples in a dataset. The maximum consecutive repetition for a token

quantifies the highest number of times a token appears consecutively within a dataset. The number

of samples where there is more than 5 consecutive repetitions for a token tracks the frequency of

such repetitive patterns across different instances in a dataset. Moreover, the Average Number of

Different Tokens per Sentence measures the diversity of vocabulary used in each sentence. Finally,

the Number of Rare Elements metric counts how many unique tokens appear only once in a dataset.

The first thing to notice is the size of the trace datasets with respect to the NLP dataset. The

whole WMT 2014 English dataset, which is used for training for Vaswani et. al [33], is larger than

this paper’s trace datasets. While the trace datasets contain under 10,000 samples, the standard

WMT 2014 dataset contain 4.5 million. The vast difference in size between the WMT 2014 dataset

(4.5 million samples) and the smaller trace datasets (less than 10,000 samples) suggests that models

trained on the WMT can learn more complex and nuanced patterns due to greater data diversity,

supporting more complex models and better generalization. In contrast, the smaller trace datasets

may require simpler models to avoid overfitting, focusing on specialized pattern recognition within

a narrower scope.

The other characteristic that is specific to trace datasets is the redundancy: there are often the

same tokens recurring in sentences. Moreover, there is a substantial part of samples where the same

token is repeated more than 5 times consecutively. The high redundancy and frequent consecutive

repetitions of tokens in trace datasets make them more challenging than typical NLP datasets, as

19

they require specialized preprocessing and modeling techniques to effectively manage noise and avoid

overfitting. These metrics computed over datasets highlight the differences between trace datasets

and NLP datasets, and also reveal significant variations within the trace datasets themselves. As a

result, the best NLP models from the state-of-the-art are not necessarily expected to encode trace

datasets better.

4.1.6 Test suite evaluation with UPC metric

The minimum support of ClaSP has been tuned to extract each time 100 frequent closed patterns for

each dataset (Table 8). For 3 datasets, all the frequent closed patterns above a threshold of 20% were

extracted which seems reasonable in terms of looking for the most representative patterns of each

use case. For Spree, it was not possible to set a lower threshold without leading to a combinatorial

explosion. As human-written test suites for Scanner and Teaming are available, the UPC of each

test suite is computed which gives respectively 77.2 % and 99.6 % . As those scores are below 100%,

and with a relatively high number of tests, it gives a baseline to improve them.

Dataset Name Scanner Teaming Spree Booked Scheduler

Minimum Support 20% 0.5% 50% 6%

of frequent patterns 10079 659 5183 455

of frequent closed patterns 86 98 125 114

UPC of Human Test Suite 72.2% 99.6 % - -

Table 8: Number of patterns extracted for each dataset

In this section, the performance of diverse clustering pipelines is explored, with a focus on

investigating the effectiveness of various combinations of encoding methods, clustering models, and

sampling strategies across four distinct use cases thanks to the two criteria presented before. The

overarching goal is to address the research questions and assess whether the top-performing pipelines

within each use case can surpass human-written test suites. This begins with a detailed examination

of the encoding techniques employed, followed by a comprehensive overview of the clustering models

in use, and concludes with an examination of the sampling strategies in our analysis. Then, the

results are analyzed.

4.2 Preprocessing

Each Event is the concatenation of the API method and the return code i.e. for the scanner dataset,

an Event can be scan−2 (see Figure 4). For the other datasets, we use the concatenation of all

the columns featured in the examples of logs provided earlier. The preprocessing section serves

the purpose of transforming a sequence of events into a vector of real numbers. This encoded

representation is subsequently fed into a clustering model for further processing.

20

Bag of Words (BoW)

The Bag of Words approach encapsulates text by capturing word occurrence frequencies within a

given document, neglecting word order. It yields a sparse vector where each dimension corresponds

to a unique word, reflecting its frequency within the document. While BoW excels in simplicity and

computational efficiency, it lacks context awareness and struggles with handling semantic nuances.

Term Frequency-Inverse Document Frequency (TF-IDF, or TermFreq in Tables)

TF-IDF refines BoW by weighing term frequencies against their inverse document frequencies. This

amplifies the importance of terms that are distinctive to individual documents while diminishing

the impact of ubiquitous words. TF-IDF succeeds in capturing document-specific relevance, making

it valuable for information retrieval tasks. However, like BoW, it falls short of capturing semantic

relationships.

Word2Vec

Word2Vec is a widely used natural language processing technique that transforms words into dense

vectors, effectively capturing semantic relationships within a continuous vector space, with the pri-

mary task being to predict the context (surrounding words) in which a given word is likely to appear,

making it valuable for various NLP applications. Reproducing [23], Word2Vec averaging is used to

encode the user traces.

