
Building a First Prototype of a Multi-scale
Modular Distributed Display

Frédéric Lassabe
FEMTO-ST Institute, CNRS

UTBM
Belfort, France

frederic.lassabe@femto-st.fr

Dominique Dhoutaut
FEMTO-ST Institute, CNRS

Univ. Franche-Comté
Montbéliard, France

dominique.dhoutaut@femto-st.fr

Benoı̂t Piranda
FEMTO-ST Institute, CNRS

Univ. Franche-Comté
Montbéliard, France

benoit.piranda@femto-st.fr

Olga Kouchnarenko
FEMTO-ST Institute, CNRS

Univ. Franche-Comté
Besançon, France

olga.kouchnarenko@femto-st.fr

Julien Bourgeois
FEMTO-ST Institute, CNRS

Univ. Franche-Comté
Montbéliard, France

julien.bourgeois@femto-st.fr

Abstract—Blinky Blocks are cubic modular robots, which
communicate with their neighbors through their faces, and
change color using LEDs. We previously used sets of Blinky
Blocks to display images on the basis of one Blinky Block being
one pixel. In this paper, we build a multi-resolution screen
with modular robots. This screen benefits from its distributed
architecture: being able to work if some nodes fail, and being
completely customizable. We propose a hardware architecture
and related protocols to attach a 8×8 LED matrix to a Blinky
Block. The architecture allows us to build distributed multi-
resolution screens by mixing regular and enhanced Blinky Blocks.
We demonstrate the usage of our integrated screen through
experiments with continuously fed Blinky Blocks as well as an
autonomous scrolling.

I. INTRODUCTION

Personal computers and smartphones have become part of
our life, and they are now joined by connected objects forming
the internet of things (IoT). The integration of computing can
be pushed one step further by integrating it into inert objects
of everyday life using distributed intelligent micro-electro-
mechanical systems (DiMEMS) [3], [2]. Each DiMEMS,
called a module, would contain a processor, sensor(s), actu-
ator(s) and a mean of communication with its neighbors and
would fit in a very small individual volume of less than a
cubic millimeter. Each module taken in isolation would not
have a visible impact, but would prove useful when acting as
a set in a coordinated way. Each object containing modules
could then perform intelligent functions. With intelligent paint,
we could imagine switches placed on demand on the walls,
repositionable and reprogrammable, screens integrated directly
into objects, biometric sensors, etc. It would also be possible
to obtain expandable and segmentable electronics, or even
cuttable, with the same functionality but with a different
surface. We could imagine a computer working on a thin
support, which could be cut or “glued”.

For example, one can imagine an object that looks like a
tablet, running a single-player game. The tablet could be cut

in half to form two smaller tablets, which now allow two
players to continue the game together. Later, the modules
can be grouped back to form a longer screen better suited
to reading text. A number of obstacles need to be overcome
before such a goal can be achieved. In this article, we tackle
the multi-scale display based on a modular structure.

This paper presents a new complete hardware and software
architecture for including LED matrices on a set of Blinky
Blocks. Blinky Blocks are 4 cm-wide cubic shaped modular
robots. They can change color, and were already successfully
used to render pictures. We propose to add LED matrices
to some Blinky Blocks to improve the display quality and
provide a multi-resolution display mixing LED matrices on
top of Blinky Blocks, along with simple Blinky Blocks. In
[4], Dhoutaut et al. present a new hardware called XBlock
that adds an ESP8266 board on Blinky Blocks to provide
Wi-Fi communication capabilities to Blinky Blocks. In this
work, we improve XBlocks with a screen connected to the
ESP board. The newly created block is called D-XBlock for
eXtended Blinky Block with Display. The hardware design of
our solution is guided by the limited choice in the off-the-
shelf components we could use, and their compatibility with
Blinky Block’s form factor. Stemming from the hardware used
and the possible applications, new problems arise in terms of
data size and processing power. We propose algorithms and
protocols to address these problems. First, we present related
work in the field of modular and multi-resolution systems.
Second, we describe our contributions: a hardware and a
software architecture to integrate and to use the more precise
LED matrices in a Blinky Block network. Third, we describe
experiments with our system.

