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Abstract

Purpose: A scanning electron microscope (SEM) enables imaging of
micro scale objects. It is an analytical tool widely used material, earth
and life sciences. However, SEM images often suffer from high noise
levels, influenced by factors like dwell time, the time during which the
electron beam stays per pixel at acquisition. Slower dwell times reduce
noise but risk damaging the sample, while faster ones introduce uncer-
tainty. To address this, state-of-the-art (SOTA) denoising techniques
need exploration. Experimentation is crucial to identify the most effective
methods that balance noise reduction and sample preservation, ensuring
high-quality SEM images with enhanced clarity and accuracy. Meth-
ods: We conducted a thorough analysis tracing the evolution of image
denoising techniques, ranging from classical methods to deep learning
(DL) approaches. A comprehensive taxonomy of this reverse problem
solutions was established, detailing the developmental flow of these meth-
ods. Subsequently, we identified and reviewed the latest state-of-the-art
techniques based on their reproducibility and the public availability of
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their source code. The selected techniques were then tested and inves-
tigated using scanning electron microscope images. Results: After a
thorough analysis and benchmarking, it is evident that existing deep
learning based denoising techniques fall short in maintaining a bal-
ance between noise reduction and preserving crucial information for
SEM images. Issues like information removal and over-smoothing have
been identified. To address these constraints, there is a critical need
for the development of SEM image denoising techniques that priori-
tize both noise reduction and information preservation. Additionally,
it is found that the combination of multiple networks, like generative
adversarial network (GAN) and convolutional neural network (CNN),
known as BoostNet, or vision transformer (ViT) and CNN, known as
SCUNet, improves denoising performances. Conclusion: It is recom-
mended to use blind techniques to denoise real noise while taking into
account detail preservation and tackling excessive smoothing, particu-
larly in the context of SEM. In the future the use of explainable Al
will facilitate the debugging and the identification of these problems.

Keywords: Scanning electron microscopy (SEM), Image denoising,
State-of-the-art (SOTA), Spatial domain denoising, Frequency domain
denoising, Deep learning based denoising, Benchmarking

1 Introduction

Digital image processing is now available in a variety of fields, including
physics, military sector, medicine, industrial applications, robotics, intelligent
transportation systems, and so on [1]. The fields of application clearly show
that it is used for critical and sensitive tasks [2].

However, images are inevitably contaminated by noise during acquisition,
compression, and transmission due to the effect of the environment, transmis-
sion channel, and other variables, resulting in distortion and loss of information
in image. Image processing activities, such as video processing, image analy-
sis, and tracking, are harmed by the presence of noise. Thus, work must be
done to minimize noise without sacrificing the image quality (edges, corners,
and other sharp structures). This is why image denoising is a crucial topic in
today’s image processing systems [3, 4].

The main mathematical representation of an image with noise is as
followed:

noisy_image = clean_image + noise
where the type of noise can vary depending on the capturing device, camera,
smartphone, microscope, etc. On the one hand, photon shot noise, fixed pattern
noise, dark current, readout noise, and quantization noise are some of the
principal sources of real-world noise [5]. On the other hand, there are various
types of noise such as Gaussian [6, 7], Poisson [8], Pepper & Salt [9] and so on.
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The process of removing noise from a noisy image and restoring the orig-
inal image is referred to as image denoising. Noise, edges and textures are all
high-frequency components making them difficult to distinguish. As a result,
denoised images will definitely lose some detail. The ultimate objectives are
to smooth flat regions, highlight edges, preserve textures and avoid introduc-
ing artifacts. [4]. Image denoising is, in reality, a well-known problem that has
been studied for a long time. However, it remains a difficult and unfinished
process. The major reason for this is because it is an inverse problem with no
unique solution from a mathematical standpoint. This is why a wide variety
of image denoising solutions have been proposed in the literature. They range
from classical mathematical approaches to modern deep learning, via sim-
ple networks, convolutional neural networks (CNNs), transformers, generative
adversarial networks (GANs) and other complex networks. It is also notice-
able that the attention comes with the consideration of various noise sources,
different types of noise, as well as blind denoising.

This study focuses on a detailed review, taxonomy, and benchmark of dif-
ferent approaches proposed in the domain. In addition, it opens a dimension
of denoising in the area of scanning electron microscopy (SEM) with future
direction. In fact, the images from SEM contain a lot of noise, especially when
the scanning speed is fast. Therefore, this study will start by describing the
evolution of image denoising techniques, from a taxonomy to a practical refer-
ence of state-of-the-art techniques. The aim of this paper is to study, compare
and evaluate the performance of different approaches from various fields in
the application of SEM image denoising, which may lead us to open up new
direction for further research.

The major contributions of this paper are as follows:

® 3 survey showing the evolution of image denoising techniques, from mathe-
matics to deep learning;

a detailed taxonomy of image denoising techniques wherever possible;

a detailed benchmark of different techniques on different areas in one place
which may help others to decide to start with;

a new direction on SEM images processing;

a comprehensive range of state-of-the-art techniques, with assessments of
the latest and most effective approaches.

The remaining sections of this paper are structured as follows. In Section 2, we
present the evoluation of image denoising techniques and develop a taxonomy,
with a focus on the latest deep learning models. Section 3 benchmarks several
state-of-the-art techniques. In Section 4, a detailed discussion of the results
provided by the benchmarking is carried out. Finally, Section 5 concludes the
paper with some future directions.
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2 Evolution of image denoising: a taxonomy

The evolution of image denoising techniques ranges from spatial domain to
neural network via transform i.e., frequency domain. Thus, the first level of
the taxonomy, the type of techniques, is composed of three classes as shown
in Figure 1. Each class can then be further decomposed as shown in Figures 2,
3, and 4, respectively.

Image Denoising/Restoration

|
v v v

Classical denoising methods Transform techniques Neural Network based Approaches

Fig. 1: Types of image denoising techniques

2.1 Classical techniques - Spatial domain

A long-established denoising approach is spatial domain approach. It consists
in applying spatial filters directly to images [10]. The two types of spatial
domain techniques are spatial filtering and variational denoising techniques [4]
as shown in Figure 2.

Spatial filtering is low-pass filtering that presupposes the presence of noise
in a higher frequency range. Normally, spatial filters reduce noise to a decent
degree but at the expense of image blurring, which results in the loss of sharp
edges [11]. Interpolation and resampling were among the various preprocessing
and other operations that were previously carried out using mean filtering,
followed by Wiener filtering. Usually non-linear filtering [12] works better than
linear one. It includes median filtering, weighted median filtering or bilateral
filtering [13].