Auto-encoders and variations

Autoencoders (AE), Variational Autoencoders (VAE), and Denoising Autoencoders with Adversarial

Training (DAAE) stand out in NLP embeddings for their ability to capture semantic information

and reduce noise in text data. AEs effectively reduce dimensionality and distill meaningful features,

while VAEs provide a probabilistic framework for generating coherent text embeddings. DAAEs

enhance robustness through noise reduction in input text and emphasize discriminative features.

These autoencoder variants contribute to the development of informative, context-rich embeddings,

elevating their utility in various NLP tasks like sentiment analysis, text classification, and text

generation. In the process of encoding traces, Autoencoders variations (implementation from [34])

are trained in a language modeling fashion and means from the latent space are extracted to form

the embeddings.

Transformer-based Embeddings (TF)

Transformers are effective for NLP embeddings because their self-attention mechanism captures

intricate contextual relationships in text. This enables them to generate embeddings that reflect the

nuanced meaning and context of words within sentences and documents. In the process of encoding

traces, Transformers are trained in a language modeling fashion and embeddings are extracted from

the encoder layer (implementation from [33]).

21

Pattern One Hot (POH)

Pattern One-Hot encoding is a binary representation used for detecting the presence or absence of

specific patterns within each trace. Each frequent closed pattern is assigned a dedicated binary

column, where ’1’ indicates the presence of the pattern and ’0’ denotes its absence. This encoding

offers an efficient and interpretable means of capturing pattern-related information in data.

Combination of Embeddings

In addition to embeddings, combinations (concatenations) of these embeddings are utilized, denoted

by the ’+’ sign.

4.3 Clustering Models and Sampling Strategies

Clustering models take the sequence of events encoded into a vector of real numbers from the

encoding stage and output labels. For clustering models, K-means is used for a large part of the

pipelines due to its ease and the fact that the number of clusters is a hyperparameter. Moreover,

reproducing [21] and [20], K-Medoids and Agglutinate Hierarchy Clustering (AHC) are used as

clustering models based on their similarity measure.

Sampling Strategies are used to elect a representative user traces from each cluster to convert

them later into a test suite. For the Random Sampling strategy, a test is sampled randomly from

each cluster. In the Best Usage Choice sampling strategy, for every cluster, the user trace that best

represents the cluster’s frequent closed patterns is chosen. To do this, the computation of the relative

UPC is done, which involves dividing the frequent closed pattern frequencies within the cluster by

the frequent closed pattern frequencies in the overall dataset. Following TF-iDF intuition, the trace

covering the frequent closed patterns frequent and specific to this cluster is searched, not the pattern

frequent in all the dataset even if they are frequent inside the cluster. The downside of the random

strategy is that it may end up selecting only the most frequent patterns, as they are present in

all clusters. This is why a method that selects the most frequent patterns unique to each cluster,

thereby representing the cluster, is preferable.

Definition 4.1 (Relative Usage Pattern Coverage). Let X be a set of user traces and Xc, the traces

among X belonging to a specific cluster c. Let PX be the list of frequent closed patterns in X present

above a threshold min sup = θ, PXc
the list of frequent closed patterns from PX present in Xc.

Let CountX(p) be the number of occurrences of a specific pattern p in X, CountXc
(p) the number

of occurrences of a specific frequent closed pattern p in Xc and Px the frequent closed pattern in a

trace x. The relative UPC of a trace x of c is defined by

rUPCθ(x,Xc) =
∑
p∈Px

CountXc
(p)

CountX(p)
(3)

Definition 4.2 (Best Usage Choice).

BUC(Xc) = argmaxx∈Xc
rUPC(x,Xc) (4)

22

(a) Teaming (b) Booked Scheduler

Figure 6: Example of the Test Selection Coverage Function for 4 pipelines on Teaming and Booked
Scheduler. The lighter area around the curve indicates the standard deviation.

All the pipelines are evaluated against a Baseline pipeline with no clustering and a pure Random

Sampling strategy only.

4.4 Experimental Setup

Experiments were run on a high-performance computing enter using one node for each set of pa-

rameters (total of nodes: 1596, nodes running in parallel: 50, average node execution: 6.5 min).

It took us a total of 2.5 hours. Deep learning models such as AutoEncoders, VAE, DAAE, and

Transformers were tuned with a hyperparameter optimization framework. Several adaptations for

[20, 21, 23] were made to apply them to this paper’s use cases. For [23], the t-SNE stage was skipped

for time constraints. The similarity measure of [20, 21] was adapted by taking into account only

API call names and return codes instead of all parameters as it was more relevant here. For [20],

a Random Sampling strategy was used instead of theirs, as their sampling strategy was extracting

more than one test by cluster. We determine the maximum number of clusters, denoted as Kmax,

by identifying the point at which one of the 33 different pipelines achieves a UPC value of 95%.