II. RELATED WORKS

Early developments of objects linking physical and vir-
tual worlds have occurred in the Tangible Bits project [7],
with many revolutionary technologies and in particular, the



(a) Example of a low-resolution
display made of a grid of 450
Blinky Blocks.

Wi-Fi link
(MQTT)

I2C link

Serial link

Serial links

(b) Heterogeneous communication
links: Serial links, dedicated I2C
and Wi-Fi.

Fig. 1: Low resolution image and communication protocol.

metaDESK prototype including the activeLENS, an arm-
mounted flat panel display interacting with a larger display.
Some years later, the same authors presented their vision of
Radical Atoms [6], which introduced Tangible User Interface,
i.e., a user interface integrating digital information in physical
space. At the same time appear the Sifteo mini-tablets [9],
which were a follow-up of the Siftable project. Sifteo can
exchange information through wireless communication and
were intended to be used as a tangible gaming platform.
The CubiMorph [12] has pushed further the idea of recon-
figurable and interactive displays. If the Tilt Display explores
the interactivity, CubiMorph, which is a chain-type modular
reconfigurable robot, is able to change shape. In the direction
of reconfigurable interactive displays, PickCell [5] is the most
advanced project so far, which however ended without produc-
ing a prototype embedding all the functionalities. A modular
smartphone project [13] envisioned a modular structure for a
computing device, but did not provide a real hardware. Wixi
[8] and the follow-up development [10] study the wireless
infrastructure needed for a modular display. To sum up, all
past projects have proposed visions or non-scalable prototypes.
They mainly focus on the interaction with the users, whereas
we aim to designing a scalable real device with a distributed
operating system.

III. CONTRIBUTION

This paper mainly deals with multi-level images and dedi-
cated distributed protocols to display and animate them over
potentially large ensembles of existing devices called Blinky
Blocks.

A Blinky Block is a complete system driven by an ARM
Cortex M0 microcontroller. It provides two RGB LEDs (both
displaying the same color), a buzzer, a microphone, an ac-
celerometer and 6 serial interfaces, one per side. Programs
are stored in and run from the microcontroller embedded flash
(128 kB available), with data stored into its RAM (32 kB). A
2D array of Blinky Blocks thus already can be used as a form
of display (cf. Fig. 1a), where each Blinky Block corresponds
to one pixel. Using basic Blinky Blocks to build a display
meets several limitations: The image’s definition is limited by

the number of available blocks and its resolution is limited by
their size.

Moreover, in previous work such as [11], a crude software
approach was used. A simple protocol was attributing coordi-
nates to each block relatively to a unique initiating block. Each
Blinky Block was also keeping a copy of the whole image. The
local color of a block was thus taken from the image depending
on its own coordinates. As Blinky Blocks have a very limited
memory (32 kB RAM) they cannot hold large images.

Integrating a display is not an easy task as a standard Blinky
Block cannot manage a led matrix directly. An intermediary
controller is required, along with dedicated communication
protocols between these two new components. Adding a
display means connecting the two systems (the Blinky Block’s
board and the LED matrix) via hardware and software.

The contribution of this new work is three-fold:
1) Transforming some Blinky Blocks into D-XBlocks by

adding a multi-pixels display covering their top face. The
matrix is managed by a pair of MY9221 LED drivers
coupled with a dedicated STM32F031 microcontroller.

2) Designing and implementing a communication protocol
between the ESP8266 and the STM32F031 MCU (over
an I2C bus).

3) Designing and implementing a communication protocol
that allows for distributed multi-resolution images and
animations of ensembles of blocks (using both serial and
wireless communications).

Note that it is not required that all blocks from an ensemble
are of the same variety. Typically, standard Blinky Blocks and
D-XBlocks can be mixed. Thanks to our distributed algorithm,
an image sent to the block array will be correctly displayed, the
new XBlocks will use their screens to display a more detailed
sub-section of the image corresponding to their position.

A. Hardware Addition

To better understand the extension of Blinky Blocks to D-
XBlocks, we first present the regular Blinky Block architecture
and system. We then describe the addition of ESP8266 micro-
controllers and LED matrices to a regular Blinky Block.

