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Abstract—In the past few years, the increasing number of
aircraft in low-altitude traffic has brought new challenges for
air traffic controllers. As the ADS-B protocol takes an important
part in the air surveillance task, it is important to be prepared
to face attacks related to it. Moreover, as the ADS-B is open and
uses broadcasts, it is easy for an attacker to emit fake ADS-B
data to flood the air traffic controller’s screens. In this work, we
will present two algorithms, the first one is based on hashing
techniques, invariant to geometric transformations to detect
trajectory replays. The second one uses a deep-learning model to
detect irrelevant ghost trajectories. Our proposed approach can
automatically filter a majority of ghost aircraft without risking
to filter real aircraft.

Index Terms—Flooding attacks, ADS-B, Low-altitude air traf-
fic, Machine learning, Hash functions

I. INTRODUCTION

In the past few years, the fast increase in air traffic load has
brought new challenges for air traffic controllers. Moreover,
many air traffic monitoring tools depend on the Automatic
Dependent Surveillance-Broadcast (ADS-B) protocol. Indeed,
thanks to onboard transponders, aircraft broadcast important
information such as their identification (or call sign), position,
altitude, and velocity in the form of ADS-B messages. Un-
fortunately, these messages are all vulnerable to false data
injection attacks because the ADS-B protocol is open and
lacks encryption and authentication. One of the most classical
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attacks consists of injecting ghost aircraft into the network.
This attack could be used to flood air traffic controller’s
screens with a lot of ghost aircraft. Such an attack would
make it impossible to know which aircraft are real and which
ones are not, hence air traffic surveillance would become
impossible. One solution do deal with these kinds of attacks
consists in using machine learning techniques and hash tables
to identify ghost aircraft.

Our study focuses on low-altitude traffic because the upcom-
ing arrival of electric vertical take-off and landing (eVTOL)
aircraft, drones, and others will strongly increase the low-
altitude traffic load. The low-altitude traffic will be even more
exposed to attacks, as it concerns a large diversity of aircraft
that can sometimes fly in sensitive areas such as urban zones.
Our project is a continuation of previous works carried out as
part of the GeLeaD research project (see Acknowledgements
on the bottom left part) [1, 2, 3]. Those three projects worked
on ADS-B anomaly detection but their main limitation is that
they focused on commercial traffic, whereas this study focuses
on low-altitude traffic.

The main contributions of this study are as follows:

• Recognising ghost trajectories that replay ADS-B mes-
sages by using a hash function for trajectories, specifi-
cally designed to be invariant to geometric transforma-
tions.

• A residual LSTM model trained to distinguish ghosts in
divergent saturation where ghosts spread around a real
aircraft.

The remainder of the paper is structured as follows. Sec-
tion II presents an overview of related studies. Section III
explains the format of our dataset. Section IV presents the



attacks we wanted to counteract and the techniques used to
solve them. Section V presents some implementation choices
that were made and shows the results of the study. Finally
Section VI will conclude this article and open on our potential
future works.

II. RELATED WORKS

The problems involved in our study are similar to more
general problems sych as how to evaluate distances between
two time-series or how to predict future locations based on
their trajectories.

In [4] the authors have developed an approach to evaluate
precisely the distance between two time-series as handwritten
digits. What makes this publication interesting for our work
is that the metric has to be invariant to transformations such
as translation, scaling, and rotation. Moreover, it uses a very
similar method to ours to achieve invariance. However, as the
objectives of this study are different to ours, the authors do not
use hashing but dynamic time warping (DTW) to categorize
similar time-series. This allows for a greater accuracy than
the present approach but this option is impossible, as a fast
pair-wise comparison with millions of entries is not feasible.

This study also deals with the problem of how to predict
the future position of aircraft based on their trajectory. This
is an important problem which has multiple applications. In
[5], the authors have developed a method for continuing to
predict aircraft positions in case of transponder failures, lack
of ADS-B coverage, or local signal interference. This method
is similar to ours but applies to commercial aviation. However,
it could also be used in our domain to make a high-altitude
flooding detection system.

