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Abstract—While Modular Robots Systems (MRSs) are getting
more popular, the challenge of effective self-reconfiguration of
the robots persists. Actually, many distributed algorithms were
proposed for the Modular Robots Self-Reconfiguration problem
(MRSR), however, the efficiency of each algorithm according
to the different cases is rarely studied. In a precedent work,
we proved the relevance of using an Artificial Neural Network
(ANN) component to select the most adapted distributed algo-
rithm according to the current scenario. The proposed approach
suffers, as all the other approaches in the literature, ignore the
state of charge of the robots. Consequently, an MRSR algorithm
may not achieve the MRS reconfiguration if the robots’ batteries
are exhausted before the end of the algorithm. In this paper, we
propose an ANN system that selects the most suited MRSR
algorithm according to the MRSR scenario and the initial state
of charge of the robots. The results of the tests show an accuracy
of 97%.

Index Terms—Self-reconfiguration, modular robots system,
distributed algorithm, programmable matter, machine learning,
convolutional neural network, energy aware.

I. INTRODUCTION

Programmable matter is one of the most challenging facets
of the robotics field in general and modular robotics in
particular. The programmable matter aims to design tiny
robotics components that act like atoms or molecules in
physical objects. These tiny robots have the ability to move
with or without the help of the other robots in order to change
their topology or form a given shape. The applications of such
technologies are extremely wide [1] from transportation [2]
and rescuing [3] to area exploration [4], and tracking [5].

A. Modular robots systems

We call Modular reconfigurable robots (MRR) or Meta-
morphic Modular Robots a set of identical robots of small
size, able to move around each other to change the topology
of the network itself [6], [7]. Over the years, many platforms
modular robots were proposed by the research community
[8], [9], [10]. These MRR systems differ according to their
spatial organization (2D 4-lattice, 2D 6-lattice, 3D 12-lattice,

etc.), and motion mode (rolling, translation, jump, rotation,
etc.).

In this paper, we study the 2D-Catom platform [11] rep-
resenting cylindrical robots piled over a horizontal plan and
moving by rolling around the neighboring robots within a
vertical plan space (see figure 2). However, the used method-
ology can be extended to any other platform.

B. Self-reconfiguration modular robots

We define the self-reconfiguration problem (SRMR) as the
definition of mechanisms that allow a set of modular robots to
change their global shape from the current one (initial shape)
to a target shape [12].

Many methods were proposed to solve SRMR problem
that could be classified according to the use or not of a
centralized unit for establishing the reconfiguration plan. In
centralized approaches, a master unit, with total knowledge
of the initial reconfiguration of the modular robots, schedules
the sequence of moves to perform by each robots to reach
the final shape. In the distributed approaches, the robots run
a local identical program defining the local motion rules used
by each robot. While centralized approaches lead to huge
spacial and computational complexity, distributed approaches
suffer from variable quality according to the processed SRMR
scenario.

To address the limitations of both centralized and dis-
tributed approaches, we proposed in a previous work a com-
bination of the two approaches using Artificial Intelligence
[13]. To that end, a CNN module analyses the current SRMR
problem and then selects the most suitable distributed algo-
rithm among a set of distributed methods: Cylindrical-Catoms
Self-Reconfiguration (C2SR) [14] and Translation Based Self
Reconfiguration (TBSR) [15]. Once the best algorithm is
selected, the centralized unit send the identifier of the selected
distributed algorithm to all modular robots and the distributed
algorithm is then run.
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Fig. 1. Hybrid self-reconfiguration process: first the ANN selects the
preferred distributed algorithm then the identifier of the algorithm is sent
to all robots in order to be executed.

C. Contributions

The impact of the residual energy over the modular robots
on the self-reconfiguration algorithm is ignored. Indeed, the
convergence of the robots to the final shape depends on
the state of charge of their batteries. Once the battery is
exhausted, the robots can not move and the algorithm may
not converge. To the best of our knowledge, the approach
proposed here is the first attempt to study the impact of the
energy state of charge on the feasibility and efficiency of
shape-shifting algorithms. The proposed method lays on a
new hybrid approach that uses an artificial neural network to
ensure the energy efficiency of the reconfiguration.