In addition to a description at the begiing of Sect. III, let’s
mention that a Blinky Block is physically a cube with a case
divided into two parts: the lower one, 1 cm high, and the
upper one, 3 cm high, enclosing the Blinky Block’s PCB. Holes
matching the PCB connector are located on each side, and
duplicated on top and bottom to ensure that a connection exists
with any rotation of Blinky Blocks. Connectors provide serial
wires (receive and transmit), as well as GND and +5V power
supply. Magnets on the sides and top/bottom faces provide
attachment between Blinky Blocks.

We have designed a two-layers software architecture with
30 kB for a bootloader, and 96 kB free for user defined
applications. The bootloader has a protocol to allow deploying
applications on a set of Blinky Blocks, potentially hundreds,
then run the application. An application is a full program,
i.e., it performs a new initialization of the Blinky Block when
started, and remaps its interrupts handler addresses onto the



lowest addresses in RAM. Both bootloader and applications
implement the same low level network protocol, based on
UART communications. Although Blinky Blocks have an I2C
controller (actually used by the embedded LED driver), it is
not available from outside the PCB.

Applications, written in C, are compiled for the target
architecture. Serial communications and an advanced boot-
loader are used to push applications to all blocks in a single
manipulation, using a spanning tree protocol. Applications
provide a user level network access with functions to send
and receive messages. Such messages are encapsulated into
packets, and then into frames that are transmitted over serial
connections at 115200 bauds. From an application point of
view, external communications are expected from one of the
6 available UARTs.

In [4], the original Blinky Blocks were expanded into
XBlocks by embedding a Wi-Fi capable ESP8266 microcon-
troller. The work in [4] has focused on enabling a hierarchical
(or clustered) network architecture, that proved very beneficial
to the management of large ensembles of blocks. Especially,
it made it possible to address directly certain subsets of the
network through wireless one-hop communications instead of
traversing many nodes. The control of the whole system was
balanced between local cluster-heads managing the neighbor-
ing blocks, and the central (computer) control having a high
level view of the whole system. Technically, each XBlocks
contains two independent microcontrollers, communicating
over a serial (UART) bus.

In the present paper, we build upon the existing Blinky
Blocks and XBlocks, and we add LED matrices and associated
control hardware on top of the later. Initially, two options
to add this LED matrix were considered by either adapting
Blinky Block architecture to plug an I2C external device, or
by inserting a device to translate from UART to I2C. To
avoid modification to existing Blinky Blocks’ PCBs, the second
option was chosen. We rely on the ESP8266 microcontroller
embedded into XBlocks, which communicate with its Blinky
Block through UART, and with its LED matrix through I2C.
While doing so, the LED matrix must always be oriented the
same way relatively to its Blinky Block, to avoid rotating the
image before displaying it.

Fig. 2: Left: Hardware stack of components placed in the new
D-XBlock. Right: the real assembled D-XBlock.

The left part of Fig. 2 shows the components stack inside
the D-XBlocks. An ESP8266 board is placed inside the top
shell to the original Blinky Block, along with a geometric
adapter to fit the top screen layer. The screen part itself is
made of two layers: one for the LEDs, and one for the control
and communication components (pair of MY9221 drivers,
STM32F031 microcontroller and voltage converter). The right
part of the same figure illustrates the real assembled D-XBlock.
Figure 1b shows a schema of the communications links, the
ESP8266 in the middle serves both as a gateway between a
Blinky Block and its LED matrix, and as a gateway to the
outside world through its Wi-Fi link.

B. Image Data Dissemination

Prior to having 64 pixels over one Blinky Block, we never
exceeded Blinky Blocks memory capability since we used
images composed of up to 1,000 pixels (over a 1,000 blocks
ensemble), or 3000 bytes. Thus, it was possible to hard-code
the image in the program source code. However, introducing
the 8× 8 LED matrix multiplies the size of the image by
a factor 64, widely exceeding the available memory. In this
section, we propose a protocol to transfer all relevant data from
a master, i.e. a computer connected to the ensemble through
one or more Blinky Blocks. We start with a protocol already
used in previous work that calculates the local coordinates of
each block relative to a single reference. We then propagate the
whole image over the whole block array. Using the coordinates
as a filter, each block only keeps in its memory the data it is
supposed to display and forwards the rest to the neighboring
nodes.