III. DATASET

Some historical ADS-B records from the OpenSky database
were collected to benefit from a large diversity of aircraft,
flying in the same area. The dataset filters the flights under
10,000 ft, in the area of Toulouse and its surroundings. It
focuses on recent ADS-B data, from 2022, and each message
separated in trajectories is saved in a ”.csv” file including
classical ADS-B features such as Latitude, Longitude, Alti-
tude, Velocity, Track... The dataset is accessible here: https:
//mega.nz/folder/R1MHER6a#uRYHrlwbAb14JCqoHDlfwg

IV. METHOD

As it is possible to use ghost aircraft attacks in many differ-
ent ways, two main categories of attacks were distinguished.

Before presenting this method, it is important to mention
that in both attacks, we consider that the saturation happens
on the latitudinal and longitudinal axis. Such attacks are less
dangerous and easier to counteract even if, it is also possible to
make a saturation on the altitude axis. Modifying slightly this
algorithm would allow us to detect ghosts based on altitude.
However, this method takes into account the fact that the
attacker could also modify the velocity or the track of the
aircraft to maintain a certain coherence.

A. Ghost aircraft flooding

The first variant is the ghost aircraft flooding attack, which
consists in generating multiple ghost aircraft surrounding a real
aircraft. Ghost aircraft will have the same icao24 and callsign
as the attacked one, making them impossible to distinguish.
Figure 1 shows two ghost aircraft flooding attacks.

Fig. 1: Two examples of ghost aircraft flooding attacks

To detect which aircraft are ghosts, an artificial neural
network model was trained to predict the next geographic
coordinates of the aircraft. For each flight, when receiving
new messages, the artificial neural network predicts the next
latitude and longitude of the aircraft based on a window of
the last 30 ADS-B messages. At the same time, the algorithm
computes the distance (in meters) between the previous coordi-
nates predicted by the model and the ones in the new ADS-B
message. This distance metric gives the error of the model.
When this distance increases too much, one can admit that
the trajectory is abnormal.

In practice, when a ghost aircraft appears next to a real
one, the ghost aircraft takes a slight turn to separate from
the original aircraft. This causes the distance metrics to spike
up because the model is ”surprised” by this unexpected turn.
Theoretically, among ghost aircraft, the one with the smallest
error is the right one because it has the less aberrant trajectory.

B. Ghost aircraft injection

The second attack, which is called ”ghost aircraft injection”
consists of the regular re-transmission of ADS-B messages
from a recorded flight of the past. For example, an attacker
could replay a take-off in an airport, every minute of it, with
the icao24 code of an aircraft about to take off (Figure 2).
Such kind of replay would make the air traffic controller of
the airport unable to know if there is a real plane taking off,
or if it is just a ghost.

To counteract this type of attack, the goal is to identify, as
fast as possible, if a trajectory has already taken place. To this
aim, a hashing algorithm, specifically designed for trajectories,
has been developed. It regularly checks if a window of the
last 32 seconds (32 messages) matches any other one in a
database. Of course, pair-wise comparisons of trajectories are



Fig. 2: Example of ghost aircraft injection attacks,

impossible because it would take too long, instead, a hash table
is generated from the flights of our database. Then, all that is
left to do is to hash the 32 time-steps window and check if
there is another match. This task is extremely fast and solved
in O(1) even with a very big hash table. Generating the hash
table can, on the other hand, be slower, depending on the size
of the database, but it is not a problem as it has been done
once, before using our system.

Then, to have the most efficient replay detector, our hash
method has to be precisely adjusted. It has to tolerate small
modifications of the latitude and longitude values otherwise
replays will generate new hashes and will not match. On the
other hand, this hash method should not be too permissive or
every flight will be detected as a replay. Moreover, attackers
could use a flight from another location and translate the replay
wherever they want. So a perfect hash function has to be
invariant to the maximum possible transformations such as
translation, rotation, scaling, flips, and others. To deal with
these constraints, our algorithm converts trajectories into a
series of right, left, or flat turns and then hashes them.