In the remainder of the paper, we start with an overview of
energy awareness in the Self-Reconfiguration Modular Robots
literature. Then in section III, we describe the energy model
of 2D-Catom robots according to the nature of the motion
and the number of produced connections/disconnections. In
section IV, we detail the structure of the used Artificial Neural
Network, in particular the inputs and outputs formats. Section
V describes the experiments and the analysis of the results.
Conclusion and future works perspectives are given in Section
VL

II. RELATED WORKS

Energy awareness becomes one of the major concerns in
ICT fields over the last 10 years. Energy consumption in dis-
tributed systems in general and telecommunication networks,
in particular, concentrates a tremendous amount of research
works [16], [17], [18].

The energy issue has been from a very early stage identified
as one of the major metrics in the evaluation of modular
robots reconfiguration efficiency [19]. However, earlier works
on self-reconfiguration of modular robot systems ignore the
energy issue [20], [21]. Later, many recent works deal with
the optimization of the energy consumption of the robots
[22], [23], [24], [25]. Major works in this field focus on the
reduction of the total amount of energy needed to achieve

the system’s reconfiguration [24], which corresponds to the
total number of moves made by all robots. Few works
tried to consider more relevant metrics for evaluating energy
consumption. In [15], authors proposed a self-reconfiguration
algorithm that tries to spread the reconfiguration effort over
the robots to reduce the deviation of the number of moves
made by each one.

Whatever the modular robots hardware platform, the self-
reconfiguration algorithms in the literature are all character-
ized by the following three drawbacks:

o The energy consumption modeling of the robot’s elemen-
tary motion is basic and considers that all motions spend
the same amount of energy [26]. However, the energy
cost of an elementary motion depends on the number of
involved robots, i.e. the number of disconnections and
connections to achieve, and the nature of the motion
(going up, going down, rolling over, sliding under).
These parameters are depicted in figure 2, which shows
6-lattice modular robots called 2d-Catoms. For example,
the red robot rolls over three robots and then disconnects
from robots C and D and reconnects with D (using
another connector) and E. Figure 3 gives an exhaustive
illustration of the different types of motion.

o Self-reconfiguration algorithm assumes that modular
robots are, initially, equally charged. Therefore the self-
reconfiguration ignores the disparity between different
robots’ motion capacities. The battery expiration is as-
sumed as a part of the fault tolerance process and should
be managed separately by curative mechanisms.

o The battery depletion is not envisaged during the
self-reconfiguration  procedure. Indeed the self-
reconfiguration algorithm assumes that robots are
continuously powered by any external continuous
current such as wire [27], harvesting system [28], or
power transfer between robots [29]. Otherwise, we
assume that the reconfiguration process is interrupted
until the modular robots are recharged.

This paper presents, to the best of our knowledge, the first
attempt to take into account the state of charge of the modular
robots in the self-reconfiguration procedure. The objective
is to provide a centralized pre-computing procedure that
determines the most suitable self-reconfiguration algorithm
to use according to the initial and final shapes and the initial
residual energy of each robot.

III. ENERGY COST MODEL FOR 2D-CATOM MODULAR
ROBOTS

2D-Catom robots are still in the prototype and demon-
stration stage. Therefore, a machine learning process based
on real-world experiments on self-reconfiguration scenarios
requires a high number of modular robots, excessive time
duration, and a high risk of error. A first simulation-based
phase is more efficient to train an artificial intelligence
in order to determine the best suitable self-reconfiguration
algorithm according to the initial and final shapes.



Fig. 2. Birds-eye view on 6-Lattice modular robots (cylinders) deployed over
a horizontal plane. The motions of three robots (red, green, and orange) are
given by three arrows of a corresponding color. The energy cost of each robot
is measured according to the number of disconnections and connections to
achieve, and the nature of the motion.