This phase requires addressing two issues: messages seg-
mentation, since a detailed image exceeds the maximum
packet size (228 bytes); and data dissemination with efficient
bandwidth use between Blinky Blocks.

a) Messages segmentation: Messages segmentation re-
lies on a new protocol, which includes a header to indicate
and order segmented messages. We preferred an application
level segmenting over modifying the current network layer,
as the later is common with the bootloader and shall remain
compatible. The header contains a packet type identifier, a
sequence number (to prevent backward flow, as seen later)
and the intended coordinates for this image fragment.

b) Basic dissemination: As an initial step, we segment
the large image and inject all fragments from a single entry
point into the ensemble. This entry point can either be a block
connected to a computer through a serial interface (as used
to reprogram the blocks), or be a D-XBlock featuring a Wi-
Fi link. Figure 3a shows a diagram of such a dissemination,
where the fragments propagate from the Wi-Fi entry point.

In the most simple setup, fragments are simply flooded over
all available interfaces and backward flow, as well as loops,
are prevented through the use of a last-seen sequence number
that won’t be re-transmitted more than once.

c) Balanced routing: The firmware we developed for
the Blinky Blocks already includes two basic spanning tree
algorithms we considered for this task. One is ”first in,



(a) Propagation from one Wi-
Fi entry point

(b) Propagation from multiple
Wi-Fi entry points

first served” while the other is ”breadth-first”. Both kinds of
spanning tree could be used to transmit the image data to all
Blinky Blocks. The simplest way to use those spanning tree
would be to flood all the data through all branches, nodes
keeping only the part of the data corresponding to their own
address and forwarding the rest. This would however be very
inefficient as Blinky Blocks would receive fragments that have
no relevance in their spanning tree branch.
A second way would be to collect the structure of the spanning
tree back on the control computer to perform source routing
(i.e. each fragment contains the list of nodes it has to traverse).
Unfortunately, this solution can significantly increase the size
of the data packets, possibly over the 228 bytes limit of our
network stack.

Instead, and considering the inherently static nature of our
ensemble of blocks, we propose two other solutions that
do not depend on the spanning tree: a coordinates-based
routing (geocasting), and a table based routing, with their own
advantages and drawbacks.

Geocasting consists in forwarding a fragment only in the
direction of its intended destination. Moreover, in the context
of this work, we can take advantage of multiple Wi-Fi enabled
blocks to inject fragments in parallel from multiple entry
points, as illustrated in Fig. 3b. Our geocasting algorithm acts
as follow: upon reception, the destination coordinates of the
fragment are compared to the coordinates of the receiving
Blinky Block. If they match, the data is kept and no further
transmission occur. If they do not, the block will select an
outgoing interface that will minimize the distance to the final
destination and forward the fragment. This solution is simple
and efficient, but can fail in the case of non-convex sets of
blocks.

The second solution involves a routing table in each block
and an initial discovery phase to populate those tables. The
corresponding distributed algorithm (Algorithm 1) works un-
der the hypothesises that a path exists between any pair of
Blinky Blocks, and that every Blinky Block has a unique
identifier between 1 and N, the total number of Blinky Blocks.
It guarantees that each fragment reaches its destination along
one of the shortest paths, and that each fragment is not unnec-
essarily duplicated during transmission. The main drawbacks
of this solution are the initial time required to build the routing
table, and the potential size of this table in large sets of blocks.
Each router maintains a routing table with N − 1 entries.
Matching outbound interface is determined by an algorithm
similar to a simplified RIP[1], without considering distances.
The algorithm ends when the routing table is fully populated,
i.e., the routing table converged.