4.5 Results

The pipelines are featured in Tables 9-10. In Table 9, the pipelines are ranked based on their

normalized CAUC values for each case study. In Table 10, two metrics are displayed: the k∗ for

a target coverage of 80% and 90% (first criterion), and their normalized CAUC (second criterion).

Pipelines are not ranked in this table. Cells which represent the lowest k∗ or the higher normalized

CAUC are colored in blue. An example of the Test Selection Coverage Function is featured in

Figure 6. In this figure, we can see empirically the asymptotic behavior of the pipelines, and the

need to find the optimal point in terms of a number of clusters. We can observe from the table 9

that certain pipelines, such as the one employing K-medoids, can emerge as the best performers, as

23

Rank Teaming Booked Scheduler Spree Scanner
ρ ϕ ψ CAUC ρ ϕ ψ CAUC ρ ϕ ψ CAUC ρ ϕ ψ CAUC

1 TF+POH Kmeans BUC 0.836 POH Kmeans RS 0.83 Custom Kmedoids RS 0.969 TF Kmeans BUC 0.974
2 DAAE+POH Kmeans BUC 0.832 VAE+POH Kmeans RS 0.83 W2V+POH Kmeans RS 0.965 W2V Kmeans BUC 0.873
3 POH Kmeans BUC 0.832 DAAE+POH Kmeans RS 0.83 TF Kmeans BUC 0.965 POH Kmeans RS 0.856
4 TermFreq+POH Kmeans BUC 0.832 W2V+POH Kmeans RS 0.827 BOW+POH Kmeans RS 0.964 TermFreq+POH Kmeans RS 0.853
5 VAE+POH Kmeans BUC 0.831 BOW+POH Kmeans RS 0.822 VAE Kmeans RS 0.961 VAE+POH Kmeans RS 0.849
6 W2V+POH Kmeans BUC 0.83 TermFreq+POH Kmeans RS 0.821 POH Kmeans RS 0.961 DAAE+POH Kmeans RS 0.849
7 BOW+POH Kmeans BUC 0.816 BOW Kmeans RS 0.805 DAAE+POH Kmeans RS 0.96 AE+POH Kmeans RS 0.849
8 TF Kmeans BUC 0.788 AE+POH Kmeans RS 0.805 VAE+POH Kmeans RS 0.96 BOW+POH Kmeans RS 0.846
9 VAE+POH Kmeans RS 0.784 TermFreq+POH Kmeans BUC 0.8 AE Kmeans RS 0.959 DAAE Kmeans RS 0.84
10 DAAE+POH Kmeans RS 0.784 POH Kmeans BUC 0.8 TermFreq+POH Kmeans RS 0.959 TF+POH Kmeans BUC 0.837
11 TF+POH Kmeans RS 0.783 DAAE+POH Kmeans BUC 0.795 TF+POH Kmeans RS 0.958 TF+POH Kmeans RS 0.835
12 TermFreq+POH Kmeans RS 0.782 VAE+POH Kmeans BUC 0.793 AE+POH Kmeans RS 0.953 TermFreq+POH Kmeans BUC 0.834
13 POH Kmeans RS 0.782 W2V+POH Kmeans BUC 0.781 W2V Kmeans RS 0.951 BOW+POH Kmeans BUC 0.834
14 W2V+POH Kmeans RS 0.779 BOW Kmeans BUC 0.78 DAAE Kmeans RS 0.947 VAE+POH Kmeans BUC 0.834
15 W2V Kmeans BUC 0.76 BOW+POH Kmeans BUC 0.776 DAAE Kmeans BUC 0.943 POH Kmeans BUC 0.834
16 BOW Kmeans BUC 0.759 AE+POH Kmeans BUC 0.768 BOW Kmeans RS 0.94 DAAE+POH Kmeans BUC 0.834
17 AE+POH Kmeans RS 0.759 TF+POH Kmeans RS 0.73 TF Kmeans RS 0.94 W2V+POH Kmeans BUC 0.834
18 BOW+POH Kmeans RS 0.758 TF+POH Kmeans BUC 0.69 AE Kmeans BUC 0.937 AE+POH Kmeans BUC 0.834
19 AE+POH Kmeans BUC 0.757 Custom Kmedoids RS 0.685 VAE Kmeans BUC 0.937 W2V+POH Kmeans RS 0.833
20 TF Kmeans RS 0.735 TF Kmeans BUC 0.62 Custom AHC RS 0.936 W2V Kmeans RS 0.832
21 VAE Kmeans RS 0.725 TF Kmeans RS 0.619 TermFreq Kmeans RS 0.933 TF Kmeans RS 0.831
22 VAE Kmeans BUC 0.722 AE Kmeans RS 0.608 DAAE+POH Kmeans BUC 0.925 Custom Kmedoids RS 0.83
23 AE Kmeans RS 0.713 AE Kmeans BUC 0.6 TF+POH Kmeans BUC 0.92 TermFreq Kmeans RS 0.806
24 TermFreq Kmeans BUC 0.706 DAAE Kmeans RS 0.598 TermFreq Kmeans BUC 0.917 VAE Kmeans RS 0.802
25 DAAE Kmeans RS 0.697 W2V Kmeans BUC 0.571 BOW+POH Kmeans BUC 0.915 VAE Kmeans BUC 0.801
26 BOW Kmeans RS 0.689 W2V Kmeans RS 0.539 BOW Kmeans BUC 0.911 Custom AHC RS 0.788
27 DAAE Kmeans BUC 0.689 VAE Kmeans RS 0.528 W2V Kmeans BUC 0.896 AE Kmeans RS 0.783
28 TermFreq Kmeans RS 0.675 DAAE Kmeans BUC 0.505 AE+POH Kmeans BUC 0.886 BOW Kmeans RS 0.774
29 AE Kmeans BUC 0.663 TermFreq Kmeans RS 0.498 VAE+POH Kmeans BUC 0.872 AE Kmeans BUC 0.737
30 W2V Kmeans RS 0.652 - Baseline RS 0.327 W2V+POH Kmeans BUC 0.872 DAAE Kmeans BUC 0.719
31 Custom Kmedoids RS 0.642 TermFreq Kmeans BUC 0.32 TermFreq+POH Kmeans BUC 0.872 BOW Kmeans BUC 0.697
32 Custom AHC RS 0.604 VAE Kmeans BUC 0.302 POH Kmeans BUC 0.872 TermFreq Kmeans BUC 0.696
33 - Baseline RS 0.497 Custom AHC RS 0.25 - Baseline RS 0.581 - Baseline RS 0.46