In variational denoising, the denoised image is calculated by minimizing
an energy function. Finding an appropriate image prior is crucial for this
approach. Gradient priors, non-local self-similarity (NSS) priors, sparse pri-
ors, and low-rank priors have all shown to be successful prior models. Total
variation (TV) with regularization [14-16], anisotropic diffusion-based method
[17, 18] and fast gradient-based method [19] are proposed to solve the dis-
advantages of over-smooths [20], staircase effect in flat areas and so on [21].
Later on, the performances of these local denoising methods with high noise
were found low. After that, NSS-prior [22], non-local means (NLM) [23] come
out with noticeable improvements. However, the improvement of NLM along
with the combination of TV regularization has been proposed [24]. It outper-
formed the other techniques in terms of noise suppression, but not in terms of
visual quality or structural information in the images. Moreover, based on fig-
uring out how often image patches [25] are and using weighted nuclear norm
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Fig. 2: Spatial domain techniques

minimization - WNNM to take advantage of the low-rank attribute, a great
improvement and extension of NSS techniques was proposed [26, 27].

The sparsity prior of natural images is used by several contemporary image
denoising algorithms including K-singular value decomposition (K-SVD) algo-
rithm [28, 29] and non-local centralized sparse representation (NCSR) [30]
which is coupled with NSS prior. Apart from the sparsity representation of
images patches, a matrix representation of the same patches is done by low-
rank minimization. The methods by low-rank minimization are in two groups
named low rank matrix factorization and nuclear norm minimization (NNM).
Despite the fact that most low-rank minimization approaches (particularly the
WNNM method) outperform earlier denoising methods, the iterative boosting
step has a significant computing cost [4].



6 Scanning FElectron Microscopy Image Denoising: A State-of-the-art

2.2 Transform techniques - Frequency domain

Transform techniques started with the Fourier transform but then gradually
developed with cosine transform, wavelet methods [31], block-matching and 3D
filtering (BM3D) [32] (see Figure 3). Transform techniques focused on trans-
forming the noisy images to another domain and then denoise based on the
different features of the transformed images. During transformation, two trans-
formation functions can be used, namely the data-adaptive function and the
non-data-adaptive function. [33]. However, BM3D is also a popular method of
collaborative filtering, which is an extension of non local method in transform
domain [4].

Transform techniques

Y Y Y
-locally coll i
Data adaptive transform Non-data adaptive transform Non-locally c(? aborative
filtering
Independent component Spatial-frequency domain BM3D
analysis (ICA) filtering

Wavelet transform

Fig. 3: Transform domain techniques

Principal Component Analysis - PCA [34, 35] and Independent component
analysis - ICA [36, 37] are data adaptive methods. But those methods need a
noise free sample which may not be possible for all the time in practice. On the
other hand, spatial frequency and wavelet transform [38] are counted as non-
adaptive data methods. Spatial frequency takes a long time and is dependent
on the cut-off frequency as well as the behavior of filter function. The wavelet
transform, on the other hand, is significantly reliant on the wavelet bases used.
If the selection is incorrect, the images displayed in the wavelet domain will
not be accurately represented, resulting in a poor denoising impact [4].

Back to the BM3D technique as it was mostly used and most popular tech-
nique once, there have been many attempts at improvement, as performance
is sometimes mediocre, especially at high noise levels. This means that as
noise increases, BM3D performance decreases mainly in flat areas. Thus, a new
dimension of image denoising techniques is launched with neural network-based
approaches.
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2.3 Neural network based techniques
2.3.1 From plain neural networks to deep neural networks

The neural networks-based approaches have their own history of evolution in
image denoising which started with plain neural network or encoder-decoder
or multilayer perceptron (MLP). Encoder-Decoder, for example RED-Net [39]
can be convolutional neural network (CNN) or recurrent encoder-decoder net-
work, where MLP can be categorised as feedforward artificial neural network
(ANN). However, initially all these techniques were based on supervised CNN,
but this changed over the time. In this section, we will give details on these
techniques, including the network architectures used (see Figure 4).

Neural Network based
Approaches
v v
Plain Neural Networks Deep Learning Techniques
Multi-Layer Encoder-Decoder Convolutional neural network fe .
Perceptron (MLP) (CNN) Transformer models (ViT)
Generative adversarial Diffusion Denoising
network (GAN) Probabilistic Model (DDPM)

Hybrid Techniques - Combination of multiple networks

Fig. 4: Neural network-based techniques

Plain MLP as plain neural networks were applied in image patches, and
compted with the conventional techniques in denoising Gaussian noise [40].
Residual Encoder-Decoder Network (RED-NET) [41] based techniques were
also investigated for image denoising in [42-44]. However, deep neural networks
(DNN) or deep learning techniques are the main attraction with remarkable
performances from last several years. Depending on the type of network, it
may be a Convolutional Neural Network (CNN), a Vision Transformer (ViT)
or a Generative Adversarial Network (GAN).

The initial step in neural network-based image denoising technique was pro-
posed in [45], comparing with FoE (Fields of experts) [46], with a very limited
layer. In [47], MLP was applied, which was one of the first to be competitive
with the BM3D baseline approach [48]. After that, CSF [49], SRCNN [50],
ARCNN [51], and TNRD [52] were proposed with comparable performances
with the other techniques. With the gradually growth of deep neural networks,
the types of learning processes started to get noticed by researchers, because,
it is needed in supervised techniques to have a clean target image for training
which may not be possible in practice. Thus, it became an emerging issue to
investigate further.

There are four ways of learning process in state-of-the-art techniques:
supervised, unsupervised, semi-supervised, and self-supervised. The presence
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of labels in the training data subset distinguishes the supervised, unsupervised
and semi-supervised technique groups. Along with the usage of input fea-
tures, supervised techniques incorporate a predefined output attribute (label)
[53, 54]. Conversely, training without the use of a target label is referred to as
unsupervised learning [54]. Semi-supervised learning solved an existing prob-
lem, namely having a large number of labeled data or discovering unlabeled
data by mixing an unknown label with a known label. Thus, learning from
a large amount of unlabelled data incorporated with labeled data is defined
as semi-supervised learning process [55]. Self-supervised learning is a learn-
ing process that depends on pretext tasks that may be formed using solely
unsupervised data. A pretext assignment is designed so that accomplishing it
necessitates the acquisition of a useful visual representation [56].

Most of the neural network-based image denoising proposed frameworks are
based on CNN, including DnCNN in 2017 [57], FFDNet in 2018 [58], ECND-
Net [59] and SDNet in 2019 [60], BRDNet [61] and ADNet [62] in 2020. All
these mentioned methods are based on supervised learning framework which
needs clean images as target to train. But in practice it may not be possi-
ble all the time. Thus, the attention on supervised learning based denoising
decreased gradually. Over the time, unsupervised, semi-supervised and self-
supervised frameworks are getting attention to investigate in image denoising.
Moreover, not only CNNs but also transformers (ViT) and GANs provide a
more promising role in image denoising.