Algorithm 1: Routing algorithm.
Data: routingTable[N]: array of destination connectors
Data: nbRoutingFixed: termination detector (if = N-1)

1 Function StartUp():
2 foreach cell ∈ routingTable do
3 cell← /0 ;
4 foreach connected port do
5 sendP2P(ROUTING,port,{id← myId}) ;
6 nbRoutingFixed← 0;
7 Msg Handler RoutingMsg(msg,sender):
8 if routingTable[msg.id] = /0 then
9 routingTable[msg.id]← sender ;

10 foreach connected port ̸= sender do
11 sendP2P(ROUTING,port,{id← msg.id}) ;
12 nbRoutingFixed← nbRoutingFixed +1 ;
13 if nbRoutingFixed = N−1 then

// Routing process finished

Using several entry points to transmit image data to the
Blinky Blocks set relies on geocasting, with a segmentation of
the data. It is also based on the target location related to the
entry points’ locations: each entry point transmits image data
to the targets it is closest to, compared to its peers. Notice that
the entry points have a global knowledge of each other based
on exchange of Wi-Fi messages.

For reliability and compatibility reasons, and also for ease of
development, we decided to use the MQTT protocol to convey
messages between the control computer and the Wi-Fi entry
points. MQTT is explicitly tailored for the IoT field to which
our D-XBlocks belongs to. It is built upon TCP/IP, and as
such provides integrity and sequencing assurances. Moreover,
MQTT enables a seamless integration on the control computer,
where we use a web page and Javascript code to provide the
user with a visual interface. A screenshot of this control web
page is shown in Fig. 4, at the bottom. Last but not least, using
JSON encoded messages over MQTT allows for versatility
and extensibility. New functionalities or even debug messages
could be added very easily.

For displaying the image fragment on each block, the
locally available hardware is used. If the block is of the D-
XBlock flavor, then all 64 pixels will be sent to the LED
matrix. Otherwise, the block computes the average color and
displays it by means of its internal LEDs. This multi-resolution
approach is illustrated in Fig. 4, where only 4 blocks are
equipped with the LED matrix, and the others compute and
display the mean color from the 64 pixels assigned to them.

C. Distributed Scrolling Animation

In this section, we propose a distributed protocol that makes
use of the autonomous nature of the Blinky Blocks to scroll the
image without requiring much communication with the control
computer. To illustrate the distributed nature of our Blinky
Block ensemble, we propose multiple versions of a scrolling
algorithm. The main design goal of those algorithms is to



exhibit a very good scalability by distributing the processing
and communication burdens as evenly as possible over the set
of blocks. As explained before, the memory and communica-
tions capabilities of the Blinky Blocks are indeed very limited.
Moreover, as in a true distributed system, these algorithms are
thought as little reliant on the control computer as possible.
This means that all decisions (what to display, what to send)
have to be made locally, with the control computer only merely
choosing parameters and initiating the process.

For the three scrolling algorithms, we discuss here their
respective design, leaving the implementation details and
experimental results for Section IV.

• In the rollback version, after the initial dissemination of
the image, the role of the control computer is limited to
starting, stopping or changing the scrolling speed. Each
block forwards its last column of pixels to the next neighbor.
Upon reaching the end of the line, image fragments are
transmitted back.

• In the injection version, we consider an image larger than
the ensemble of blocks. The full image is stored on the
control computer and columns of pixels are sent in sequence
to the first block of each line. The blocks send their current
last column to the next block in the line. Fragments reaching
the end of the line are simply dropped. The computer is in
charge of feeding the blocks with their pixels, and manages
the scrolling by selecting the right column in the image.
With the injection, the memory required in each block is
constant, whatever the size of the image.

• In the hopping version, we consider the same large image
as with the injection version, but with additional XBlocks
that allow for physical gaps in the ensemble thanks to
Wi-Fi links. The important distributed aspect here is that
decision to forward data through wireless communication
is made completely locally. Each block keeps information
about its direct neighbors, and uses its Wi-Fi link as backup
connection. This makes such a system very resilient and able
to support dynamic partitioning.

Fig. 4: The setup made of 4 D-XBlocks and 5 Blinky Blocks
building a part of our multi-resolution display. The bottom
image is a screenshot of the web control interface on the Wi-
Fi-connected master computer.