Table 9: Ranked pipelines with respect to the Normalized CAUC for the 4 case studies

seen in the case of Spree, while nearly being the worst performers in the case of Teaming. In Table

10, it is apparent that certain pipelines exhibit identical performance based on the first criterion for

selecting the best k∗ value in the case of Spree. However, the CAUC criterion allows us to distinguish

between them. Additionally, the table reveals that achieving a UPC increase from 80% to 90% in

the case of Teaming requires nearly doubling the number of tests. Notably, like the baseline each

time, some pipelines fail to attain the target coverage within the specified budget.

5 Analysis and Discussions

The upcoming section provides an in-depth analysis of the research outcomes, comparing findings

with the current state of the art, addressing the research questions, and assessing potential threats

to the validity of our work.

5.1 Analysis of results

Baseline is beaten

The large majority of clustering-based test selection pipelines consistently outperform the Baseline

pipeline with respect to the mean of the normalized CAUC over the four use cases which confirms

that clustering is suitable rather than a pure random sampling approach. In three out of four

datasets, one clustering pipeline is demonstrated to outperform existing state-of-the-art methods.

In sampling strategies, not all are equal

The performance of the various sampling strategies is not equivalent at all. On Scanner and Teaming,

BUC seems to lead to better performance whereas on Booked Scheduler and Spree, Random sampling