2.3.2 Deep neural networks

Deep neural networks (DNN), or deep learning techniques, are promising and
the most successful methods nowadays. Thus, we will focus on these techniques
with the explanation of maximum possible variations and the evolution of these
techniques (see Figure 4).

Convolutional neural networks (CNN)

This section will focus on the techniques with CNN architecture but with unsu-
pervised, semi-supervised and self-supervised learning schemes, which have
been proposed in recent years.

With the domination of deep neural networks in image denoising, it was
needed to have clean and noisy images in supervised learning. But recently,
training without clean target has been proposed and it was found that it is
possible to train without clean target. Without clean target, i.e. ground truth,
only with pairs of noisy images, Noise2Noise (N2N) [63] enabled the training of
CNN in 2018. Furthermore, N2N outperformed BM3D and DIP (Deep Image
Prior) [64].

One step further of N2N, based on the motivation of the absence of noisy
image pairs, Noise2Void (N2V) [65] performed without noisy pairs as well
as clean targets. N2V used the network of U-Net [66] as starting point of
implementation inspired from CARE framework proposed for fluorescence



Scanning Electron Microscopy Image Denoising: A State-of-the-art 9

microscopy [67]. N2V enables training from one single noisy image by extract-
ing a patch as input and uses the center pixel of that as target. For achieving
their goals, the authors introduced a special network with a receptive field
which has a blind-spot in the center of it. Apart from the input pixel at its
exact position, the CNN prediction for a pixel is influenced by all input pixels
in a square region which defined as blind-spot network by the authors. How-
ever, building such a network in place that can nonetheless operate effectively
is not easy. They suggested a masking approach to circumvent this issue and
produced the same results with any regular CNN: the value in the middle of
each input patch is replaced with a randomly chosen value from the surround-
ing area. This basically wipes the pixel’s data and stops the network from
learning its identification [65]. However, the randomly chosen values from the
surrounding area and the utilized random function are not truly J-invariant
(independent feature dimensions function). In addressing this issue, Noise2Self
(N2S)[68] was developed under the assumption that noise is statistically inde-
pendent across multiple measurement dimensions, while the true signals are
correlated.

N2S [68] is a self-supervision based system for blind image denoising. It
is a framework for denoising high-dimensional measurements that does not
rely on prior signal knowledge, noise estimation, or clean training data. To
anticipate each other, the characteristics exhibiting a conditionally valid signal
were employed, with the condition being independent. That enables N2S to
train from a single noisy measurement with performance comparable to that
of supervised learning. They suggested that the same method may be possible
to use for calibrating other traditional methods like NLM and median filters
including for denoising the under-sampled single-cell gene expression data.

In N2V [65], authors claimed that supervised like performance were not pos-
sible with the self-supervised techniques. Self-supervised techniques assumed
that noise is pixel-wise independent and that the true intensity of a pixel can
be predicted from local image context, hence excluding the previously men-
tioned blind-spots. However, for a variety of applications, including microscopy
images, the assumptions may not be fully satisfied and there may be room for
improvement [69].

Even in [69], the competence with supervised learning by self-supervised
was noticed. They tried to predict Gaussian intensity distributions (per pixel)
from assuming or guessing a Gaussian noise model. Similar to [69], Probabilis-
tic Noise2Void (PN2V) [70] has been proposed which is not limited to any noise
model like Gaussian noise model or the intensity of prediction. It introduced a
way how to leverage information about blind-spots of the network. PN2V is a
complete probabilistic model which is now not limited to the selection of sta-
tistical estimator to employ. PN2V with an additional noise model was able to
improve the results in image reconstruction which was a drawback of previous
N2V and N2S approaches. The noise model of PN2V needs to acquire the cal-
ibration data. Thus, [71] proposed an improved version of PN2V which is fully
unsupervised by replacing the noise model (histogram based) by other noise
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models (parametric). They also showed that it is possible to create a noise
model which is suitable, even if calibration data is absent. Another study [72]
showed that it is possible to improve the blind spot denoising used in N2V
and N2S by incorporating additional knowledge from the signal itself which is
oversampled and diffraction-limited.

In contrast of blind spot denoising, Noiser2Noise [73] and Noise-As-Clean
[74] follow the similar concept to generate synthetic noise from corrupted or
noisy images noise model for training pairs. However, there exists a reliance
on recognizing a noise model that proves challenging to identify in the real
world [75]. Thus, [75] proposed another self-supervised approach named as
Neighbor2Neighbor (Nr2N). The training mechanism in Nr2N consists of two
stage. In first stage, they generate noisy image pairs from random neighbor sub-
samplers. In second stage, they adopt a regularized loss to solve the non-zero
ground truth gap issues between the sub-sampled noisy image pairs.

In parallel, recorrupted-to-recorrupted (R2R) [76], an unsupervised tech-
nique, was proposed to tackle the overfitting issue which may occur for the
absence of clean images. One of the main contribution from R2R was training
from unorganized noisy images where the truth targets or the pairs of noisy
images were not needed. With blind spot techniques, it is possible to lose infor-
mation when removing pixels from the image, whereas R2R worked with all
image pixels but with little bit higher noise level. In relation to that, there
are some techniques which also considered overfitting, for example DIP [64]
which used early-stopping and Self2Self (S2S) [77] which used dropout layer
based scheme. On the other hand, Stein’s Unbiased Risk Estimator (SURE)
[78] based techniques, like Net-SURE [79], penalize the prediction divergence
in order to regularize the deep neural network.

From N2N to N2V, PN2V, N2S, S2S, and R2R, on the other hand, take
a long time to train which is unsuitable for use on high-resolution microscope
images in time-sensitive scenarios. To make a fast denoising, Noise2Fast [80]
proposed a network which is based on mapping between adjacent pixels as
Nr2N [75]. The authors tried to tune the network by using a discrete training
set concept of four images and training them on a small network but validat-
ing with full sized original images. The discrete training set obtained from a
form of downsampling, they named it checker-board downsampling. Authors
claimed that they reached very competitive results compared to other SOTA
techniques in terms of time as well as performance except S2S. However, S2S
takes over 100 times for denoising only a single image [80]. When it comes
to approximating neighboring pixels, certain methods based on proximity can
lead to excessive smoothing, occasionally resulting in the destruction of struc-
tural continuity due to sub-sampling. Recently, the authors of Blind2Unblind
[81], again focusing on blindspot based denoising, claimed that the probabil-
ity of information loss by previous methods can be minimized by using their
re-visible loss concept. Nevertheless, their proposal involves implementing a
mask mapper to expedite model training and introducing a re-visibility loss.
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This re-visibility loss aims to unveil blind spots, enabling the model to directly
learn from raw images.