As it is still early in the production of Catoms, the
obtained results couldn’t be subjected for comparison with
real experiments to experiment and verify the algorithm’s
effectiveness. VisibleSim [30] is a framework for creating
behavioral simulators for distributed lattice-based modular
robotic systems including 2D-Catoms. VisibleSim was chosen
for its fidelity, the simulator is updated frequently by the same
teams behind the Catoms [31]. However, for the needs of our
study, we need to involve an energy cost model that simulates
the energy consumption and the variation of the battery level
of the modular robots.

In this section, we describe the energy model we used to
take into account energy constraints in modular robots’ self-
reconfiguration process. We, first, present the data that model
the energy constraints then we expose the energy patterns
used in our simulations.

A. Energy model

The energy consumption of modular robots depends on the
nature of the achieved motion and the number of discon-
nections and connections done with the neighboring robots.
Therefore, a robot may consume energy even when it is still
immobile. This is the case when the robot serves as a pivot
for the motion of another robot or when the robot disconnects
or connects to the moved robot. We assume that before
moving, a robot checks at the same time if its residual
energy and the residual energy of involved robots are
sufficient.

To implement that new constraint, we associate the follow-
ing values to each robot:

o ¢; represents the actual battery’s residual energy of the
robot 1.

Fig. 3. Energy cost of a move depends on the nature of the move: simple
move, climbing, move without support, and climbing without support

o %" represents the maximum energy capacity of robots’
batteries. This value is assumed equal for all the robots
(robots are homogeneous).

e ™" designates the energy cost required for receiving a
message from a neighboring robot.

e " defines the energy cost required to perform an ele-
mentary move/rotation. An elementary move consists in
rolling by 60c around another robot called “pivot”.

« mp and m, define two factors applied to ¢” to assess
the additional energy cost when the elementary move
corresponds to climbing (m,.) or moving without a robot
below (mp) (without support, the robot needs more
energy to prevent a fall).

o T defines the time, given in seconds, required to achieve
an elementary move.

o ci defines the energy spent when a robot stays in the
same position (idle mode) during 7' seconds without
exchanging messages and with only turned-off electrodes
(no neighbor).

e c. represents the cost of turning on or off one single
electrode

Figure 3 depicts the four kinds of moves that a robot may
perform. Robot B performs a simple move that costs c,.
Robot A climbs which costs ¢, *m,.. Module C' moves without
support which costs c¢,.xmy. Module D climbs without support
and consumes ¢, * m,. * my. Therefore, the energy cost spent
by a robot ¢ to perform a move is computed as follows:

0 immobile
c’ simple move

motion — & m, x ¢ climb (1)
mp X c” move without support

my X my X ¢”  climb without support

In the simulations, we have fixed m, to 1.5, making
climbing consumes 50% more energy than a simple horizontal
move. We have set m;, factor to 2.0, which means that moving
without below support costs 2 times more than a simple move.

Equation 2 computes the amount of energy spent by a robot
during 7' seconds, C7, according to the robots’ mobility,
communications, and connections.
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Fig. 4. Number of electrodes used in different situation : (a) : 4 different
electrodes used, 2 to activate and 2 to deactivate (b) 6 electrodes (c) 8
electrodes and (d) 10 electrodes

CT =ci+cmton fIxc®+mxc™+nxc™  (2)

[, m and n represent respectively the number of activated
electrodes, the number of sent messages, and the number of
received messages during the period 7. Figure 4 shows how
many electrodes are used for different kinds of moves. In
hypothetical case where a robot is isolated, n will equal 0
and C' will equal ¢;.

We used the data provided in [32] and [33] to set the
values of all the variable with realistic values. With this
methodology, c¢; is worth 286 nanoWatt (nW) and c. is 533
nW. A robot with a full battery will have 7,4 pWh. The cost
for a robot to send a message to a neighbor is negligible
when compared to a single move, the orders of magnitude
of these two costs are so large (and even larger with the full
battery) that we chose to ignore the cost of the messages in
the simulation.