IV. EXPERIMENTS

This section describes the implementation and provides
illustrations on the three scrolling algorithms proposed. Let
us emphasize the fact that these algorithms have been imple-
mented and tested on real hardware, as displayed on pictures
and video (https://youtu.be/V8RAsPjLSrs).

a) Rollback scrolling: This version starts once an image
is disseminated over the whole ensemble of blocks, using
the previously described algorithm. The image is regularly
shifted to the right, while pixels ”leaving” on the rightmost
part come back on the left part of the ensemble. The point
of this algorithm is to make use, as most as possible, of the
distributed nature of the Blinky Blocks. Consequently, it can
be described with those rules:
• The control computer can sends START_SCROLL or a
STOP_SCROLL messages that will be disseminated through
the ensemble. The START_SCROLL message contains the
intended scroll direction along with a delay (in ms) to
control the speed of the animation.

• Upon reception of the START_SCROLL message, leftmost
blocks of each line will start the animation. It sends its
rightmost column of pixels (SCROLL_FRAGMENT message)
to its neighbor on the right, while also shifting its displayed
pixels to the right. The leftmost column of pixels is kept as is
for now. This SCROLL_FRAGMENT message also contains
a travel direction, which is for now equal to the animation’s
direction. This behavior is represented in Fig. 5a using green
data and messages.

• Upon reception of a SCROLL_FRAGMENT where the travel
direction is equal to the direction of the animation, the block
prepares a SCROLL_FRAGMENT message with its rightmost
column of pixels then shifts its display to the right. If a
neighbor is present on its right, the SCROLL_FRAGMENT
will be sent to it, with the travel field set as the direction of
the animation. With no neighbor on the right, the fragment
will be sent in the opposite direction (and the travel field
will be set accordingly).

• when receiving a SCROLL_FRAGMENT whose direction
is opposite to the animation’s direction, the message will
simply be forwarded on the left if possible. If not, the current
block is the leftmost one on its line and the pixel column
is displayed on the left part of the screen. This behavior is
represented on Fig. 5b using blue data and messages.

b) Injection scrolling: The second algorithm considers
a much larger image, which does not fit on the combined
displays of the blocks. The whole image is only stored on
the control computer, and sent progressively to the leftmost
blocks of each line of the set. Here, the role of the control
computer is limited to ”injecting” new column of pixels, and
the animation will be handled by distributed communications
between the blocks. This algorithm is illustrated in Figure 5c.
• The control computer can send INJECTED_FRAGMENT

messages to the blocks on the leftmost part of the
ensemble. For demonstration purpose, those blocks are
currently targeted using their Wi-Fi MAC addresses.An

https://youtu.be/V8RAsPjLSrs


(a) Basic distributed
scrolling

(b) Scrolling with rollback (c) Scrolling with injection (d) Hopping scroll

Fig. 5: Various types of scrolling

INJECTED_FRAGMENT message contains a column of 8
pixels.

• Upon reception of such message, the receiving block will:
– Only when there is a neighbor on the right: build a new
INJECTED_FRAGMENT with its rightmost column of
pixels, and send it to its neighbor on the right.

– Shift its display to the right.
– Display the data received on the left part of its screen.
Note that in this video, some minor glitches persist in the

display as our implementation is still experimental (a few data
packets are lost when sent to the matrix controller).

c) Hopping scrolling: This version (cf. Fig. 5d) is very
similar to Injection, except that it allows the user to dynami-
cally separate the ensemble in multiple subsets of blocks. The
control computer is still used to incrementally send the image
through leftmost blocks. Blocks still distributively scroll the
image to the right. The algorithm however must start on an
initially connected ensemble and blocks must memorise their
neighbors’ Wi-Fi MAC addresses. If the ensemble is later split
in multiple subsets, blocks will continue to send data to their
”ex-neighbors” by using their Wi-Fi links.

V. CONCLUSION AND FUTURE WORK

This paper presented a new complete architecture (hardware
and software) to add more detailed display capabilities to the
existing Blinky Blocks. The proposed 8×8 LED matrices can
be plugged on top of some or all blocks in a set. The archi-
tecture includes an embedded Wi-Fi capable microcontroller,
which we also leverage by designing data dissemination and
data migration protocols. We demonstrate through real world
implementations that the proposed architecture supports multi-
resolutions display, single and multi-points data injection and
fully distributed data movement. Our system is thus easily
scalable, even though the processing and communications
capabilities of individual elements are quite limited. The
addition of those display capabilities demonstrates a concrete
use case for modular robots and the benefits of well-distributed
algorithms. In the meantime, it also gives us a very useful
tracing and debugging tool to help us further enhance our
Blinky Blocks.
Future work include advanced routing protocols able to cope
with non convex and even non-adjacent sets of blocks, along
with new actuating capabilities that could be plugged on top
of the Blinky Block. For instance, we intend to instrument the
programming blocks (hollow blocks used for interfacing with a
computer as well as to power Blinky Blocks ensembles) with

an ESP8266 microcontroller and a current sensor to enable
runtime power consumption optimization and adaptation. Ac-
tuators could also include motors and movable parts to interact
further with the real world.