24

Teaming Booked Scheduler Spree Scanner
ρ ϕ ψ

CAUC
Clusters
UPC >80%

#Clusters
UPC>90%

CAUC
Clusters
UPC >80%

Clusters
UPC >90%

CAUC
Clusters
UPC >80%

Clusters
UPC >90%

CAUC
Clusters
UPC >80%

Clusters
UPC >90%

AE Kmeans BUC 0.663 ∞ ∞ 0.6 5 6 0.937 2 3 0.737 5 6
AE+POH Kmeans BUC 0.757 16 22 0.768 6 7 0.886 2 4 0.834 3 3
BOW Kmeans BUC 0.759 16 ∞ 0.78 5 9 0.911 2 3 0.697 5 5
BOW+POH Kmeans BUC 0.816 11 22 0.776 6 7 0.915 2 3 0.834 3 3
DAAE Kmeans BUC 0.689 19 ∞ 0.505 9 10 0.943 2 3 0.719 6 6
DAAE+POH Kmeans BUC 0.832 11 18 0.795 6 6 0.925 2 3 0.834 3 3
POH Kmeans BUC 0.832 11 19 0.8 6 6 0.872 2 4 0.834 3 3
TF Kmeans BUC 0.788 11 24 0.62 10 14 0.965 2 3 0.974 2 2
TF+POH Kmeans BUC 0.836 9 17 0.69 7 9 0.92 2 3 0.837 3 3
TermFreq Kmeans BUC 0.706 20 ∞ 0.32 ∞ ∞ 0.917 2 3 0.696 4 4
TermFreq+POH Kmeans BUC 0.832 11 19 0.8 6 6 0.872 2 4 0.834 3 3
VAE Kmeans BUC 0.722 18 24 0.302 12 ∞ 0.937 2 3 0.801 3 3
VAE+POH Kmeans BUC 0.831 10 19 0.793 6 6 0.872 2 ∞ 0.834 3 3
W2V Kmeans BUC 0.76 14 ∞ 0.571 10 13 0.896 2 3 0.873 2 2
W2V+POH Kmeans BUC 0.83 11 19 0.781 6 6 0.872 2 ∞ 0.834 3 3
AE Kmeans RS 0.713 19 ∞ 0.608 9 14 0.959 2 2 0.783 3 5
AE+POH Kmeans RS 0.759 14 23 0.805 5 7 0.953 2 2 0.849 3 3
BOW Kmeans RS 0.689 24 ∞ 0.805 5 7 0.94 2 3 0.774 4 5
BOW+POH Kmeans RS 0.758 15 24 0.822 5 7 0.964 2 2 0.846 3 3
DAAE Kmeans RS 0.697 18 ∞ 0.598 10 ∞ 0.947 2 2 0.84 3 3
DAAE+POH Kmeans RS 0.784 13 20 0.83 5 7 0.96 2 2 0.849 3 3
POH Kmeans RS 0.782 14 20 0.83 5 6 0.961 2 2 0.856 3 3
TF Kmeans RS 0.735 17 ∞ 0.619 10 14 0.94 2 3 0.831 3 4
TF+POH Kmeans RS 0.783 13 20 0.73 7 10 0.958 2 2 0.835 3 3
TermFreq Kmeans RS 0.675 23 ∞ 0.498 12 ∞ 0.933 2 3 0.806 3 4
TermFreq+POH Kmeans RS 0.782 14 20 0.821 5 7 0.959 2 2 0.853 3 3
VAE Kmeans RS 0.725 19 ∞ 0.528 12 ∞ 0.961 2 2 0.802 3 4
VAE+POH Kmeans RS 0.784 13 20 0.83 5 7 0.96 2 2 0.849 3 3
W2V Kmeans RS 0.652 24 ∞ 0.539 12 ∞ 0.951 2 3 0.832 3 4
W2V+POH Kmeans RS 0.779 14 20 0.827 5 6 0.965 2 2 0.833 3 3
Custom Kmedoids RS 0.642 ∞ ∞ 0.685 7 10 0.969 2 2 0.83 3 4
Custom AHC RS 0.604 ∞ ∞ 0.25 ∞ ∞ 0.936 2 3 0.788 3 ∞
- Baseline RS 0.497 ∞ ∞ 0.327 ∞ ∞ 0.581 ∞ ∞ 0.46 ∞ ∞

Table 10: Normalized CAUC and k∗ for all the variations of pipelines for the 4 case studies

is better.

Pattern One Hot Encoding increases a lot the performance of the pipelines

Pattern One Hot encoding explicitly encodes the presence or absence of each pattern, thus directly

aligning with the UPC metric. For this reason, this approach consistently ensures a fair performance.

Neural Embeddings can help increase the performance of Pattern One Hot Encoding

While Pattern One-Hot Encoding is already an effective approach for capturing usage patterns and

optimizing test selection pipelines, our research demonstrates that it can be further improved by

integrating neural embeddings. This combination enhances the representation of user traces, leading

to more accurate results.

Clustering-based test selection pipelines are more efficient than human-written test

suite

For scanner, the pipeline TF manages to obtain more than 90% of UPC with 2 tests, while the

human written test suite reaches 81.8% in 27 tests. For teaming, the pipeline TF+POH reaches

more than 99.9% of UPC with 102 tests, while the human-written test suite contains 236 tests and

achieves 99.6 % of UPC. Moreover, to compare the two suites of tests with a lower target coverage

and a limited budget of 17 tests, 17 tests were taken randomly among the human-written test suite

and their UPC was computed. This process is repeated 10,000 times and a maximum UPC of 83%

and a mean UPC of 61% is obtained, whereas the pipeline TF+POH achieve more than 90% of UPC

with the same budget.