B. Energy pattern

We defined 15 different energy patterns to use, pictured
in Figure 5. Each pattern describes the cartography of the
robots’ state of charge before the self-reconfiguration. The
initial positions of the robots are modeled by a square grid.
The color of a cell depicts the initial state of charge of the
robot at this position (the position may be initially empty).
The gray level refers to the residual energy level. Darker
colors mean exhausted batteries and light points represent the
charged batteries. Those patterns are applied to every self-
reconfiguration scenario (initial and final shapes). Therefore,
the used energy pattern defines the initial values of e; for
every robot.

In Figure 6, we give an example of MRSR problem repre-
sented by an image. Black cells represent the positions which
do not belong to the initial shape or the final shape. The other
cells are colored in RGB mode. Final positions are colored in
red (RGB =< 255,0,0 >), while initial positions are colored
by RGB =< 0,255, X >. The blue level, X, depicts the state
of charge of the robot located at the associated position. If
the position is both initially and finally occupied, the position
will take the color RGB =< 255,255, X >, where X is the
initial state of charge of the immobile robot.

Fig. 5. The 15 energy patterns describing the initial residual energy
cartography over the initial positions. A white pixel means a fully charged
battery (100%) a black pixel means a dead battery. The patterns are: all
robots are fully charged, all robots are mid-charged, all robots are charged
at 25%, all robots are charged at 0%, horizontal gradient from top to bottom
and from bottom to top, vertical gradient from left to right and from right
to left, diagonal gradient from top-left to bottom-right and from top-right to
bottom-left, and finally, 5 random patterns with residual energy respectively
varying in [10%-100%], [20%-90%], [30%-80%], [40%-70%],[50%-60%].

Fig. 6. Example of a scenario, here the initial network has the bump! shape,
with the energy pattern n°6 (gradient, the top robot have the more energy
that those on the bottom) into the vase shape.

IV. NEURAL NETWORK
A. Dataset

The scenarios dataset are generated using 12 different
classes of shape composed of 120 robots. Figure 7 illustrates
these different classes of shape. Using these shapes as initial
and final shapes, we obtained 140 different scenarios. For
each scenario, we applied the 15 energy patterns described
above on the initial shape to obtain 2096 self-reconfiguration
scenarios.

B. Convolutional Neural Network

1) Inputs: The objective of the neural network module is to
analyze the self-reconfiguration problem in order to determine
which distributed algorithm is better. As explained above, the
self-reconfiguration problem is modeled by an RGB picture
that codes the positions of the initial and the final shape as
well as the initial energy of the robots (see Figure 6). Our
dataset scenarios represent 2096 different images of 40pz X
30px, one image by scenario.

2) Structure: In this section, we detail our Neural
Network-based modular robot Self-Reconfiguration called
CNN. Due to the nature of the modular robot self-
reconfiguration problem, it is obvious that geometrical re-
lations between the occupied positions in the initial and the
final shapes play a key role in the problem characterization. It



Fig. 7. The 12 shapes defined to be initial and/or goal shape, each composed
of 120 robots.

is therefore legitimate to consider a class of ANN adapted to
this kind of problem. Convolutional Neural Networks (CNN)
are widely used for image and video processing due to their
ability to identify the spatial relation between pixels [34],
[35]. Therefore, we use a CNN to identify the best MRSR
algorithm by analyzing the image that represents to the self-
reconfiguration scenario as illustrated in Figure 6.

Figure 8 gives the details of the adopted CNN architecture.
Mainly, CNN is based on four cycles of convolution and pool-
ing then 3 layers of classification. The last layer represents the
output layer composed of two nodes respectively associated
to the TBSR and C2SR scores.

3) Outputs: Energy optimization raises a major question
about how to evaluate the energy efficiency of a MRSR
algorithm. In this study, we identified 3 criteria to judge the
energy efficiency of a self-reconfiguration algorithm. This
study represents the first time advanced energy efficiency
criteria are used for MRSR problem including an energy
model for the different kinds of moves.

1) Sum of the energy used by all the robots for the SR.

2) Max value of energy used by one of the robots for the
SR.

3) Ratio of energy used on the energy at the start of the
self-reconfiguration.