Acknowledgment: This work was partially supported by the
ANR (ANR-23-CE25-0004) and the EIPHI Graduate School
(ANR-17-EURE-0002).

REFERENCES

[1] Routing Information Protocol. RFC 1058, June 1988.
[2] J. Bourgeois, J. Cao, M. Raynal, D. Dhoutaut, B. Piranda, E. Dedu,

A. Mostefaoui, and H. Mabed. Coordination and computation in
distributed intelligent mems. In 27th International Conference on
Advanced Information Networking and Applications (AINA 2013), pages
118 – 123, Barcelona, Spain, mar 2013.

[3] J. Bourgeois and S. Goldstein. Distributed Intelligent MEMS: Progresses
and Perspectives. In Ljupco Kocarev, editor, ICT Innovations 2011,
volume 150 of Advances in Intelligent and Soft Computing, pages 15–
25. Springer Berlin / Heidelberg, 2012.

[4] D. Dhoutaut, B. Piranda, and J. Bourgeois. Multi-networks commu-
nications in large set of modular robots. In Proceedings of the 1st
International Conference on Smart Medical, IoT & Artificial Intelligence
- ICSMAI’24, Saida, Morocco, 2024.

[5] A. Goguey, C. Steer, A. Lucero, L. Nigay, D. R. Sahoo, C. Coutrix,
A. Roudaut, S. Subramanian, Y. Tokuda, T. Neate, J. Pearson, S. Robin-
son, and M. Jones. PickCells: A Physically Reconfigurable Cell-
composed Touchscreen. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, pages 1–14, Glasgow Scotland
Uk, May 2019. ACM.

[6] H. Ishii, D. Lakatos, L. Bonanni, and J.-B. Labrune. Radical atoms:
beyond tangible bits, toward transformable materials. Interactions,
19(1):38–51, January 2012.

[7] H. Ishii and B. Ullmer. Tangible bits: towards seamless interfaces
between people, bits and atoms. In Proceedings of the ACM SIGCHI
Conference on Human factors in computing systems, pages 234–241,
Atlanta Georgia USA, March 1997. ACM.

[8] J. Kadomoto, H. Irie, and S. Sakai. Wixi: An inter-chip wireless bus
interface for shape-changeable chiplet-based computers. In 2019 IEEE
37th International Conference on Computer Design (ICCD), pages 100–
108. IEEE, 2019.

[9] D. Merrill, E. Sun, and J. Kalanithi. Sifteo cubes. In CHI ’12 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’12, pages
1015–1018, New York, NY, USA, May 2012. Association for Computing
Machinery.

[10] S. Nagasaki, J. Kadomoto, H. Irie, and S. Sakai. Dynamically reconfig-
urable network protocol for shape-changeable computer system. IEEE
Design & Test, 40(6):18–29, 2023.

[11] B. Piranda, F. Lassabe, and J. Bourgeois. Disco: A multiagent 3d
coordinate system for lattice based modular self-reconfigurable robots.
In IEEE International Conference on Robotics and Automation (ICRA
2023), London, England, may 2023.

[12] A. Roudaut, D. Krusteva, M. McCoy, A. Karnik, K Ramani, and
S. Subramanian. Cubimorph: Designing modular interactive devices.
In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 3339–3345, May 2016.

[13] T. Seyed, X.-D. Yang, and D. Vogel. A modular smartphone for lending.
In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology, UIST ’17, page 205–215, New York, NY,
USA, 2017. Association for Computing Machinery.


	Introduction
	Related works
	Contribution
	Hardware Addition
	Image Data Dissemination
	Distributed Scrolling Animation

	Experiments
	Conclusion and future work
	References