Above mentioned techniques are mostly following self-supervised learning
process, but there are a few semi-supervised attempts as well. For exam-
ple, Noise2Atom, an unsupervised technique, [82] was developed by targeting
microscopy images (scanning transmission electron) based on the semi-
supervised Multi-scale Convolutional Neural Network (MCNN), and in many
cases performs better. One of the most semi-supervised successful approach
in image denoising and reconstruction is Noise2Recon [83] that performs joint
MRI reconstruction and denoising.

In contrast, CNN-based approach has received remarkable attention since
last few years. Apart from above mentioned techniques, there are many
other contributions coming from the researchers, including Noise2Same [84],
Noise2Inverse [85], Noise2Score [86], MIRNet [87], DudeNet [88], DeepRED
[89], DCDicL [90], NBNet [91], Clean-to-Noise (C2N) [92] and so on. Recently,
a few other techniques have emerged, such as IDEANet (CNN + GAN based)
[93], NSTBNet [94], NFCNN [95], TSLR [96], MalleConv [97], CVF-SID [98]
and there are a lot more still adding to the bucket. Furthermore, focusing of
sRGB coloring space for digital images CVF-SID [98] proposed a cyclic multi-
variate function based image denoising method for the real world sSRGB images
which can work without any prior assumption on noise distribution. However,
there is another technique ADL [99] based on transfer learning which is trained
to solve one problem, but applied to a different related problem. For exam-
ple ADL was trained on an object detection dataset but applied to perform
Magnetic Resonance Image (MRI) denoising.

Vision transformer models (ViT)

Transformer-based network architectures, unlike CNNs, are naturally effective
at capturing long-range relationships in data by using global self-attention.
Transformer’s achievement in the realm of natural language processing also
encourages computer vision researchers [100].

The Transformer, initially introduced by [101], is primarily based on atten-
tion mechanisms and has recently found applications in tasks related to image
denoising. Although it was initially developed for language translation in Nat-
ural Language Processing, its usage has expanded to the field of computer
vision, as inspired by [102]. This section will delve into the contributions, as far
as our knowledge extends, regarding the utilization of transformers in image
denoising.

Self-attention mechanism based technique in image super-resolution started
from [103], where a standard blocks of transformer was applied to image
processing (Image Processing Transformer or IPT) [104] within a multi-task
learning framework. Although, for good performance, IPT depends on multi-
task learning and pretraining on a large-scale synthetic dataset, Uformer
[100], a U-shaped transformer provides efficient results. Uformer designed
two cores named locally-enhanced window (LeWin) and multi-scale spatial
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bias. LeWin helps to reduce the computational complexity in the presence
of high-resolution feature maps. On the other hand, the learnable multi-scale
restoration modulator adjusts features of the decoder in different layers.

A concurrent work with Uformer, SwinIR [105] based on Swin Transformer
[106] was proposed. It has three parts including shallow feature extraction (a
convolution layer), deep feature extraction (main residual Swin Transformer
blocks) and high-quality image reconstruction (reconstruction module). It
introduced an approach which worked with diverse application such as image
denoising considering grey and color images both, image super-resolution, and
JPEG compression artifact reduction.

Motivated by Uformer, Eformer [107] is proposed with Sobel filters by tar-
geting edge enhancement in medical imaging which was further extended with
residual learning scheme (Eformer-residual). Eformer-residual outperformed in
medical image denoising.

One study [108] proposed TED-Net, a vision transformer-based Encoder-
decoder Dilation Network focused on low-dose computed tomography image
denoising. TED-Net is a completely convolution free approach, but there are
few Convolutional Vision Transformer (CvT) approaches as well [109, 110].

With the help of transformers, recently variety of techniques mostly focus-
ing on restoration have been proposed. For example, SUNet (Swin Transformer
with UNet) [111], STFNet (transformer fusion network) [112], DenSformer
(based on Uformer and Eformer) [113], Restormer (based on multi-head
attention and feed-forward network) [114], CTformer (tokenization or deto-
kenization blocks and a residual encoder-decoder structure) [115] and a lot
more, transformers are gaining significant attention and trending for explo-
ration nowadays. However, it is noticeable that most of the transformer-based
approaches are focusing image restoration as well as denoising in medical
imaging (for example CT and MRI images).

Generative adversarial networks (GAN)

Low-dimensional latent vectors are transformed into aesthetically realistic
images using generative adversarial networks (GANs) [116, 117], which are
adapted to the purpose of generative modeling. For image classification and
object recognition (discriminative learning based issues), GANs surpassed all
other previous computer vision algorithms.

There are two networks in GANs. The first one, called generator, actually
produces an image from a low-dimensional latent vector. The other component,
known as the discriminator, attempts to identify the generated image as a fake
sample, thereby attempting to deceive the generator.

However, from the concept of the reverse mapping (from image space
to latent space) [118, 119], one study showed that it is possible to denoise
images in practice using latent vector recovery process of GAN [117]. It have
implemented deep convolutional generative adversarial networks (DCGANS)
[120] for the experiments of denoising and showed significant performance,
comparable to that of SOTA techniques.
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Furthermore, GAN, GAN-CNN, GAN with grouped residual dense network
(GRDN) and few more GAN-based approaches are proposed in image denois-
ing [121-133]. Apart from image denoising, super resolution is a close topic
which was targeted by few researchers, initially SRGAN [134] then [135-144]
and many more.

Most GAN-based denoising methods were not completely pure GAN, but
with the mix of other deep learning networks like CNN, RNN, RDN, etc. GAN-
based approaches were focusing on image super resolution, reconstruction and
restoration. Thus, it is clear from the state-of-art that GAN can be explored
further for image denoising specially for low resolution or high noise level
images (microscopy images). In addition, most of the studies have used GANs
for noise modelling [125] and 3D structure reconstruction [145] which may open
a new dimension to work with 3D structure reconstruction after performing
an effective denoising that is needed for scanning electron microscopy for 3D
metrology of micro-structures.

Diffusion-based deep probabilistic model

Diffusion based model was first introduced in 2015 by [146]. Then in 2019, a
different approach but similar concept was introduced in [147]. However, the
popular diffusion based approach is Denoising Diffusion Probabilistic Models
(DDPM) [148] published in 2020. After that, this kinds of model started to
grow faster even with good results.

The diffusion based method is a technique used to create a flexible gen-
erative model of data by systematically and gradually altering its structure
through an iterative forward diffusion process. After this, a reverse diffusion
process is learned to restore the original structure, resulting in a versatile
and manageable generative model. This approach enables quick learning, sam-
pling, and probability evaluation in deep generative models. This method
employs a Markov chain to gradually transform one probability distribution
into another, inspired by principles from non-equilibrium statistical physics
[149] and sequential Monte Carlo techniques [150]. Specifically, a generative
Markov chain is constructed to convert a known distribution (e.g., Gaussian)
into a target data distribution using a diffusion process. Unlike traditional
approaches, the probabilistic model is explicitly defined as the endpoint of
this Markov chain. Importantly, each step in the diffusion chain has analyti-
cally evaluable probabilities, allowing for the analytical evaluation of the entire
chain [146].