25

Clustering-based test selection pipelines perform differently depending on the datasets

Given the unique characteristics of trace datasets, including variations in vocabulary, long-term de-

pendencies, and token repetitions, there is no universally superior clustering model. Consequently,

it is advisable for Quality Assurance engineers to benchmark clustering-based test selection pipelines

when faced with new use cases, recognizing that each dataset may yield distinct performance out-

comes.

Metric Consistency with Results

The metric UPC and the derivated criteria unequivocally highlight the baseline as the weakest

performer. Furthermore, it discerns that the optimal number of clusters tends to be lower for our

simpler datasets, such as artificial user traces, and higher for more intricate, real-world use cases.

Notably, the metric consistently yields scores above 80% for human-generated test suites which

seems realistic. In summary, the metric consistency and its alignment with high human-generated

test suite scores reinforce the metric’s reliability and suitability for assessing clustering pipelines

5.2 Comparison with state of the art

In comparison to the state of the art, we assessed regression test selection using clustering with

an external metric based on UPC, as opposed to the conventional metrics like APFD, block or

function coverage, or internal metrics commonly employed in the state of the art, which are less

suitable for benchmarking clustering pipelines. We delved into a critical aspect of this subject,

which is determining the optimal number of clusters, a topic not typically addressed in the state

of the art. Furthermore, we conducted benchmarking across various encoding methods, including

neural embeddings, an approach that has seen limited exploration in prior research. Additionally,

we investigated whether the performance of the extracted test suites was influenced by the algorithm

used to select tests within the clusters.

5.3 Answers to research questions

The relevance of our approach is verified through experimental validation at three distinct levels:

first, on a controlled application (Scanner example); second, on a large open-source eCommerce

software, simulating user interactions with artificial users (Spree); and finally, on two industry cases

study involving real users (Teaming and Booked).

RQ1: What is the representativeness of a test suite with respect to the actual usage?

The coverage of user paths is translated into a statistical metric ranging from 0 to 100%, signi-

fying the quality of a test suite in relation to user traces, with 100% indicating excellence. This

methodology enables to address RQ1. RQ2: Can clustering of user sessions help to segment

representative usage in an optimal number of clusters? The UPC metric permits to intro-

duce and study the Test Selection Coverage Function associated with each pipeline and to find the

optimal point where a target coverage is reached. This method works just like elbow method but

in a specific way meeting our software requirements explicitly. Thanks to UPC, more efficient test

26

suites than human-crafted ones have been found. This allows us to answer RQ2. RQ3: To what

extent do clustering pipelines produce different results? The application to the 4 datasets

with 33 variations of clustering pipelines leads to various performances of each pipeline. Neural

Embeddings and BUC permit us to reach the best results on 2 datasets whereas simpler methods

perform better on the 2 others. This reinforces our view a benchmark is needed every time a new

use case is introduced and answers RQ3.

5.4 Threats to validity

The ideal minimum support chosen for the UPC has not been addressed in this paper. However,

the threshold chosen enabled to show that Clustering-based Test Selection Pipelines were producing

test suites with fewer tests and better UPC than human ones, as with the threshold chosen, human

test suites having a UPC of less than 100%. In this paper, it was deliberately chosen to extract

a single test per cluster. Other approaches, such as extracting multiple tests per cluster, could

be considered. In this paper’s scenario, the decision was made to compel the clustering model to

increasingly separate the dataset to achieve highly disjointed partitions, enabling the extraction of a

test suite that fulfills our coverage objectives. Moreover, the benchmark focuses on a specific metric,

and results could differ with metrics like APFD. However, the chosen measure aligns with regression

testing inspired by usage, and the benchmarking framework requires no heavy instrumentation,

ensuring practical applicability.

5.5 Discussion on Practical Implications: Real-world Application of Re-

gression Testing Processes

With the prevalence of log collection in contemporary systems, accessing logs for regression testing

purposes is typically straightforward, barring privacy concerns such as GDPR. The primary challenge

in creating new regression tests lies in deriving user traces selected as potential tests, a process that

remains largely manual and not yet automated. Nonetheless, this methodology can provide testers

with valuable insights into which tests need implementation, their quantity, and the relevance of

existing tests.