The methodology adopted in this study is the following. The
raw trajectory is defined as T , a series of n pairs of latitude
and longitude (lat, lon). First, the latitude and longitude are
normalized to 0°N 0°E with rotations and projections to reduce
distortions due to the earth’s curvature. The newly generated
coordinates are now ”flat” and the new series N (Normalized)
can be represented with rectangular coordinates x and y (x
related to the longitude and y to the latitude)

Ni =

cos(Ti[lon])× cos(Ti[lat])
sin(Ti[lon])× cos(Ti[lat])

sin(Ti[lat])

×

Qrotz(−T loni−1)×Qroty(T lati−1)

Ni = Ni[yz] //Only keep y and z coordinates
Qrota = 3D rotation matrix on axis a

(1)

Then, the series D of ”direction” and the series V of
”speed” are calculated by computing the angular direction

between each message representing at each timestamp the
direction of the aircraft.

Di = arctan2(Ni[y], Ni[x])

Vi =
√
Ni[y]2 +Ni[x]2

(2)

Next, the series S is calculated, the serialized representation
of our original series T .

Si =


0 if Vi < 2e− 6 or Vi > 1e− 4

−1 if D(i− 1) to Di is a left turn
1 if D(i− 1) to Di is a right turn

(3)

Finally, the hash of the time series can be computed. Thanks
to the serialization step, S is now invariant to translation,
rotation, and mostly all other simple transformations. However,
it is still affected by vertical or horizontal flips of the trajectory.
Reversing the trajectory reverses all left and right turns. This
last transformation is handled directly into the math of the
hash function, representing left turns by negative values and
right turns by positive values. Thus, if the hash of the original
time server is positive, the hash of the inverted server will be
negative, and vice versa. Consequently, the absolute value of
the hash is invariant to reversal transformation

Hi =|
W∑
n=0

Si−n ∗ 3i |

W is the window size (32 in our implementation).

(4)

V. RESULTS

This section will present the choices that have been made
to improve the capabilities of our method. We will explain
some implementation details and try to reach the limits of
our system. The code used to perform these experiments is
available on our GitHub at https://github.com/DApIA-Project/
Anomaly-Detection/tree/main.

A. Ghost aircraft flooding

For the resolution of ghost aircraft flooding attacks, it was
determined that using a residual LSTM model was one of
the best approaches. Our model (Figure 3) takes as input the
classical ADS-B field and tries to output the future latitude
and longitude. The model is very light, with only 265,880
parameters allowing it to be used in real-time. The training is
achieved in 128 epochs of 32 batches of 64 samples.

Our model can predict the future position of the aircraft
with a precision of 29.3m. When a ghost aircraft spreads
around the real one, one can easily notice that the turn made
by ghosts surprises the model. The sharper the turn is, the
higher the model errors are. In Figure 4, different examples
of ghost aircraft can be seen. The first one takes a sharp turn
of 30 degrees, the second one a slight turn of 10 degrees,
and the third figure is the trajectory of the real aircraft. The
green line is the path of the aircraft and the blue cross is
the location where the model thought the aircraft would be.
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Fig. 3: Res-LSTM model architecture used to predict the
coordinates of the aircraft

The prediction and the target position were connected with
black dashed lines to highlight the error of the model at each
timestamp. The longer the black line is, the more unexpected
the turn, indicating the likelihood that the aircraft is a ghost.
Finally, the orange cross is the location where the model was
unable to make any predictions because of the poor quality of
the trajectory.