We conceived three CNN modules according to the con-
sidered energy efficiency criterion. The CNN module returns
two scores for the respective distributed algorithms according
to the given scenario represented by an RGB picture. The
distributed algorithm with the highest score is then considered
the suitable algorithm.

conv2d_input | input: | [(None, 40, 30, 3)]

output: | [(None, 40, 30, 3)]

InputLayer
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Fig. 8. CNN architecture

V. EXPERIMENTS AND ANALYSIS
A. Training step

The training and validation cycles of the CNN module are
achieved using respectively 1088 scenarios and 504 scenarios.
The last 504 scenarios are used for the test phase and
correspond to the results exposed here below.

B. Experimental results

First of all, Figures 9, 10, and 11 show that TBSR outper-
forms C2SR for all scenarios according to both the maximum
energy consumption (MAX) and the maximum ratio of energy
consumption criteria (RATIO). However, C2SR performs bet-
ter in major cases when the total energy consumption criterion
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Fig. 9. Total energy used for each goal shape.
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Fig. 10. Max energy used by a robot for each goal shape.

(TOTAL) is considered. This result was predictable since
TBSR was initially proposed to guarantee the fair distribution
of effort over the robots during the self-reconfiguration.

In figure 12, we show an example of the self-
reconfiguration scenario from a Bump shape to a Triangle
where all the robots are initially fully-charged. The example
shows that TBSR improves energy efficiency according to
MAX and RATIO criteria while it decreases energy efficiency
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Fig. 11. Ratio of energy used for each goal shape.

Bumpl to Trianglel with template 100%
C2SR
TOTAL MAX RATIO
527,30819 17,2343 7
TBSR
TOTAL MAX RATIO
588,65 10,314 4,00

Fig. 12. Result for a single case : from Bumpl to Trianglel with template
0 (100% energy).

Average for all 2096 scenarios
C2SR
TOTAL MAX RATIO
554,04 15,16 597
TBSR
TOTAL MAX RATIO
597,76 10,06 3,51

Fig. 13. Average of results for all scenarios.

regarding the TOTAL metric.

In figure 13, we show the average Total energy used, max
energy used and the ratio of energy used of TBSR and C2SR
for each criteria. In average, even with the biggest shapes, the
robots didn’t use a lot of energy.
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Fig. 14. Training and validation metrics
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C. Analysis

Concerning the performances of the three CNN modules,
i.e. the ability of the CNN to identify the truly suitable
algorithm, Figure 15 gives the confusion matrices of the
conceived neural networks over the test set. The Figure shows
that three CNN modules provide respectively 97.88%, 100%,
and 100% of correct results according to TOTAL, MAX, and
RATIO criteria. The training and validation curves for the
accuracy and loss, Figure 14, show that the CNN can quickly
generalize the link between the data and the label.

The output for the best suited algorithm can be different
for Total energy used, Max energy used and Ratio of energy
used. While our tool can be used to find the algorithm for
each one of these criteria, when they gave different results,
it will be up to the user to choose the best approach to the
problem between the three implemented as some situation
would require to minimize the total energy usage when other
will focus on the ratio of energy used.

VI. CONCLUSION & PERSPECTIVES

Several technological barriers have been overcome in the
quest for programmable matter. However, the energy capacity
of micro-robots to move has been largely ignored or at least
crudely addressed.

In this paper, we present a first attempt at fine modeling of
energy consumption of micro-robots according to the nature
of the movement. This modeling is integrated into the problem
of selecting a self-reconfiguration algorithm according to dif-
ferent criteria for evaluating energy efficiency. The resulting
auto-configuration approach represents an advantage over the
methods proposed in the literature. Indeed, the prior use
of an artificial neural network to determine the best self-
reconfiguration algorithm makes it possible to optimize the

energy cost of the self-reconfiguration. This optimization
leads to prolonging the service life of the robots and thus
of the system.

The results obtained show that the CNN is able at rates
greater than 95% to determine the best-distributed algorithm
to use. Even if in terms of total energy consumed the
compared approaches remain identical, the improvement in
terms of maximum energy per robot or in energy ratio is
significant. Therefore, robots are more able to regenerate their
battery through harvesting systems.
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