6 Conclusion and perspective

6.1 Conclusion

This article addresses the critical challenge of employing clustering techniques for regression test

generation, recognizing that the choice of clustering pipeline plays a pivotal role in achieving opti-

mal results tailored to each unique case study. To facilitate this decision-making process, we have

introduced a novel and robust statistical coverage metric based on pattern mining. This metric,

applicable to both front-end and back-end traces, offers a comprehensive evaluation of the relevance

of a regression test suite in relation to user traces of the SUT.Our approach leverages this met-

ric to identify the optimal number of clusters at which a clustering pipeline achieves an optimal

27

UPC. This process of studying the Test Selection Coverage Function, mirrors the Elbow method,

and allows us to fine-tune and benchmark clustering pipelines effectively. To meet the diverse re-

quirements of testers, we have introduced two distinct criteria for evaluating clustering pipelines:

one focusing on the overall coverage attained and the other prioritizing the ratio of the number of

tests to the target coverage.Through extensive experimentation involving 33 variations of clustering

based test selection pipelines across four diverse datasets from different web applications, we have

systematically ranked these pipelines based on their performance. The results demonstrate that the

best-performing pipelines outperform human-written test suites, highlighting the efficacy of our ap-

proach. In summary, our work underscores the importance of selecting the most suitable clustering

model for regression test generation and provides a robust framework for evaluating and benchmark-

ing clustering pipelines. The introduction of our novel UPC metric and the insights gained from our

experiments contribute to advancing the state-of-the-art in automated test generation, bridging the

gap between written tests and actual user behavior. Moreover, we make three out of four datasets

and code publicly available.

6.2 Perspectives

In the future, it will be necessary to investigate the factors contributing to the varying performances

of different clustering pipelines on specific datasets. This research aims to understand why certain

pipelines excel in particular scenarios and identify dataset characteristics that help prioritize specific

pipelines. Moreover, while we used only two sampling methods in this study, future research could

explore test selection methods by clusters that perform well across diverse datasets.

References

1. Blanc X, Degueule T, and Falleri JR. Diffing E2E Tests against User Traces for Continuous

Improvement. 2022.

2. Tiwari D, Zhang L, Monperrus M, and Baudry B. Production monitoring to improve test suites.

IEEE Transactions on Reliability 2021.

3. Thummalapenta S, De Halleux J, Tillmann N, andWadsworth S. DyGen: Automatic generation

of high-coverage tests via mining gigabytes of dynamic traces. In: International Conference on

Tests and Proofs. Springer. 2010:77–93.

4. Chen S, Chen Z, Zhao Z, Xu B, and Feng Y. Using semi-supervised clustering to improve

regression test selection techniques. In: 2011 Fourth IEEE International Conference on Software

Testing, Verification and Validation. 2011:1–10. doi: 10.1109/ICST.2011.38.

5. Kandil P, Moussa S, and Badr N. Cluster-based Test Cases Prioritization and Selection Tech-

nique for Agile Regression Testing. Journal of Software: Evolution and Process 2016;29.

6. Almaghairbe R and Roper M. Separating passing and failing test executions by clustering

anomalies. Software Quality Journal 2017.

28

7. Carlson R, Do H, and Denton A. A clustering approach to improving test case prioritization:

An industrial case study. In: 27th IEEE International Conference on Software Maintenance

(ICSM). 2011:382–91. doi: 10.1109/ICSM.2011.6080805.

8. Xu J, Wang P, Tian G, et al. Short Text Clustering via Convolutional Neural Networks. In:

Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing.

Denver, Colorado: Association for Computational Linguistics, 2015:62–9. doi: 10.3115/v1/

W15-1509. url: https://aclanthology.org/W15-1509.

9. Xu J, Xu B, Wang P, et al. Self-Taught convolutional neural networks for short text clustering.

Neural Networks 2017;88:22–31.

10. Rosenberg A and Hirschberg J. V-measure: A conditional entropy-based external cluster eval-

uation measure. In: Proceedings of the 2007 joint conference on empirical methods in natural

language processing and computational natural language learning (EMNLP-CoNLL). 2007:410–

20.

11. Rendón E, Abundez I, Arizmendi A, and Quiroz EM. Internal versus external cluster validation

indexes. International Journal of computers and communications 2011;5:27–34.

12. Singh AK, Mittal S, Malhotra P, and Srivastava YV. Clustering Evaluation by Davies-Bouldin

Index (DBI) in Cereal data using K-Means. In: 2020 Fourth International Conference on Com-

puting Methodologies and Communication (ICCMC). IEEE. 2020:306–10.

13. Hosseini SMS, Maleki A, and Gholamian MR. Cluster analysis using data mining approach to

develop CRM methodology to assess the customer loyalty. Expert Systems with Applications

2010;37:5259–64.

14. Dinh DT, Fujinami T, and Huynh VN. Estimating the Optimal Number of Clusters in Cate-

gorical Data Clustering by Silhouette Coefficient. In: Knowledge and Systems Sciences. Ed. by

Chen J, Huynh VN, Nguyen GN, and Tang X. Singapore: Springer Singapore, 2019:1–17.