Over time, this method has overtaken all other techniques in terms of
image synthesis, image generation, image super-resolution, image translation,
image reconstruction and many others. Recent contributions [151-163] showed
the effectiveness of diffusion models in mentioned areas. Especially, diffusion
methods outperformed GAN-based models in image generation, denoising and
reconstruction. It could therefore be more interesting to study it for denoising
scanning electron microscopy images.
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Hybrid techniques

Hybrid techniques are usually a combination of multiple network archi-
tectures such as "CNN and GAN” or "CNN and ViT”. Recently, such
kinds of hybrid techniques outperformed single architecture based techniques.
For example, BoostNet [164] and SCUNet [165] both exhibit significant
performance improvements through the combination of GAN+CNN and
ViT(Swin)+CNN(UNet) networks.

3 Benchmark of state-of-the-art techniques

A comparative evaluation of state-of-the-art techniques is carried out in order
to select the best architecture to date for image denoising, more specifically,
scanning electron microscopy (SEM) images.

One pre-assessment has been performed from the results which are men-
tioned in the state-of-the-art papers for selecting promising techniques for
image image denoising. It has been found that the techniques used variety of
datasets and the environment of the execution not same all the time. In addi-
tion, the availability of code (reproductibility) has also been taken into account.
Next, the main benchmark evaluation was carried out by implementing and
evaluating the selected techniques with the microscopy image dataset.

3.1 Dataset information

Most of the state-of-the-art (SOTA) techniques were experimented using exist-
ing datasets reported in Figure 5. But we targeted to have the assessment
for SEM images dataset which is not exactly found in the literature. There is
one SEM dataset which is mainly focused on classification tasks. We therefore
selected one of the most critical SEM image samples, the pollen grain, collected
by the FEMTO-ST laboratory, for comparative evaluation. However, in the
dataset there are different samples based on different dwell times. In fact, we
found in a previous work that noise changes in type and level as a function of
dwell time [166]. Dwell time represents the duration during which the electron
beam engages with the surface atoms of the sample, determining the period
required for pixel acquisition and consequently influencing scanning speed. In
this study, we used the dataset from the Zeiss Auriga FE SEM including the
noise type information found in the paper [166] as shown in Table 1.

In fact, we categorized the scan speed into slow, medium, and fast based
on the dwell time range, because we observed that slow speed may damage the
samples, while medium and fast speeds do not harm the sample but are prone
to higher noise. Therefore, our objective was to test the samples at least at a
medium speed to ensure compatibility in practical applications.

3.2 Results in paper of SOTA techniques

Initially, a few techniques have been chosen based on the availability and
reproducible capacity of source code as well as the accessibility of pretrained
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Dataset Used Set
Microscopy Images BSD
CBSD
Fluorescence Microscopy YRC-PIR
(FM) Images FMD dataset| 4. taset Kodak24
Transmission Microscopy Warwick electron McMaster
(TM) Images microscopy datasets
SIDD
Cryo-electron microscopy EMDB (the Electron
(cryo-EM) Images Microscopy Data Bank) CcC
Scanning Electron SEM Dataset by NFFA— DND
Microscopy (SEM) Images EUROPE project
NC
Fingerprint inpainting and denoising TUPR Urban PolyU

Fig. 5: Existing datasets in the literature

Table 1: Example of Zeiss Auriga SEM configurations

Scan Speed  Duwell time Noise type  Categorization
8 10 microseconds Gaussian Slow

5 2 microseconds Gaussian Slow

3 512 nanoseconds Gamma Medium

2 280 nanoseconds Gamma Medium

1 70 nanoseconds Gamma Fast

models provided by the authors of SOTA techniques. Tables 2 and 3 describe
the gained results by authors with their respective environments and datasets.
In fact, there are a lot of datasets, categorized based on the noise types and
sources, in the literature (see Figure 5). Table 4 summarizes, in ascending order
of year, the techniques selected for experimental evaluation.

We observed the existence of datasets based on gray-scale and color images
for conducting experiments on noise removal. Some techniques performed
denoising by removing noise while other techniques are used for image super
resolution or up-scaling the resolution. Among all of the datasets, Fluores-
cence Microscopy Denoising (FMD) dataset is specially for microscopy image
denoising which is dedicated to Poisson-Gaussian denoising. It includes around
12000 images collected from real fluorescence microscopy. It is noticed that
there is no scanning electron microscopy (SEM) image dataset for denoising
task. However, there is one scanning electron microscopy images dataset [175]
for classification related tasks which includes 10 types of materials in total.

On the referenced articles, there are the references of mentioned datasets
in the Tables 2 and 3. Thus, we did not cite the references of the datasets



16 Scanning FElectron Microscopy Image Denoising: A State-of-the-art

Table 2: Results in paper of SOTA denoisers

Techniques Dataset Info. Noise Info. / Type PSNR/SSIM !

DnCNN [57] BSD68 (Gray) Gaussian ( o = 50) 26.10 / 0.7076
IRCNN [167] BSD68 (Color) Gaussian ( o = 50) 27.86/NA
BSD68 (Gray) 26.29/NA
FFDNet [58] Bsiiia(fz(jor) Gaussian ( o = 50) g;gg ;Eﬁ
McMaster 29.18 /NA

Setb 38.00 / 0.9605

Set14 33.63 / 0.9177

IMDN [168] BSD100 Up-scaling 32.19 / 0.8996

Urban100 32.17 / 0.9283

Mangal09 38.88 / 0.9774
Self2Self [77] BSS%?SB Gaussian ( o = 50) ggig?ﬁi
BSD68 26.56/NA

FMD 41.70/0.9725
BoostNet [164] BSD68(color) Gaussian ( o = 50) 28.27/NA
Kodak24 29.45/NA
McMaster 29.80/NA

MPRNet [169] %INDB Real from smartphone gggé ; gggi
BSRGAN [170] DIV2K4D Gaussian (Super resolution) 24.65/NA

1PSNR : Peak Signal-to-Noise Ratio, SSIM : Structural Similarity Method

separately. In fact, our goal is to identify something related to denoising tech-
niques, but for the dataset, we specifically focused on the SEM images dataset
if it exists.

3.3 Pre-assessment of SOTA techniques

The initial experimental results obtained from the state-of-the-art (SOTA)
techniques are described in Table 4. These results show that no existing model
performs better with the pollen grain sample we tested. However, this may be
due to the fact that these models have not been trained with samples similar
to the pollen grain.