(a) Divergence=30° (b) Divergence=10° (c) Real aircraft

Fig. 4: Comparison between model predictions and truth
values

To analyze the model’s predictions, we can then plot the
evolution of the error as a function of time, and see where
the error reaches its maximum. For example, in Figure 5, the
error spikes up near time-step 60 for the first and the second
flight as they are ghosts but it does not for the third one as it
is a real aircraft.

For the prediction to be relevant, a very important parameter
is the distance in time of the model’s prediction. A model
predicting coordinates with too short a time horizon (e.g. T+1)
will have a very low loss. However, it will adapt too fast
to unexpected turns and will not detect an anomaly (Figure
6a). On the other hand, a model that predicts too far ahead
will not be accurate enough under normal conditions to tell
whether a message is abnormal or not. In Figure 6b one can
see that the model error is too high before the attack for a
difference to be noticeable at the moment of attack. That is
why it is so important to adapt this parameter to achieve a

Fig. 5: Comparison of the error profile for the prediction on
two ghost aircraft first, and then the real aircraft.

compromise between accurate predictions and late predictions
to increase the unexpectedness of an attack. Figure 6c shows
the best balance. By testing different parameters, it has been
determined that predicting the aircraft’s position in 4 seconds
gives the best contrast.

(a) Horizon=T+1 (b) Horizon=T+7 (c) Horizon=T+4

Fig. 6: Comparison of the effect of setting prediction horizon
too low, too high, or correctly

Finally, we tried to reach the limits of our model by testing
very small divergences, with angles of less than 10 degrees,
and under difficult conditions: the real aircraft also took a
turn while the attack was taking place. This experiment shows
that if a ghost aircraft takes a slight turn, diverging by less
than 7 degrees from the real aircraft, our method starts to
become uncertain in distinguishing the real plane. This result
is encouraging, because even if, under difficult conditions, the
algorithm is unable to distinguish the real aircraft, it is still
able to accurately filter out a large number of ghost aircraft



deviating by more than 7 degrees.

B. Ghost aircraft injection

To evaluate the detection capacities of replays with our al-
gorithm, we filled the hash table with more than 10,000 flights.
Hashing all the trajectories generates, 10,801,293 hashes, and
260,716 hashes are associated with at least two flights. We will
call them collisions, but they are not truly real hash collisions,
it only happens because two flights can have the same series of
32 right and left turns. Moreover, the effect of those collisions
on the final prediction is so low that their impact can be
ignored.

Next, we ran our algorithm through one hundred flights
in the database to check whether they would be detected
as replays. Each of these hundred flights has been randomly
translated, rotated, scaled ... Moreover, we also submitted to
our algorithm, a hundred flights that are not in the database to
check if the algorithm would not generate false positive alerts.

As a result, 96% of the 200 flights were correctly classified
as replay or not. The algorithm has never generated any false
positives which means that the algorithm is very reliable and
will never label a real aircraft as a ghost. On the other hand, the
algorithm failed to detect 8 flights as replays because in some
situations the trajectory shapes combined with transformations
are too straight to correctly identify micro-turns as right
or left. If we repeat this experiment without applying any
transformations to the trajectories tested, the system’s accuracy
is perfect, with 100

VI. CONCLUSION

To conclude, this paper demonstrates that it is possible to
automatically detect ghost aircraft by using machine learning
techniques or specific hash functions. Even if this study shows
that under some conditions it is not always possible to tell
each aircraft if they are real or a ghost, we show that we can
precisely filter almost every ghost. The results are encouraging
because they prove that there are solutions to face flooding
attacks and even if we can not always filter every ghost, it
will in any case greatly simplify the air traffic control task in
case the system is targeted by a flooding attack.

In our future work, we will try to improve our replay
detector by improving the robustness of our hash function
to manage the problem of micro right and left turns better.
Moreover, there are still a lot of experiments that need to be
conducted to improve our artificial neural network for solving
divergent flooding attacks. One idea would be to combine
multiple predictions with different time horizons to improve
the accuracy of the method. Other models such as a recent
transformer model adapted for regression tasks could also be
used [6].
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