15. Zhou HB and Gao JT. Automatic method for determining cluster number based on silhouette

coefficient. In: Advanced materials research. Vol. 951. Trans Tech Publ. 2014:227–30.

16. Tamagnan F, Bouquet F, Vernotte A, and Legeard B. Regression Test Generation by Usage

Coverage Driven Clustering on User Traces. In: 2023 IEEE International Conference on Soft-

ware Testing, Verification and Validation Workshops (ICSTW). 2023:82–9. doi: 10.1109/

ICSTW58534.2023.00026.

17. Ahmed MH, Tiun S, Omar N, and Sani NS. Short text clustering algorithms, application and

challenges: A survey. Applied Sciences 2022;13:342.

18. Fournier-Viger P, Lin JCW, Kiran RU, Koh YS, and Thomas R. A survey of sequential pattern

mining. Data Science and Pattern Recognition 2017;1:54–77.

19. Luo X, Ping F, and Chen MH. Clustering and Tailoring User Session Data for Testing Web Ap-

plications. In: 2009 International Conference on Software Testing Verification and Validation.

2009:336–45. doi: 10.1109/ICST.2009.51.

29

20. Liu Y, Wang K, Wei W, Zhang B, and Zhong H. User-Session-Based Test Cases Optimization

Method Based on Agglutinate Hierarchy Clustering. In: ITHINGSCPSCOM’11, International

Conference on Internet of Things. 2011:413–8. doi: 10.1109/iThings/CPSCom.2011.135.

21. Li Jh and Xing Dd. User Session Data based Web Applications Test with Cluster Analysis.

In: CSIE 2011, International Conference on Computer Science and Information Engineering.

Vol. 152. 2011:415–21. doi: 10.1007/978-3-642-21402-866.

22. Dorcis V, Bouquet F, and Dadeau F. Clustering of Usage Traces for Regression Test Cases

Selection. In: 2022 IEEE International Conference on Software Testing, Verification and Vali-

dation Workshops (ICSTW). IEEE. 2022:138–45.

23. Afshinpour B, Groz R, Amini MR, Ledru Y, and Oriat C. Reducing Regression Test Suites using

the Word2Vec Natural Language Processing Tool. In: SEED/NLPaSE@ APSEC. 2020:43–53.

24. Utting M, Legeard B, Dadeau F, Tamagnan F, and Bouquet F. Identifying and generating miss-

ing tests using machine learning on execution traces. In: 2020 IEEE International Conference

On Artificial Intelligence Testing (AITest). IEEE. 2020:83–90.

25. Stocco A, Willi A, Starace LLL, Biagiola M, and Tonella P. Neural Embeddings for Web

Testing. 2023. arXiv: 2306.07400 [cs.SE].

26. Jabbar E, Zangeneh S, Hemmati H, and Feldt R. Test2Vec: An Execution Trace Embedding

for Test Case Prioritization. 2022. arXiv: 2206.15428 [cs.SE].

27. Feng Z, Guo D, Tang D, et al. CodeBERT: A Pre-Trained Model for Programming and Natural

Languages. 2020. arXiv: 2002.08155 [cs.CL].

28. Nedelkoski S, Bogatinovski J, Acker A, Cardoso J, and Kao O. Self-Attentive Classification-

Based Anomaly Detection in Unstructured Logs. 2020. arXiv: 2008.09340 [cs.LG].

29. Golczynski A and Emanuello JA. End-To-End Anomaly Detection for Identifying Malicious

Cyber Behavior through NLP-Based Log Embeddings. 2021. arXiv: 2108.12276 [cs.AI].

30. Gomariz A, Campos M, Marin R, and Goethals B. ClaSP: An Efficient Algorithm for Mining

Frequent Closed Sequences. In: Advances in Knowledge Discovery and Data Mining. Ed. by

Pei J, Tseng VS, Cao L, Motoda H, and Xu G. Berlin, Heidelberg: Springer Berlin Heidelberg,

2013:50–61.

31. Fournier-Viger P, Lin CW, Gomariz A, et al. The SPMF Open-Source Data Mining Library

Version 2. In: Proc. 19th European Conference on Principles of Data Mining and Knowledge

Discovery (PKDD 2016) Part III. Vol. 9853. Springer LNCS. 2016:36–40.

32. Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning

algorithms. Pattern Recognition 1997;30:1145–59.

33. Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need. 2017. arXiv: 1706.03762

[cs.CL].

34. Shen T, Mueller J, Barzilay R, and Jaakkola T. Educating Text Autoencoders: Latent Repre-

sentation Guidance via Denoising. 2020. arXiv: 1905.12777 [cs.LG].

30