We have noticed during the simulation that self-supervised techniques were
taking time to perform denoising. Especially Self2Self [77] took 25000 epochs
approximately to reach the level of results described in Table 4 and in Figure 6.
In fact, we have targeted SEM images and within minimum time requirements.
Thus, self-supervised techniques may not work in our case. In Figure 6, we
used an image acquire from SEM with very slow scan speed (scan speed 8)
with one iterative denoising by IDR [171] as clean target.

From our initial assessment, we found that BoostNet (CNN+GAN) [164],
BSRGAN (GAN) [170], and SCUNet (ViT+CNN) [165] performed better com-
paratively based on the PSNR / SSIM values and in case of visual evaluation,
we found that BSRGAN (GAN) [170] have blur effect problems. It is found
that, in our case, GAN alone is not able to produce good quality, but GAN
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Table 3: Results in paper of SOTA denoisers (continued)

Techniques Dataset Info. Noise Info. / Type PSNR/SSIM !
Train:
DIV2K + Flickr2K
Flickr2K 38.42 / 0.9623
Test: 34.46 / 0.9250
SwinIR [105] Setb Up-scaling 32.53 / 0.9041
Setl4 33.81 / 0.9427
BSD100 39.92 / 0.9797
Urban100
Mangal09
Train:
DIV2K +Flickr2K
Flickr2K 38.46 / 0.9624
Test: 34.61 / 0.9260
SwinIR+ [105] Set5 Up-scaling 32.55 / 0.9043
Setl4 33.95 / 0.9433
BSD100 40.02 / 0.9800
Urban100
Mangal09
Set12 25.82/7.81
Noise2Fast [80] BSD68 Gaussian (¢ = 50) 25.23/6.70
Confocal (FMD) 36.61/9.33
Kodak 29.27 / 0.803
IDR [171] BSDS300 Gaussian ( o = 50) 28.25 / 0.802
BSD64 26.25 / 0.726
SUNet [111] I((J(])gdsa]:l)(gi Gaussian ( o = 50) ;ggi ? 8;?8
Gaussian:
32.34/0.872
KODAK Gaussian ( o = 50) 3??2?82?’;
Blind2Unblind [81] BSD300 o - A
SET14 oisson (A = 30) Poisson:
31.07/0.857
29.92/0.852
30.10/0.844
NAFNet [172] SIDD Real from smartphone 39.96 / 0.960
MIRNetV2 [173] ]SDI;\?]I; Real from smartphone gggg ? 83?2
Restormer [114] ]SDII]\:T)]? Real from smartphone :4188?3 ? gggg
SCUNet [165] BSD68 (color) Gaussian ( o = 50) 29.37/0.8135
Diffusion [174] %11]3]13 Real from smartphone 3(1)2491 ; gggig

IPSNR : Peak Signal-to-Noise Ratio, SSIM : Structural Similarity Index Measure

17

with CNN or ViT may perform better. Moreover, the techniques employed thus
far have not been trained with SEM images, potentially contributing to their
weak performance. Therefore, we have chosen to conduct additional experi-
ments, delving into the details of these techniques by training them with SEM
images. Our selection of techniques for further experimentation is based on
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Clean Image

200 0
SUNet PSNR: 17.62 SSIM: 0.19

Fig. 6: Visual comparison of SOTA techniques

the availability of training codes and their adaptability to our system. Addi-
tionally, several diffusion-based models have demonstrated impressive results
in generative modeling and denoising compared to transformers, CNNs, and
GANSs [174]. We did not make a test with the diffusion model proposed in [174]
for denoising real noisy images, because of the unavailability of the codes in
public. However, we decided to train and test diffusion models later.
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Table 4: Experimental results obtained from SOTA denoisers

Techniques Year Data Learning Network PSNR/SSIM !
DnCNN [57] 2016  Dataset Supervised CNN 16.34/0.09
IRCNN [167] 2017  Dataset Supervised CNN 16.25/0.08
FFDNet [58] 2017  Dataset Supervised CNN 16.33/0.09
IMDN [168] 2019  Dataset Supervised CNN 17.36/0.15
Self2Self [77] 2020  Single Self-supervised CNN 17.70/0.18
BoostNet [164] 2021 Dataset ~ UDSupervised  GANZ /0.17
Supervised CNN ’ ’
MPRNet [169] 2021 Dataset Supervised CNN 17.52/0.17
BSRGAN [170] 2021 Dataset  Unsupervised GAN?Z 17.41/0.21
Real-ESRGAN [176] 2021 Dataset  Unsupervised GAN?Z 16.63/0.20
SwinIR [105] 2021 Dataset Supervised ViT3 15.57/0.15
SwinIR+ [105] 2021 Dataset Supervised ViT3 15.65/0.08
Noise2Fast [80] 2021 Single Self-supervised CNN 16.52/0.09
IDR [171] 2022 Single Self-supervised CNN 16.33/0.09
SUNet [111] 2022  Dataset S‘%perV‘sed ViT3  17.62/0.19
ransfer
Blind2Unblind [81] 2022 Single Self-supervised CNN 16.52/0.09
NAFNet [172] 2022 Dataset Supervised CNN 17.65/0.15
MIRNetV2 [173] 2022  Dataset Supervised CNN 16.76/0.10
Restormer [114] 2022  Dataset Supervised ViT3 17.01/0.11
T3
SCUNet [165] 2023 Dataset Supervised \C/gN 17.32/0.20

Note: All techniques were tested and evaluated using pretrained models except the single
image denoising.

IPSNR : Peak Signal-to-Noise Ratio, SSIM : Structural Similarity Method
2Generative Adversarial Networks

3 Vision Transformer

3.4 Benchmarking of selected SOTA techniques

As described in early assessment, in this stage, we will investigate and bench-
mark the GAN, ViT and diffusion based model in SEM images denoising.
Hence, we intend to create a new microscopy dataset comprising both clean
and noisy images. Subsequently, we will train, validate, and test the selected
state-of-the-art (SOTA) techniques on this dataset.

Table 5 shows the results of few techniques retrained on a customized
SEM image dataset prepared with 500 high quality images (based on manual
selection) from [175]. In fact, we selected around 3900 images based on the res-
olution (Height x Width) programmatic way and then performed the manual
selection of 500 images because there were mixed of clean, blurry images in the
initial selection. Moreover, we did not carry out all the epochs as conducted
by the authors (“In code” values) due to time constraints. We targeted ini-
tially to experiment by using 2 days for each training, but the GAN required
a training time of 4 days on the Tesla V100 SXM2 32GB GPU. However, after
learning we did not achieve improved performance in SEM images, except for
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Table 5: Results of some SOTA denoiser experiments (the denoisers are
trained with SEM images)

Techniques Epochs / In code  Time PSNR / SSIM !
DnCNN [57] 10K /100K Avg. 2days  16.66 / 0.10
FFDNet [58} 10K / 100K Avg. 2 days 16.26 / 0.08
BSRGAN [170]  3.5K /200K  Avg 4 days  17.10 / 0.18
USRNet [177] 5K / 100K Avg. 2 days  17.53 / 0.15
SCUNet [165] 6.2K / 100K  Avg. 2days  16.12 / 0.07

LPSNR : Peak Signal-to-Noise Ratio, SSIM : Structural Similarity Index Measure
Tested on GV100GL - Tesla V100 SXM2 32GB and noise level ¢ = 50

DnCNN [57]. In fact, the authors did experiments with a far more larger num-
ber of training epochs. For example, the SCUNet authors used around three
days to train on their four NVIDIA RTX 2080 Ti GPUs [165]. Thus, it is
concluded that it may be possible to enhance performance in some cases, but
would require more training on SEM images with a large number of epochs, or
might require hyper-tuning of parameters in SEM image feature engineering,
or even might require a different training setup for blind real image denoising.
Additionally, we noticed that it is not only difficult but also challenging to
remove noises from SEM images using existing techniques as well. We believe
that the uncertainty of image noise type and level [166, 178] in SEM images
prevents the techniques from performing better, or even to reach at a certain
level in SEM images denoising.

4 Discussion and Future Direction

Based on the experiments and benchmarking, it has been found that CNN
is the ultimate target network which is needed in image denoising, especially
U-Net encoder-decoder network. In fact, GAN alone cannot deliver better
performance. We observed that it struggles to preserve features in denoised
images, often resulting in over-smoothing effects. On the other hand, ViT alone
even cannot performed better in SEM image denoising. However, ViT (Swin-
Conv) with the combination of CNN (SCUNet) performed better based on
the results found in Table 3 (PSNR/SSIM value of 17.32/0.20) and Figure 6.
Eventually, GAN with CNN (BoostNet) also performed better (PSNR/SSIM
value of 17.55/0.17), but visually it removes some details from the images. The
main problem we found in SOTA techniques is either not working or removing
details from the SEM samples.

4.1 Analysis and discussion

In this section, we will make a detailed analysis of the denoised images obtained
for our pollen grain sample using the three best SOTA techniques found by
the benchmarking. These techniques, BSRGAN-based GAN, BoostNet-based
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GAN+CNN and SCUNet-based ViT+CNN, outperformed the other tech-
niques in terms of SEM images. The pollen grain SEM image sample used
to conduct the experiments is one of the most critical and complex sample.
The visual analysis and findings from different regions of interest (ROI) in the
images are depicted in Figures 7, 8, 9, 10, and 11, respectively.

BSRGAN

BoostNet

SCUNet

Zoomed In SCUNet

Fig. 7: Visual details for the three best-performing SOTA techniques

Figure 7 represents the larger portion of the images. It can be seen that
BSRGAN provides over-smoothed ROI, whereas BoostNet and SCUNet looks
quite better. However, in Figure 8, it is clearly identified that in very critical
structures, almost all techniques failed to remove the noise. In fact, in this
case, SCUNet does not remove details including noise, but other techniques
removed few details with some smoothing issues.

Let’s move on to the case study shown in Figure 9, which highlights more
details. We can observe that all techniques have issues to denoise with exact
details like the light white color shape getting changed in the denoised versions.
In fact, in Figures 10 and 11, BSRGAN evidently exhibits over-smoothing
issues, while the two other techniques share similar details at a quick glance.
However, there are subtle pixel differences in the output.

We performed this analysis to go in details of the effects of the three selected
SOTA denoisers on a representative SEM image sample. Out of these three
techniques visually SCUNet provides promising results with a minor failure.
Even, it minimizes the noise with less meaningful information removal. But in
terms of PSNR and SSIM, the results are not promising which tends us to go
for in-depth insights of the results found from these techniques.

Finally, it is discovered that the objective of denoising without compromis-
ing quality and meaningful details is not fulfilled by existing denoisers in the
field of SEM images. However, SCUNet introduces a noise synthesis pipeline
as a baseline, incorporating various noises such as Gaussian, Poisson, camera
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BSRGAN

BoostNet

SCUNet

Zoomed In Clean Zoomed In BSRGAN Zoomed In BoostNet Zoomed In SCUNet

Fig. 8: Visual details for the three best-performing SOTA techniques

Clean BSRGAN BoostNet SCUNet

Zoomed In Clean Zoomed In BSRGAN Zoomed In BoostNet

Zoomed In SCUNet

Fig. 9: Visual details for the three best-performing SOTA techniques

noise, and more. This feature positions SCUNet as the leading solution for real
blind image denoising, including SEM images

4.2 Features detection and matching

We take one more step in this section to check the maximum features main-
tained by the SOTA techniques in the images after denoising. Because, if we
want to reconstruct the over-smoothed part or the removed details informa-
tion in the images then at least, we need to have the features or enough
texture points in the images. To detect the local features in the images, we
used AKAZE [179] local features detector. Regarding the settings, we used
a threshold point of 0.0001 and 0.90 for nearest neighbor matching ratio
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BSRGAN

BoostNet

SCUNet

Zoomed In Clean Zoomed In BSRGAN Zoomed In BoostNet Zoomed In SCUNet

Fig. 10: Visual details for the three best-performing SOTA techniques

Clean BSRGAN BoostNet SCUNet

Zoomed In Clean Zoomed In BSRGAN Zoomed In BoostNet Zoomed In SCUNet

Fig. 11: Visual details for the three best-performing SOTA techniques

in AKAZE local features binary matching with Brute-force match based on
NORM_HAMMING distance.

Figure 12 shows the selected features key-points in the ROI of the clean
image (left - (a)) and the matching of those features points with the denoised
versions (right - (b), (¢) and (d)) of the noisy images. The number of suc-
cessfully matched features key-points is also noticed, revealing noteworthy
insights. SCUNet, in particular, has demonstrated a robust performance by
providing a substantial number of matching features, specifically 1290 out of
1621 key-points.

It can be observed that conventional metrics like PSNR (Peak Signal-to-
Noise Ratio) and SSIM (Structural Similarity Index Measure) fall short in
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(b) Features matched with
BoostNet - 1072 points

(c) Features matched with
BSRGAN - 322 points

(a) Features key-points in ROI of clean image -
1621 points
(d) Features matched with
SCUNet - 1290 points

Fig. 12: Features detection and matching with AKAZE local features detector
of images

adequately assessing SEM image denoising. This leads to the conclusion that
these metrics may not be optimal for evaluating the effectiveness of denois-
ing methods in this specific context. In contrast to the lower PSNR and SSIM
scores, both BoostNet and SCUNet exhibit superior visual results, effectively
preserving meaningful details in the denoised SEM images. This underscores
the importance of incorporating visual assessment alongside quantitative
metrics in evaluating denoising performance.

Recognizing the persistent challenges in SEM image denoising, there is a
suggestion that further improvements can be achieved through post-denoising
image reconstruction. This insight indicates an acknowledgment of ongoing
efforts and potential advancements in overcoming the existing challenges in
this field.

4.3 Comparative Analysis of BoostNet and SCUNet

In this section, we provide a comparative analysis of BoostNet and SCUNet,
discussing the reasons behind their superior performance compared to other
techniques. Although BoostNet uses a CNN+GAN network architecture and
SCUNet a ViT(Swin)+CNN(UNet) one, both have a common target to target
“real-world noise model”. In fact, the results of SCUNet presented in Table 5
show that it did not perform better because of its training configuration.
Indeed, the training configuration mostly depends on the dataset synthesizer.
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While BoostNet employs both Gaussian and Poisson noises in the synthe-
sis of noisy images, SCUNet utilizes a distinct training data synthesizer that
combines more types of noises. This synthesizer is designed to create real-
blind noisy images by incorporating various noises such as Gaussian, Poisson,
speckle, JPEG compression, as well as processed camera sensor noises. The
processing includes resizing, a random shuffie strategy, and a double degrada-
tion strategy. Omitting the utilization of the synthesizer module during our
retraining process led to unsatisfactory results, as indicated in Table 5. Thus
it can be noticed that the special noise synthesizer including multiple noise
types improves the performance in both networks.

We thoroughly experimented with the provided pretrained models of Boost-
Net and SCUNet and we found that the models which were targeting on
“real noise denoising” outperformed. Thus, it is interesting to note that SEM
images have a complex local region and very sensitive textures which tend to
be excessively smoothed and lose details with other techniques. A priori the
proposed or assumed noise model does not perfectly match the actual noise
characteristics found in real SEM images.

Compared to BoostNet, SCUNet outperformed due to network selection.
BoostNet uses a GAN with CNN where SCUNet uses the combination of
DRUNet, SwinlR and UNet architectures as the core of the framework.

BoostNet uses a modified deep residual network based subnetwork to esti-
mate the noise. The subnetwork incorporated into the final model involves
signal-dependent noise, encompassing both Poisson and Gaussian noise. A
wide range of noise levels [0,75] is used to make it flexible in training. Sub-
sequently, two generators and one discriminator are employed to reconstruct
an improved denoised image. Specifically, one generator focuses on denoising,
while the other is tasked with constructing details with the assistance of the
discriminator to ultimately generate an enhanced output.

Regarding SCUNet, it stands out in the synthesis of real noisy images.
The proposed pipeline to synthesize real-noisy images consider various types
of noise, alongside resizing. The approach integrates a double degradation
strategy and a random shuffle strategy, enhancing its adaptability to diverse
challenges and scenarios. This step is followed by the addition of Gaussian
noise, Poisson noise, speckle noise, JPEG compression noise, and processed
camera sensor noise (including read and shot noise, gamma correction, etc.).
This noise addition sequence is repeated twice, and the images are resized.
The ultimate goal is to closely approximate real noise in the images, resulting
in superior performance compared to other techniques.

We found that SCUNet exhibits superior performance in SEM images,
prompting a keen interest in advancing efforts to develop noise synthesis mod-
els capable of generating more realistic noises during training. Along with the
importance of networks in inverse problems, denoising images obtained by syn-
thesizing real noise types can provide a basis for a uniform blind-real denoising
framework.
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4.4 Recommendations

From the assessments and this study, we would like to recommend followings
to the SEM community to consider when denoising.

¢ Focusing on real image denoising is essential rather than making blind
assumptions about Gaussian noise. As found in our previous study [166],
the type and level of noise may change to Gamma or any specific case of
Gamma noise.

e [t is crucial to concentrate on preserving features from loss, a consideration
often overlooked by many techniques. Negative effects on feature preserva-
tion can lead to problems, as these features may be mistakenly identified as
noise, resulting in over-smoothing and the removal of image details.

¢ Explainable Al in denoising techniques may aid in understanding the reasons
behind blurry or over-smoothed images, as demonstrated in medical imaging
by [180].

e Both ViT and CNN (Swin-Conv), as well as GAN and CNN, warrant
further exploration, especially in minimizing feature loss or preventing
over-smoothing issues.

¢ While the community is consistently addressing reverse problems, it is
recommended, specifically in SEM image denoising, to focus not only on
denoising but also on preserving image details.

® Generally, high-resolution images can be achieved through denoising or
super-resolution techniques, but SEM images require special attention to
preserve significant details with the highest possible resolution.

® Despite details being removed, reconstruction or restoration techniques may
be implemented in a second step after denoising to restore meaningful
details.

¢ For complex samples like SEM images, PSNR and SSIM may not be suitable
parameters for assessment. Consideration of other metrics such as image
key-points is advisable.

® Attention to synthesizing the real noise model is essential, as it has shown
significant performance in image denoising.

¢ [t may also be possible to propose a guided network, similar to explainable
AT [180], to preserve losses while removing noise from SEM images.

5 Conclusion

Scanning Electron Microscopy (SEM) images are subjected to uncertain
changes in noise information based on the setting parameters, dwell time more
particularly. Thus, it is important to have a large scale experiment on the
state-of-the-art (SOTA) techniques in denoising for those images.

In this work, a vast investigation has been performed to identify the per-
formance of SOTA techniques in SEM images noise denoising. In fact, the
paper started with the evaluation of techniques in such reverse problems from
classical to intelligent system till date. As a part of this, a taxonomy of these
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techniques was presented and discussed in details with the possible time-
line of the evolution. A multi-stage benchmarking, as well as comparative
experiments, evaluations and justifications were carried out. We have listed
the results claimed by the authors in the different articles and carried out
experiments with SEM images. Indeed, we evaluated the performance of some
pretrained models on other images already available, and finally retrained and
evaluated some networks on a dataset of SEM images that we designed.

We found that in inverse problems like image denoising, CNNs mostly have
amazing performance, although they also outperform when combined with
ViT or GAN. Unfortunately, these models do not work well for SEM images
with real noise or when adding synthetic noise, due to the complex struc-
ture of the SEM images including the uncertainty of noise type and noise
level. They have the problems of removing meaningful important information
and over-smoothing. Thus, this study suggests to start rethinking of devel-
oping denoising techniques for SEM images by considering the minimization
of information removal and over-smoothing problems, particularly focusing on
SEM images special characteristics to prevent loss. In this case, explainable
AT can contribute to providing transparency to the community regarding the
model’s success or failure. Finally, we recommend to use blind real noise denois-
ing, emphasizing the preservation of details and addressing over-smoothing,
particularly in SEM-like images.
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